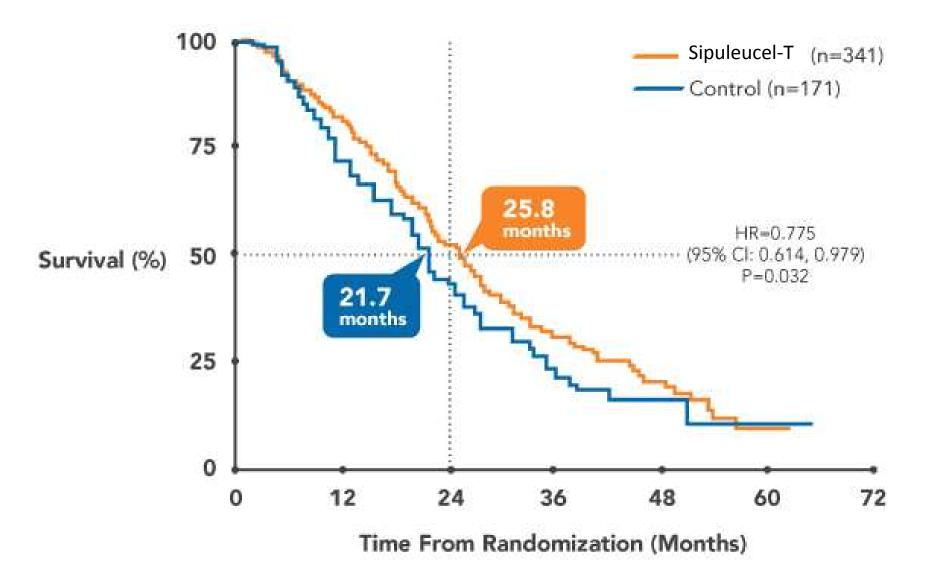
Cancer Vaccines

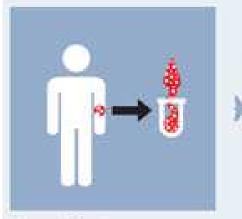
Willem W. Overwijk

Department of Melanoma Medical Oncology MD Anderson Cancer Center Houston, TX, USA


Making Cancer History®

What is a Cancer Vaccine?

A preparation of a tumor antigen (usually protein) that upon administration stimulates antibody production or cellular antitumor immunity.


Sipuleucel-T for Prostate Cancer

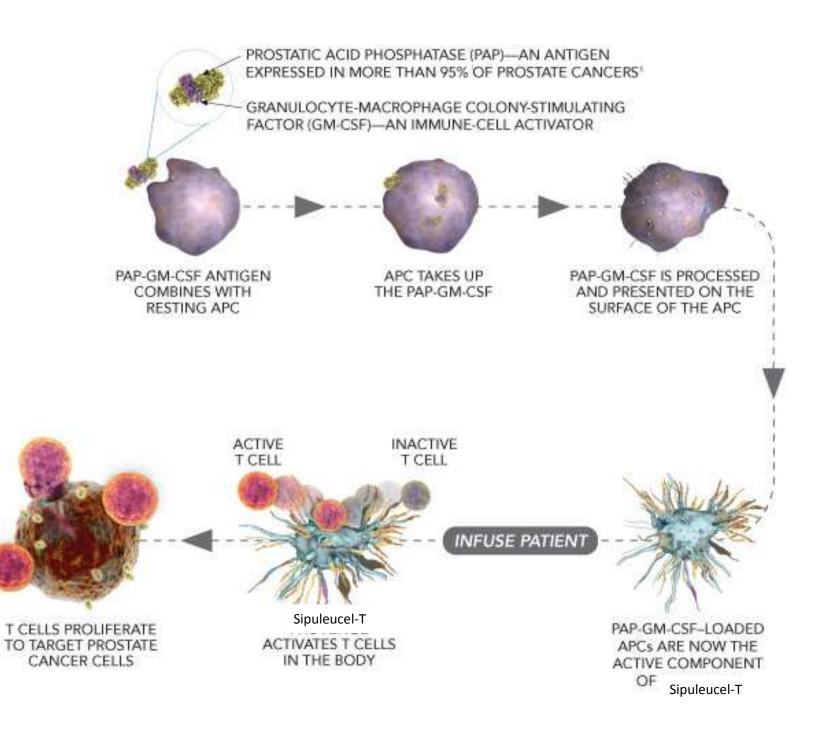
FDA-approved April, 2010

Sipuleucel-T for Prostate Cancer

Day 1 Patient undergoes leukapheresis.

Apheresis Center

Day 2-3 Sipuleucel-T is manufactured.


Dendreon

Complete Course of Therapy: 3 Cycles

Day 3-4 Patient is infused.

Physician's Office

PERSPECTIVE

VOLUME 10 | NUMBER 9 | SEPTEMBER 2004

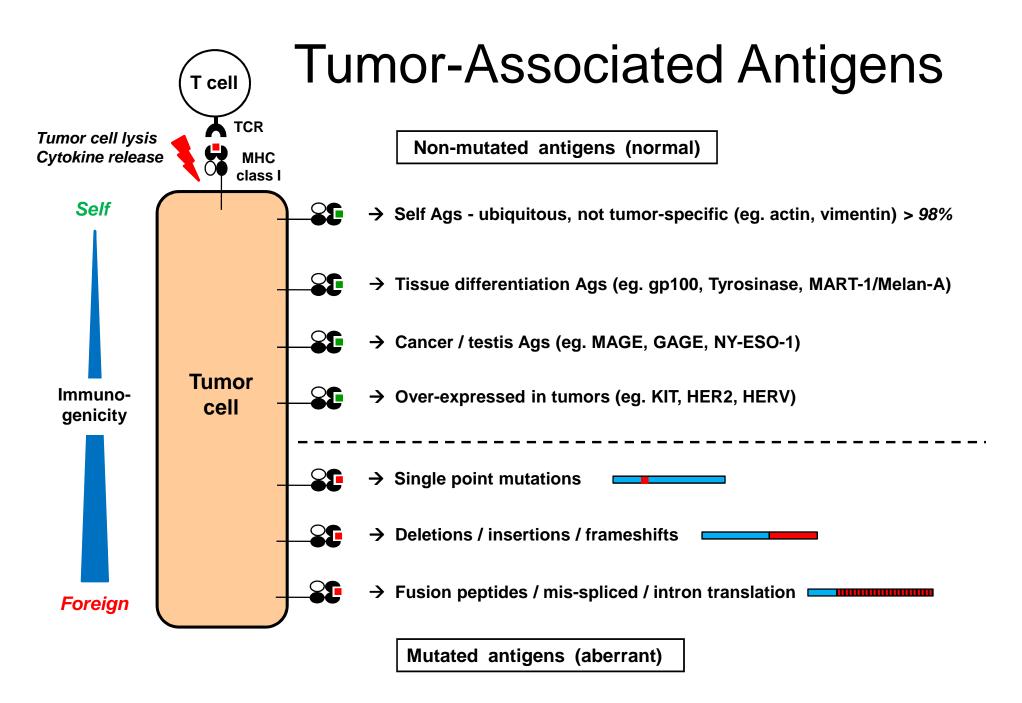
Cancer immunotherapy: moving beyond current vaccines

