## Immune monitoring of cancer immunotherapies: Next generation tools to identify baseline immunocompetence and predictive biomarkers

#### Sacha Gnjatic, PhD

Associate Professor, Department of Medicine Division of Hematology and Medical Oncology Tisch Cancer Institute and Immunology Institute Icahn School of Medicine at Mount Sinai, New York NY Associate Director of the Human Immune Monitoring Center



Precision Immunolog y Institute

The Tisch Cancer Institute

#### Disclosure information: Sacha Gnjatic, PhD

The following relationships exist:

Immune Design: Research Support

Janssen R&D: Research Support

Agenus: Research Support

Genentech: Research Support

Pfizer: Research Support

Third Rock Ventures/Neon Therapeutics: Consulting Fees (e.g., advisory boards)

**B4CC:** Consulting Fees (e.g., advisory boards)

**OncoMed:** Consulting Fees (e.g., advisory boards)

*Merck:* Consulting Fees (e.g., advisory boards)

## Aims of immune monitoring

To find better ways to predict patients who may benefit from immunotherapies, and to design new approaches for those who don't

Just measuring tumor growth and survival in immunotherapy clinical trials leaves too many questions unanswered

Multidisciplinary approach to find molecular, genetic, microbial, or cellular signatures that are useful to select patients for the most appropriate treatment

Explore markers at the tumor site and in the periphery

Learn from immune monitoring of untreated and treated tumors, and their antigenic profile for mechanisms and biomarker discovery

Need: High-dimensional immune monitoring and analysis tools

## Challenge to find biomarkers for immunotherapy

### Small Molecule Targeted Therapies

Tumor cells



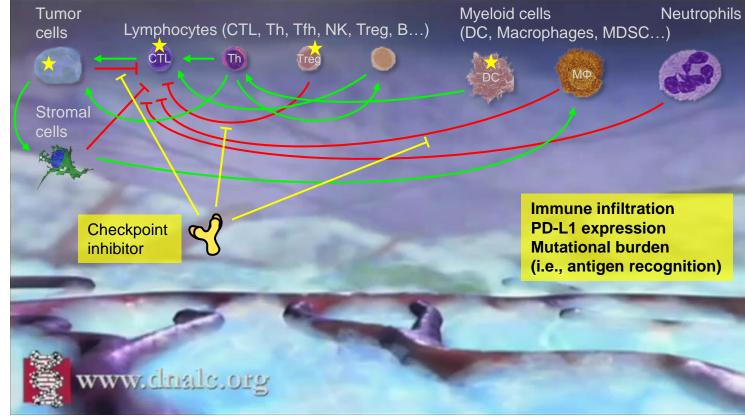
Mutated Kinase...



Kinase Inhibitor



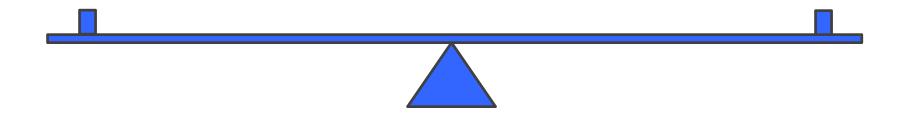
### **Immunotherapies**



## The ideal immune monitoring program

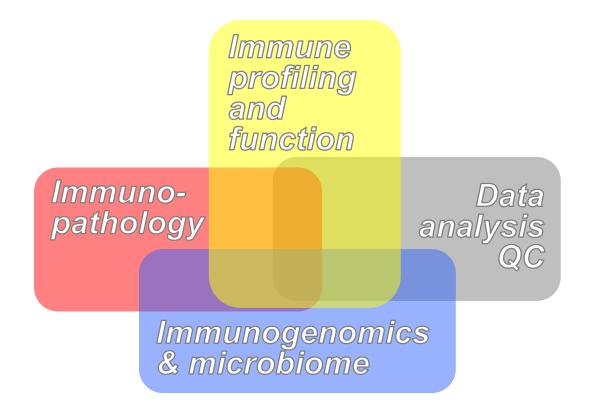
Develop innovative assays to monitor disease-relevant immune signatures and discover new mechanisms, biomarkers and immune targets