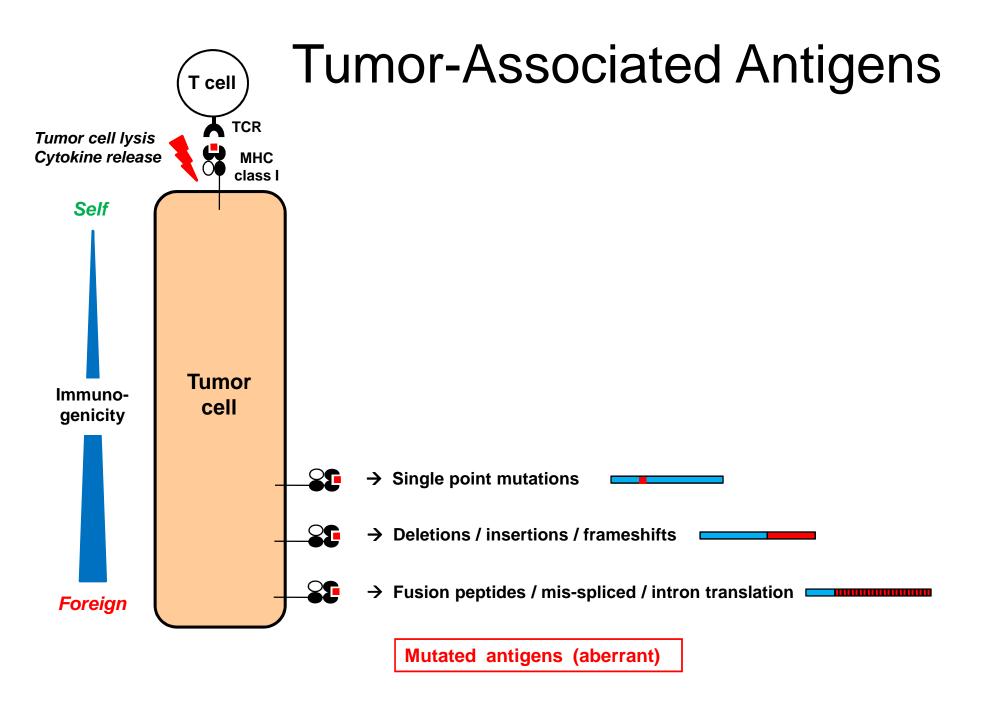
Steven A Rosenberg, James C Yang & Nicholas P Restifo

35 clinical trials

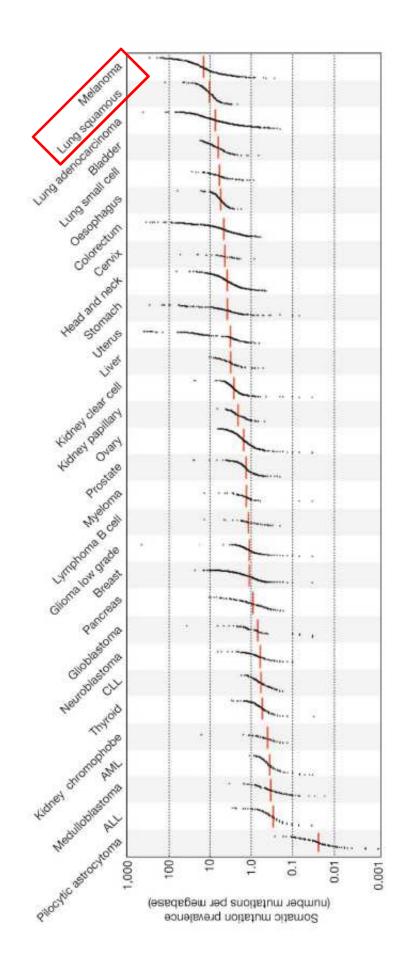
765 patients

objective response rate = **3.8%**

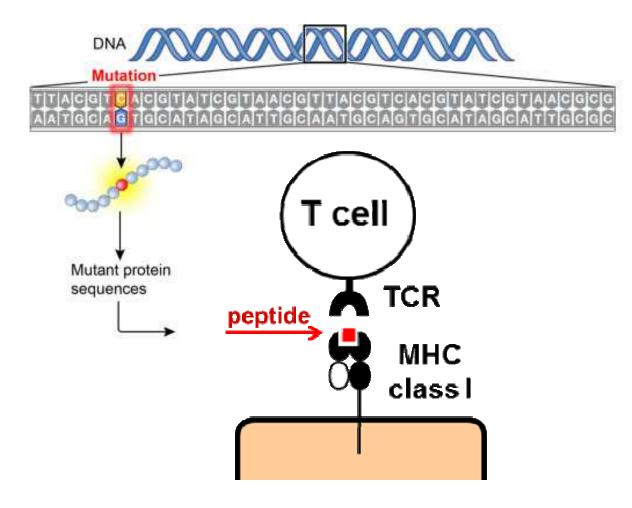

What is a Cancer Vaccine?


A **preparation** of a **tumor antigen** (usually protein) that upon administration stimulates antibody production or cellular antitumor immunity.

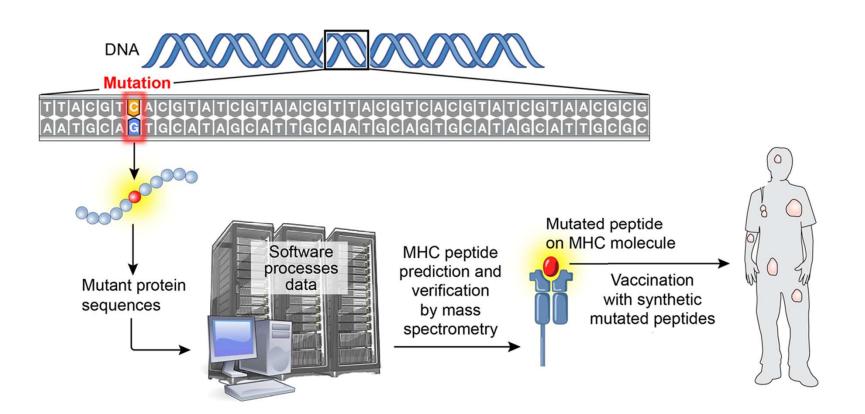
What is a Cancer Vaccine?


peptide(s)

A **preparation** of a **tumor antigen** (usually protein) that upon administration stimulates antibody production or cellular antitumor immunity.



The prevalence of somatic mutations across human cancer types



Nature Volume: 500, Pages: 415-421Date published: (22 August 2013) DOI: doi: 10.1038/nature12477 Signatures of mutational processes in human cancer Alexandrov et al.

Mutated Peptides as Cancer Antigens

From Mutation to Vaccine

What is a Cancer Vaccine?

A **preparation** of a **tumor antigen** (usually protein) that upon administration stimulates antibody production or cellular antitumor immunity.

Vaccine Adjuvants

• mechanisms of action:

o antigen depot for prolonged release
o protects antigen from degradation
o increases antigen uptake by APCs
o pro-inflammatory/pro-immunogenic milieu

The NEW ENGLAND JOURNAL OF MEDICINE

gp100 peptide vaccine has activity in metastatic melanoma

Stage IV and locally advanced stage III melanoma patients

High-dose IL-2 +/- gp100 peptide in IFA (= water-in-oil emulsion)

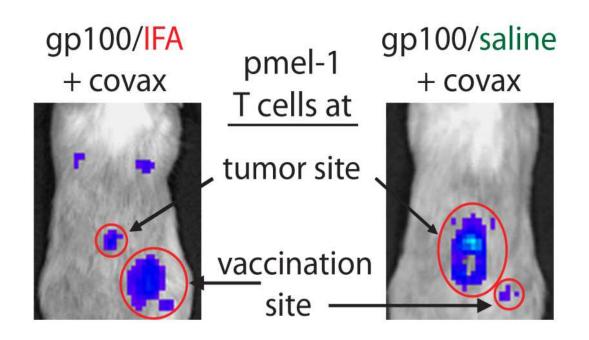
	IL-2+gp100/IFA	IL-2	p-value
Overall response rate	22.1%	9.7%	0.022
Progression free survival	2.9 months	1.6 months	0.010
Median overall survival	17.6 months	12.8 months	0.096

Clinical Trials of Cancer Vaccines

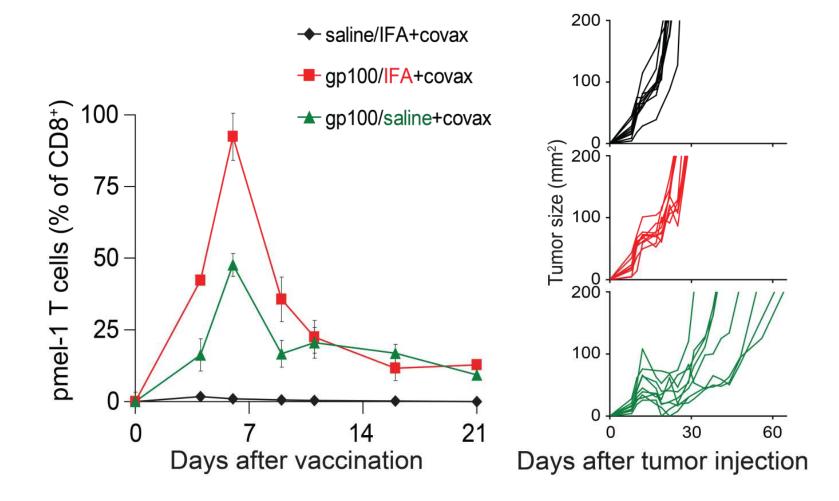
402 open studies (USA only) using cancer vaccines (www.clinicaltrial.gov)

- 1. Study of Peptide Vaccination With Tumor Associated Antigens Mixed With Montanide in Patients With CNS Tumors
- 2. CpG 7909/IFA With or Without Cyclophosphamide in Combination Either With NY-ESO-1-derived Peptides or the NY-ESO-1 Protein for **NY-ESO-1-expressing Tumors**
- 3. Vaccine Therapy in Treating Patients With Non-Small Cell Lung Cancer (NSCLC) Stages IIIB/IV
- 4. Randomized Study of Adjuvant WT-1 Analog Peptide Vaccine in Patients With Malignant Pleural **Mesothelioma** (MPM) After Completion of Combined Modality Therapy
- 5. Immunotherapy of Stage III/IV Melanoma Patients
- 6. A Clinical Trial of Autologous Oxidized Tumor Cell Lysate Vaccine For Recurrent **Ovarian, Fallopian Tube or Primary Peritoneal Cancer**
- 7. Vaccine Therapy and Monoclonal Antibody Therapy in Treating Patients With Stage III or Stage IV Melanoma That Cannot Be Removed by Surgery
- 8. Safety Study of Multiple-Vaccine to Treat Metastatic Breast Cancer
- 9. IDO Peptide Vaccination for Stage III-IV Non Small-cell Lung Cancer Patients.
- 10. Survivin Vaccine Therapy for Patients With Malignant Gliomas
- 11.Phase I Poly IC:LC and NY-ESO-1/gp100/MART (Melanoma)
- 12.A Phase I Study of WT1 Peptides to Induce Anti-Leukemia Immune Responses Following Autologous or Allogeneic Transplantation for AML, CML, ALL, MDS, and B Cell Malignancies
- 13. Vaccination of High Risk Breast Cancer Patients
- 14.MAGE-A3/HPV 16 Vaccine for Squamous Cell Carcinoma of the Head and Neck
- 15.Novel Adjuvants for Peptide-Based Melanoma Vaccines