Improve assay standardization and minimize experimental variability to maximize data quality and reproducibility

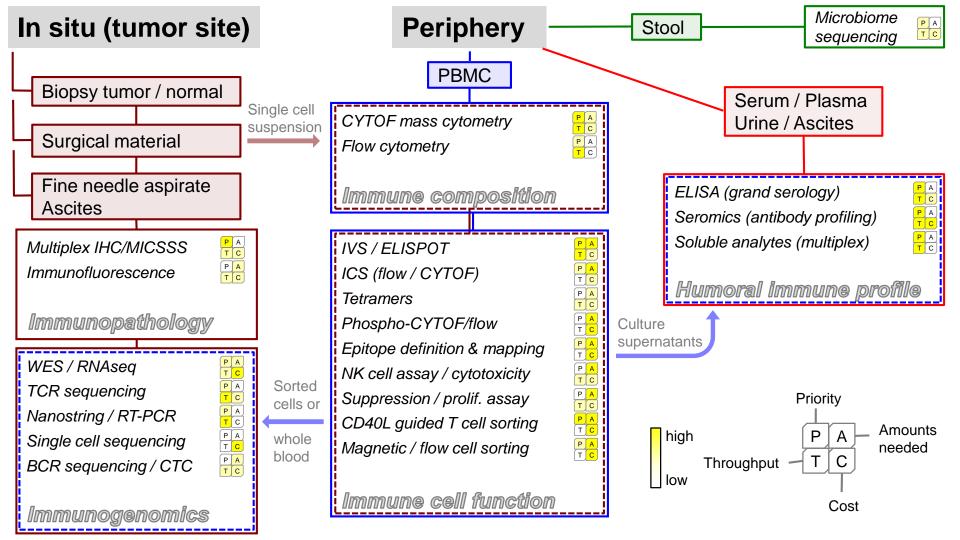


Balancing innovation and standardization.

## A multidisciplinary high-dimensional approach



All using analytically validated assays and procedures



## Example of budget prioritization plan for assays

U

#### CITN-09

Pembrolizumab in Merkel Cell Carcinoma.

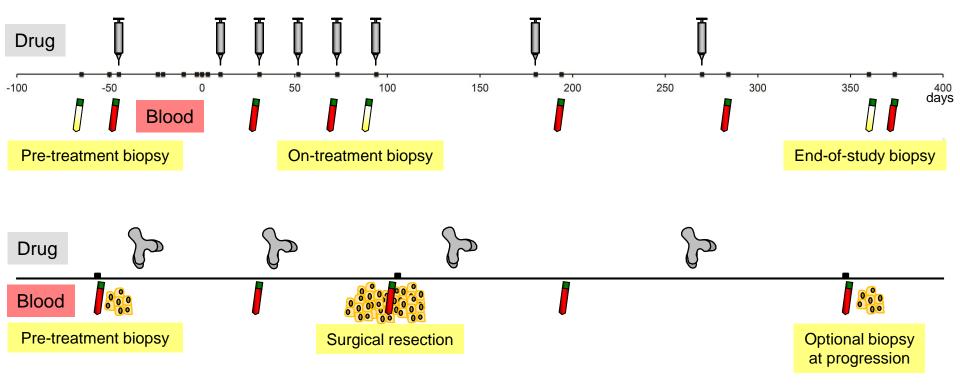
Assay and cost rundown per patient.

| Sample reception, barcoding, storage,<br>management, realiquoting post-assay                                         | \$             | riority   |
|----------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| Serum antibodies to MCPyV  ELISA (3 time points)  Serum antibody profiling for tumor specificity                     | \$             | #6        |
| Grand Serology (3 time points) Seromics (subset only, 50%)                                                           | \$\$<br>\$\$\$ | #2<br>#12 |
| Soluble protein analytes, including Flt3L<br>O-Link (3 time points)                                                  | \$             | #7        |
| Phenotyping of biopsies and of peripheral blood<br>CyTOF of tissue (2 time points)<br>CyTOF of blood (3 time points) |                | #4<br>#5  |
| Tissue multiplex IHC from biopsies<br>MICSSS (2 time points)                                                         | \$\$           | #1        |