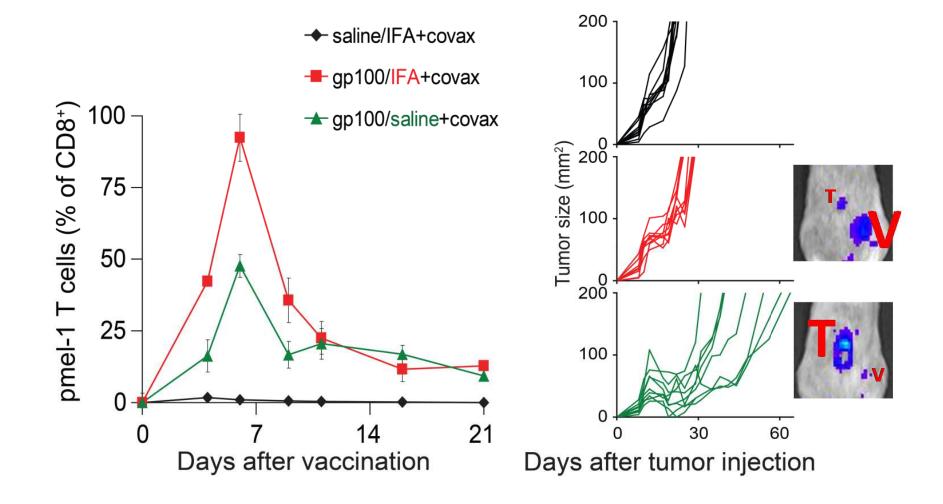
Question


Why do many vaccinated cancer patients not experience tumor regression despite increased levels of cancer-specific T cells?

Question


Why do many vaccinated cancer patients not experience tumor regression despite increased levels of cancer-specific T cells?

- immunosuppressive tumor microenvironment
- too few T cells induced
- poor T cell effector function/wrong phenotype
- poor T cell trafficking to tumor


Water-based vaccines permit T cell accumulation in tumor

Tumor therapy with long-lived vs. short-lived vaccine

Tumor therapy with long-lived vs. short-lived vaccine

Vaccines Based on Long Peptides Allow Better T Cell Trafficking

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Vaccination against HPV-16 Oncoproteins for Vulvar Intraepithelial Neoplasia

Gemma G. Kenter, M.D., Ph.D., Marij J.P. Welters, Ph.D., A. Rob P.M. Valentijn, Ph.D., Margriet J.G. Lowik, Dorien M.A. Berends-van der Meer, Annelies P.G. Vloon, Farah Essahsah, Lorraine M. Fathers, Rienk Offringa, Ph.D., Jan Wouter Drijfhout, Ph.D., Amon R. Wafelman, Ph.D., Jaap Oostendorp, Ph.D., Gert Jan Fleuren, M.D., Ph.D., Sjoerd H. van der Burg, Ph.D., and Cornelis J.M. Melief, M.D., Ph.D.

79% clinical response 47% CR (>24 months)

Adjuvants remain underdeveloped

MAGE-A3 Cancer Immunotherapeutic Phase 3 Study in Melanoma Misses First Co-Primary Endpoint

(September 5, 2013)

Antigen: MAGE-A3 protein Adjuvant: AS15 = liposomal QS-21 + MPL + CpG

Phase 3 randomized, blinded, placebo-controlled vaccine trial.

Outcome: no improved disease-free survival compared to placebo

www.gsk.com

Peptide vaccines can be enhanced with TLR agonists

Rapid and strong human CD8⁺ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909

Daniel E. Speiser,¹ Danielle Liénard,^{1,2} Nathalie Rufer,³ Verena Rubio-Godoy,¹ Donata Rimoldi,¹ Ferdy Lejeune,² Arthur M. Krieg,⁴ Jean-Charles Cerottini,^{1,5} and Pedro Romero¹

Adding CpG to vaccine boosted Melan-A/MART-1specific CD8+ T cells responses in blood by 10-fold

J. Clin. Invest. 115:739-746 (2005).

Peptide vaccines can be enhanced with TLR agonists

Phase I Trial of Overlapping Long Peptides from a Tumor Self-Antigen and Poly-ICLC Shows Rapid Induction of Integrated Immune Response in Ovarian Cancer Patients

Paul Sabbatini, Takemasa Tsuji, Luis Ferran, et al.

Adding Poly-ICLC (TLR 3 agonist) to NY-ESO-1 peptides in IFA increased specific antibody and T cell responses

Clin Cancer Res 2012;18:6497-6508

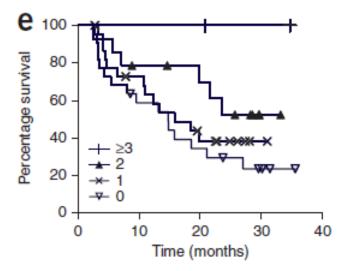
Peptide vaccines can be enhanced by reformulation

European Journal of Immunology

Nano-particle vaccination combined with TLR-7 and -9 ligands triggers memory and effector CD8⁺ T-cell responses in melanoma patients

Simone M. Goldinger¹, Reinhard Dummer¹, Petra Baumgaertner², Daniela Mihic-Probst¹, Katrin Schwarz³, Anya Hammann-Haenni³, Joerg Willers³, Christine Geldhof², John O. Prior², Thomas M. Kündig¹, Olivier Michielin², Martin F. Bachmann³ and Daniel E. Speiser²

A virus-like nanoparticle loaded with CpG-A and coupled to Melan-A/MART-1 peptide + topical imiquimod

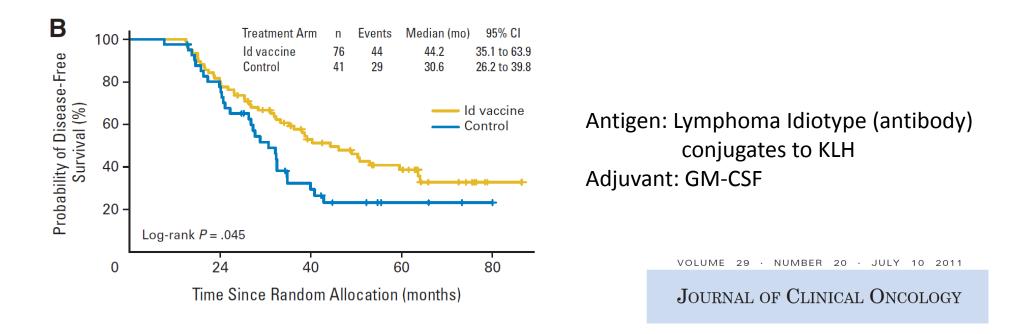

GM-CSF as a peptide vaccine adjuvant

Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines

ML Disis, H Bernhard, FM Shiota, SL Hand, JR Gralow, ES Huseby, S Gillis and MA Cheever

GM-CSF as a peptide vaccine adjuvant

medicine AUGUST 2012


Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival

Steffen Walter^{1,21}, Toni Weinschenk^{1,21}, Arnulf Stenzl², Romuald Zdrojowy³, Anna Pluzanska⁴, Cezary Szczylik⁵, Michael Staehler⁶, Wolfram Brugger⁷, Pierre-Yves Dietrich⁸, Regina Mendrzyk¹, Norbert Hilf¹, Oliver Schoor¹, Jens Fritsche¹, Andrea Mahr¹, Dominik Maurer¹, Verona Vass¹, Claudia Trautwein¹, Peter Lewandrowski¹, Christian Flohr¹, Heike Pohla^{9,10}, Janusz J Stanczak¹¹, Vincenzo Bronte¹², Susanna Mandruzzato^{13,14}, Tilo Biedermann¹⁵, Graham Pawelec¹⁶, Evelyna Derhovanessian¹⁶, Hisakazu Yamagishi¹⁷, Tsuneharu Miki¹⁸, Fumiya Hongo¹⁸, Natsuki Takaha¹⁸, Kosei Hirakawa¹⁹, Hiroaki Tanaka¹⁹, Stefan Stevanovic²⁰, Jürgen Frisch¹, Andrea Mayer-Mokler¹, Alexandra Kirner¹, Hans-Georg Rammensee²⁰, Carsten Reinhardt^{1,21} & Harpreet Singh-Jasuja^{1,21}

GM-CSF as a protein vaccine adjuvant

Vaccination With Patient-Specific Tumor-Derived Antigen in First Remission Improves Disease-Free Survival in Follicular Lymphoma

Stephen J. Schuster, Sattva S. Neelapu, Barry L. Gause, John E. Janik, Franco M. Muggia, Jon P. Gockerman, Jane N. Winter, Christopher R. Flowers, Daniel A. Nikcevich, Eduardo M. Sotomayor, Dean S. McGaughey, Elaine S. Jaffe, Elise A. Chong, Craig W. Reynolds, Donald A. Berry, Carlos F. Santos, Mihaela A. Popa, Amy M. McCord, and Larry W. Kwak

Effect of Granulocyte/Macrophage Colony-Stimulating Factor on Circulating CD8⁺ and CD4⁺ T-Cell Responses to a Multipeptide Melanoma Vaccine: Outcome of a Multicenter Randomized Trial

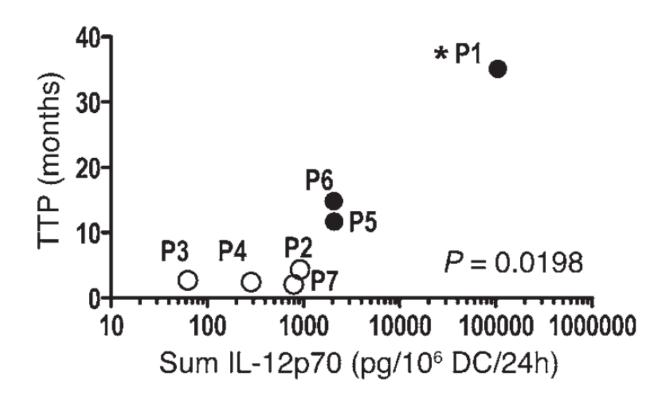
Craig L. Slingluff, Jr.,¹ Gina R. Petroni,² Walter C. Olson,¹ Mark E. Smolkin,² Merrick I. Ross,⁴ Naomi B. Haas,⁵ William W. Grosh,³ Marc E. Boisvert,⁶ John M. Kirkwood,⁷ and Kimberly A. Chianese-Bullock¹ Clin. Cancer Res. 2009

vaccine	% patients with CD8+ T cell response
12 mel. peptides + Tetanus helper	73
12 mel. peptides + Tetanus helper + GM-CSI	F 34 (?!)

Effect of Granulocyte/Macrophage Colony-Stimulating Factor on Circulating CD8⁺ and CD4⁺ T-Cell Responses to a Multipeptide Melanoma Vaccine: Outcome of a Multicenter Randomized Trial

Craig L. Slingluff, Jr.,¹ Gina R. Petroni,² Walter C. Olson,¹ Mark E. Smolkin,² Merrick I. Ross,⁴ Naomi B. Haas,⁵ William W. Grosh,³ Marc E. Boisvert,⁶ John M. Kirkwood,⁷ and Kimberly A. Chianese-Bullock¹

vaccine	% patients with CD8+ T cell response
12 mel. peptides + Tetanus helper	73
12 mel. peptides + Tetanus helper + GM-CS	F 34 (?!)