#### **Priority**

| Tumor gene expression from biopsies Nanostrings (2 time points) \$ Tumor mutational profile and neoepitope prediction WES / RNAseq (1 time point) \$\$ Peptides for neoantigen \$\$ | 5    | #3<br>#8<br>#9 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|
| Neoantigen identification of T cell, characterization (priced at 50% of cost if planned only in subset)  IVS + ELISPOT (2 time points) \$\$  CD154 sort / tetramer (subset) \$\$    |      | #10<br>#14     |
| T cell diversity from biopsies or peripheral blood<br>TCRSeq (2 time points) \$\$                                                                                                   | \$\$ | #11            |
| Microbiome analyses<br>16S sequencing (2 time points) \$                                                                                                                            |      | #13            |
| Data analysis pricing included in assays                                                                                                                                            |      |                |
| Data management, storage, sharing \$                                                                                                                                                |      |                |

# Planning ahead for sample collection



- Blood collected before or after each treatment
- Tumor tissue biopsies or surgical material collected throughout treatment
- Clinical annotations

## Areas of focus

Immune microenvironment by multiplex immunohistochemistry

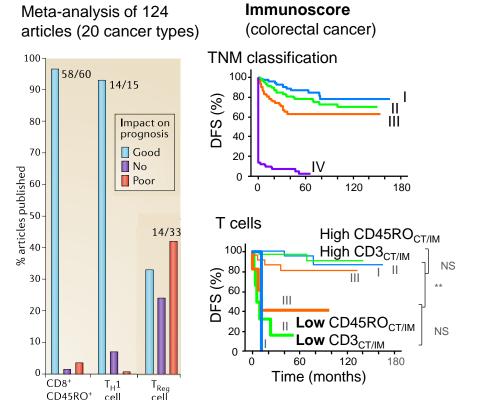
Phenotyping by CYTOF mass cytometry

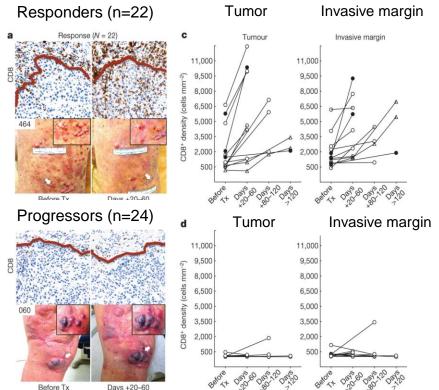
Immunosupportive role of microbiome composition

Defining antigen specificity and quality (neoantigens, seromics)

Modeling, integration of data, and automated analyses pipelines

# T cell tumor infiltration as a prognostic marker in various tumors and a predictive biomarker of PD-1 response in melanoma





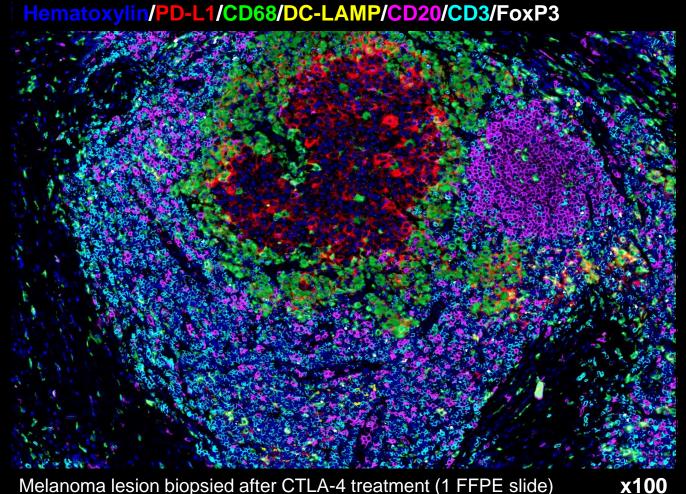
The immune contexture of the tumor influences prognosis

Fridman et al., Nature Rev. Cancer, 2012

Galon et al., *Science*, 2006; Pagès et al., *J Clin Oncol*, 2009 CD8 T cell infiltration before and during pembrolizumab in advanced melanoma.