MFG-E8-mediated uptake of apoptotic cells by APCs links the pro- and antiinflammatory activities of GM-CSF

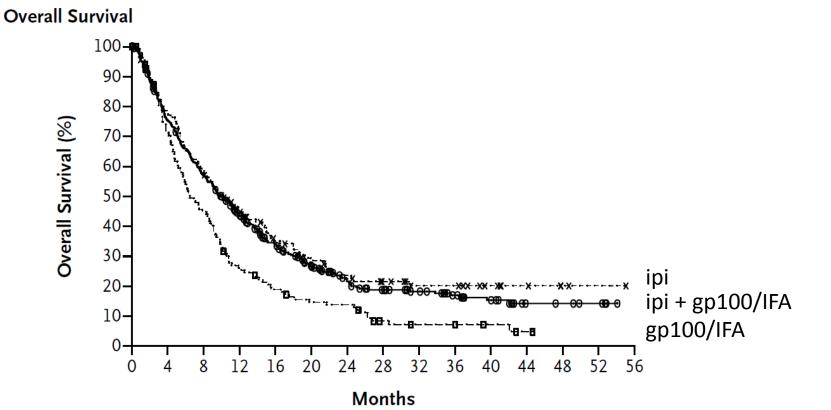
Masahisa Jinushi,^{1,2} Yukoh Nakazaki,^{1,2} Michael Dougan,^{1,2} Daniel R. Carrasco,^{1,2,3} Martin Mihm,⁴ and Glenn Dranoff^{1,2}

J. Clin. Invest., 2007

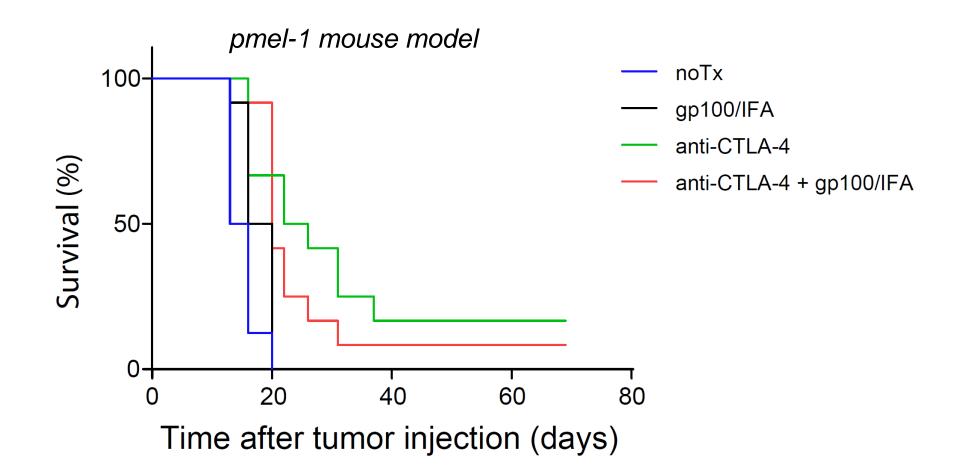
IL-12p70–producing patient DC vaccine elicits Tc1-polarized immunity

Beatriz M. Carreno,¹ Michelle Becker-Hapak,¹ Alexander Huang,¹ Megan Chan,¹ Amer Alyasiry,¹ Wen-Rong Lie,² Rebecca L. Aft,³ Lynn A. Cornelius,⁴ Kathryn M. Trinkaus,⁵ and Gerald P. Linette¹

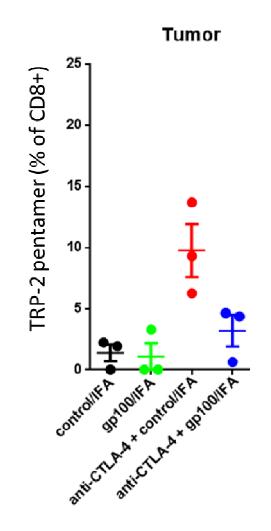
J. Clin. Invest., 2013

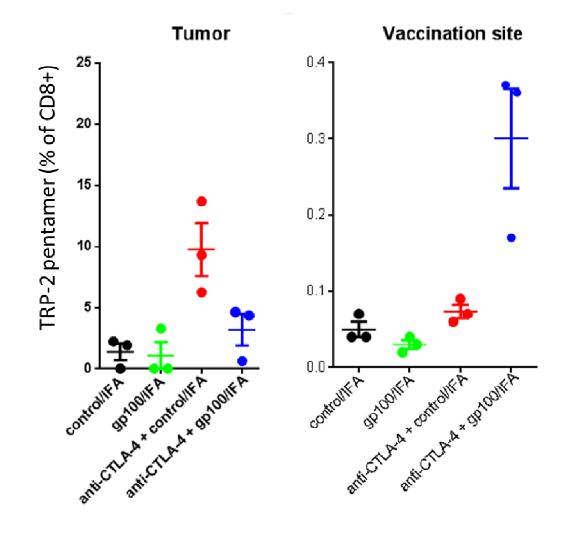

Checkpoint Blockade + Vaccines

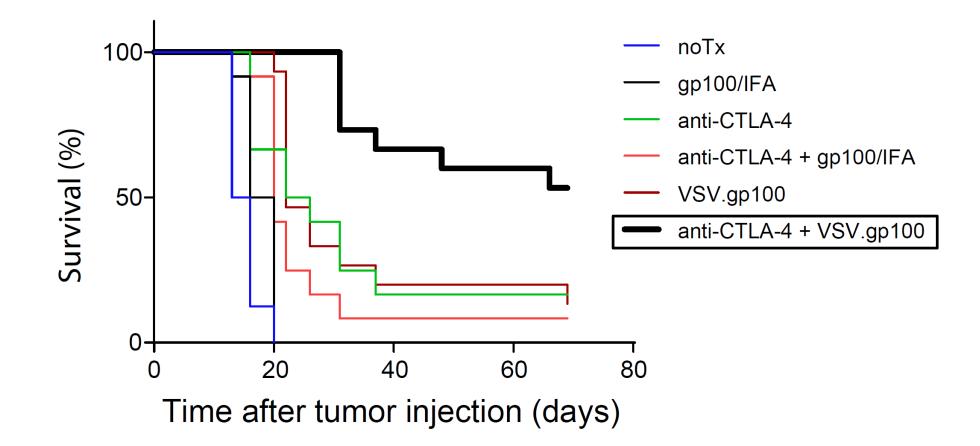
Vaccination and anti-CTLA-4/PD-1 both activate T cells, through different pathways, and could synergize.


However, this was not observed.