PC Tumeh et al. Nature 515, 568-71 (2014)

### Applying multiplex IHC to query effect of checkpoint blockade



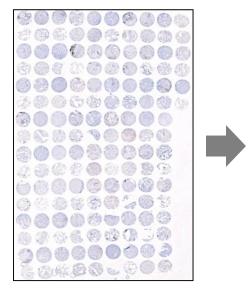
Remark R, Merghoub T, Grabe N, Litjens G, Damotte D, Wolchok JD, Merad M, Gnjatic S. Science Immunology; 1:aaf6925 (2016).

Melanoma lesion biopsied after CTLA-4 treatment (1 FFPE slide)

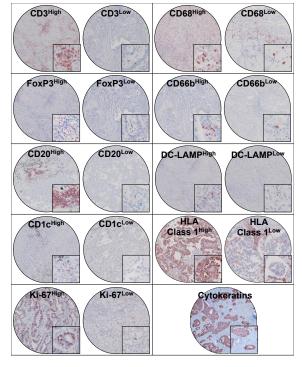
#### Multiplex IHC on tissue microarrays to identify prognostic biomarkers

Heterogeneity of immune markers in non-small cell lung cancer (NSCLC)

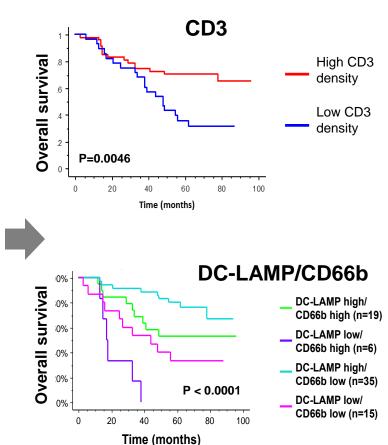
#### NSCLC tissue microarray



n=75 patients



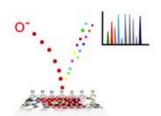
Review on NSCLC immune contexture in Am J Respir Crit Care Med. 2015;191;377-90



Remark R, Merghoub T, Grabe N, Litjens G, Damotte D, Wolchok JD, Merad M, Gnjatic S. Science Immunology; 1:aaf6925 (2016).

# Next frontier in tissue imaging: higher multiplexing, 3D-4D analyses, and neural network image learning

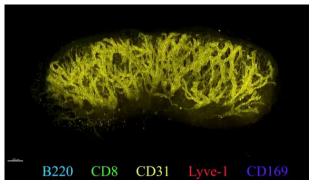
More than 40 markers using metal-conjugated antibodies And an ion-beam or CYTOF for mass cytometry analysis



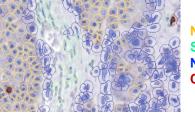


From Stanford.edu

3D imaging of lymph node



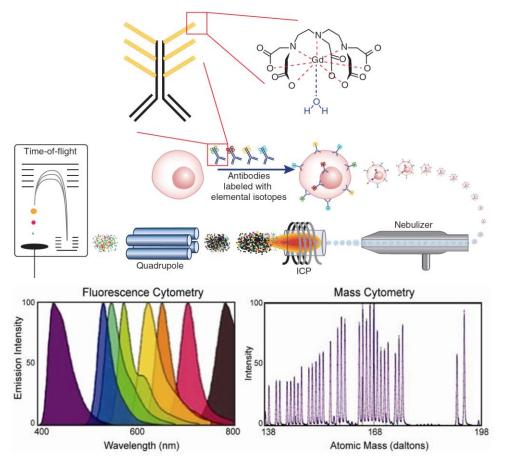
Li, Germain, Gerner. PNAS 2017; 114:E7321