Improved Survival with Ipilimumab in Patients with Metastatic Melanoma

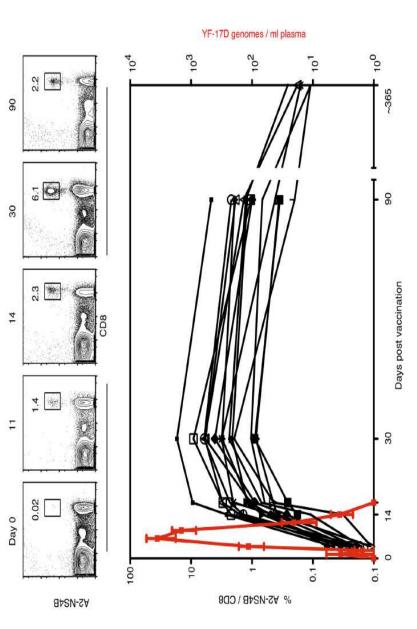

F. Stephen Hodi, M.D., Steven J. O'Day, M.D., David F. McDermott, M.D., Robert W. Weber, M.D., Jeffrey A. Sosman, M.D., John B. Haanen, M.D., Rene Gonzalez, M.D., Caroline Robert, M.D., Ph.D., Dirk Schadendorf, M.D., Jessica C. Hassel, M.D., Wallace Akerley, M.D., Alfons J.M. van den Eertwegh, M.D., Ph.D., Jose Lutzky, M.D., Paul Lorigan, M.D., Julia M. Vaubel, M.D., Gerald P. Linette, M.D., Ph.D., David Hogg, M.D., Christian H. Ottensmeier, M.D., Ph.D., Celeste Lebbé, M.D., Christian Peschel, M.D., Ian Quirt, M.D., Joseph I. Clark, M.D., Jedd D. Wolchok, M.D., Ph.D., Jeffrey S. Weber, M.D., Ph.D., Jason Tian, Ph.D., Michael J. Yellin, M.D., Geoffrey M. Nichol, M.B., Ch.B., Axel Hoos, M.D., Ph.D., and Walter J. Urba, M.D., Ph.D.

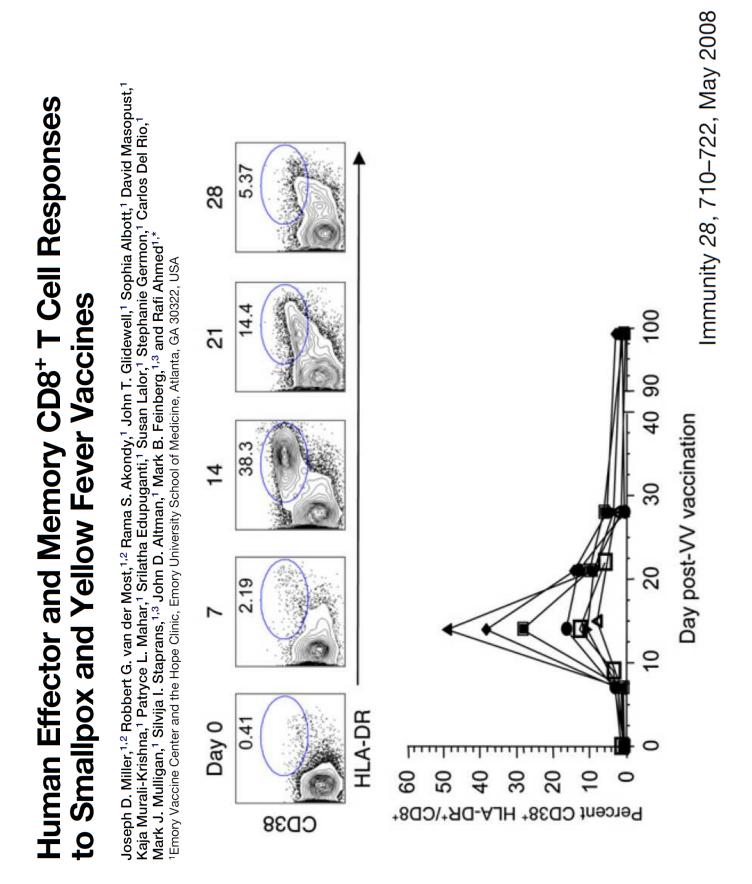

IFA-based vaccination does not synergize with anti-CTLA-4 therapy


IFA-based vaccination sequesters T cells induced by anti-CTLA-4 therapy

IFA-based vaccination sequesters T cells induced by anti-CTLA-4 therapy

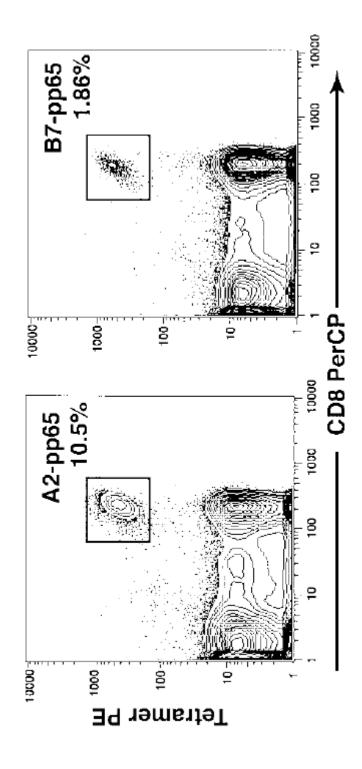
Virus-based vaccination synergizes with anti-CTLA-4 therapy

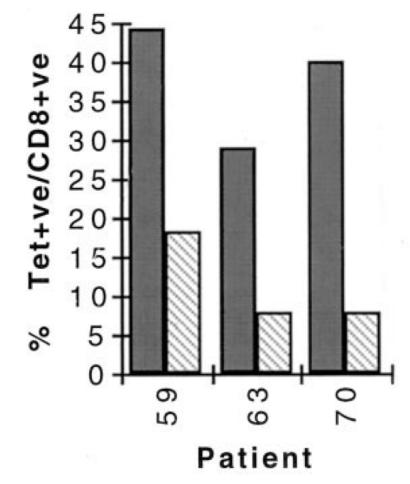

Current Cancer Vaccines Prime Few T cells:


Comparison with Anti-Viral T cells

Polyfunctional Human Memory CD8⁺ T Cell Response The Yellow Fever Virus Vaccine Induces a Broad and

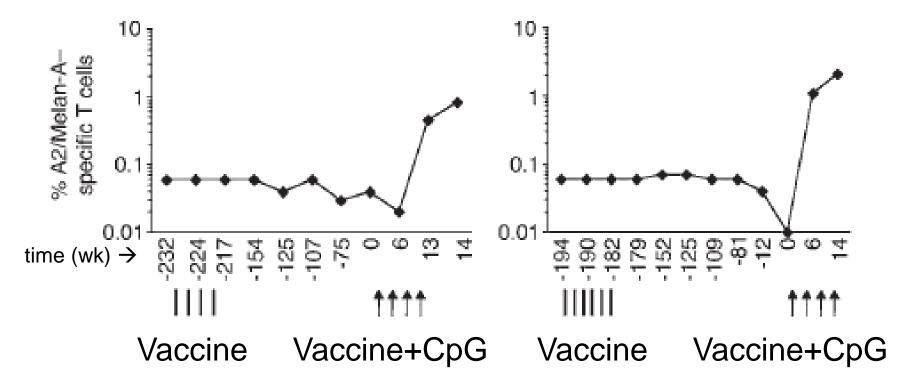
Dirk Teuwen," Hong Wu,* Farah Quyyumi,* Seema Garg,* John D. Altman,* Carlos Del Rio,* Rama S. Akondy,* Nathan D. Monson,* Joseph D. Miller,* Srilatha Edupuganti,* Harry L. Keyserling,^{*} Alexander Ploss,[§] Charles M. Rice,[§] Walter A. Orenstein,^{*} Mark J. Mulligan,* and Rafi Ahmed^{2*†}


The Journal of Immunology, 2009


Cytomegalovirus reactivation following allogeneic stem cell transplantation is associated with the presence of dysfunctional antigen-specific CD8⁺ T cells

Evren Özdemir, Lisa S. St. John, Geraldine Gillespie, Sarah Rowland-Jones, Richard E. Champlin, Jeffrey J. Molldrem, and Krishna V. Komanduri

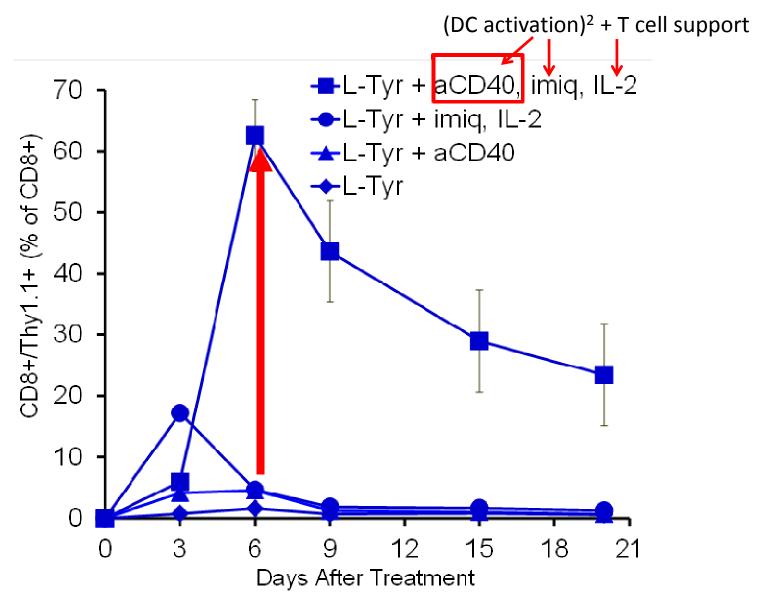
Direct Visualization of Antigen-specific CD8⁺ T Cells during the Primary Immune Response to Epstein-Barr Virus In Vivo


By M.F.C. Callan,* L.Tan,* N. Annels,[‡] G.S. Ogg,* J.D.K. Wilson,* C.A. O'Callaghan,* N. Steven,[‡] A.J. McMichael,* and A.B. Rickinson[‡]

J. Exp. Med. 187, 1998

Rapid and strong human CD8⁺ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909

Daniel E. Speiser,¹ Danielle Liénard,^{1,2} Nathalie Rufer,³ Verena Rubio-Godoy,¹ Donata Rimoldi,¹ Ferdy Lejeune,² Arthur M. Krieg,⁴ Jean-Charles Cerottini,^{1,5} and Pedro Romero¹



J. Clin. Invest. 115:739-746 (2005)

Generalizing & Simplifying Conclusion

	anti-virus system	% of CD8+	# of epitopes
1.	mice - acute LCMV	>85	10
2.	mice - VSV.HIV-Env vaccine	40	1
3.	monkeys - SIV	5	1
4.	human - live Yellow Fever Vaccine	10	multiple
5.	human - live Vaccinia Vaccine	50	multiple
6.	human - CMV antigenemia	3	multiple
7.	human - acute EBV	35	1
	anti-tumor system	% of CD8+	<u>epitopes</u>
1.	human - canarypox	0, 0.1-2	gp100-209.2M
2.	human - MVA-infected DCs	0.5	Tyrosinase-368
3.	human - UV-inactivated VV	0.01	gp100-209.2M
4.	human - peptide in IFA	0, 0.1-10	gp100-209.2M
5.	human - peptide in IFA	0, 0.1	gp100-209.2M,MART-1
6.	human - peptide in IFA	0, 0.1-3	gp100-209.2M

Combination Adjuvants are Key

Hiep Khong

Conclusions

- Peptide vaccines can have clinical impact
- T cell responses tend to be (too) low
- Formulation matters: possible T cell sequestration
- Use mutated peptides?

• To induce better T cell / clinical responses:

- Use multiple peptides
- Select strong MHC binders
- Use long peptides probably
- Add immunomodulators (cytokines, TLR agonists)
- Add GM-CSF likely vaccine-dependent
- Add CD4 helper peptides not clear
- Induce CD40 triggering definitely
- Combine with checkpoint blockade
- Combination Vaccines: Multiple Immunostimulatory Molecules