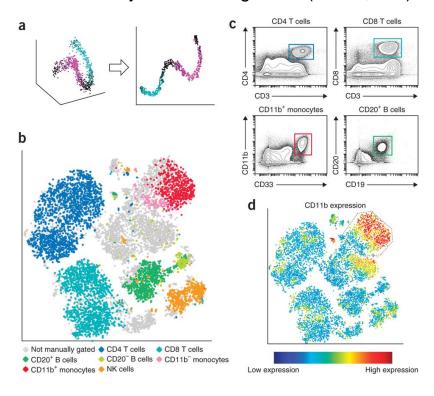
Normal pancreas
Stroma
Neuroendocrine pancreatic tumor
CD3 lymphocytes

Gnjatic et al. Unpublished. With QuPath software (http://biorxiv.org/content/early/2017/01/12/099796)

#### Mass cytometry (CyTOF) to explore phenotypic and functional composition in high dimensions

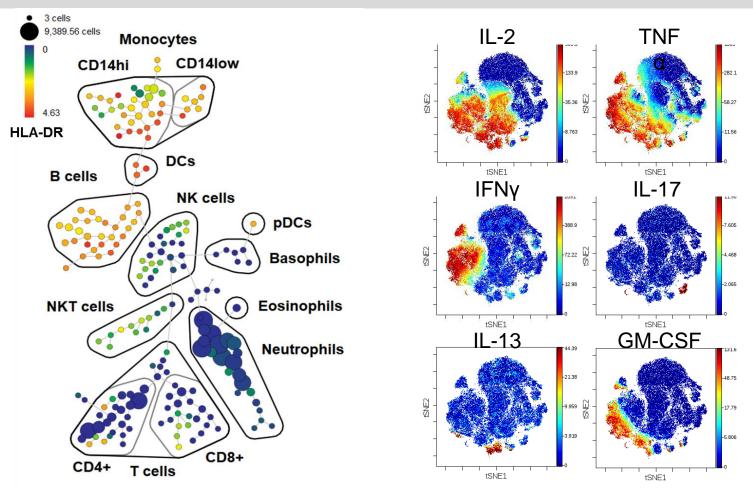


35 markers can be routinely analyzed using dimensionality-reduction algorithm (viSNE, etc.)

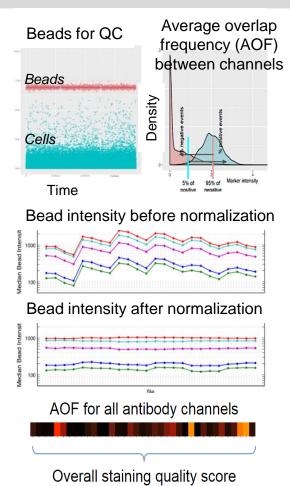


Bendall & Nolan. Nature Biotechnology 2012;30:639-47

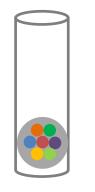
## Functional applications of CyTOF mass cytometry



## Optimization of CyTOF with beads and lyophilized panels



Core set of consensus markers to identify major immune cell subsets



| Core<br>Panel |       |  |
|---------------|-------|--|
| CD45          | CD19  |  |
| CD3           | CD27  |  |
| CD4           | CD56  |  |
| CD8           | CD16  |  |
| CD45RA        | CD14  |  |
| CD38          | CD123 |  |
| LII ADD       | CD44a |  |

Optimized panels to provide detailed characterization of specific subsets

| T cell |       |   |
|--------|-------|---|
| module |       |   |
| CD161  | ICOS  | ( |
| CD57   | OX40  | ( |
| TIM3   | CD39  | ( |
| CD103  | CD73  | C |
| CCR7   | PD-1  | C |
| CXCR3  | CD25  | C |
| CCR6   | CD127 | C |
| CCR4   | CD69  | ( |
| CXCR5  | CD28  | C |
| 41BB   | TCRgd |   |
| 2B4    | CD44  | ( |
|        |       |   |

| Myeloid<br>module |        |  |
|-------------------|--------|--|
| CD33              | CX3CR1 |  |
| CD64              | CD85j  |  |
| CD1c              | CD141  |  |
| CD66b             | CD11b  |  |
| CD163             | CD86   |  |
| CD206             | CD40   |  |
| CD169             | CD117  |  |
| CD15              | PDL1   |  |
| CD141             | PDL2   |  |
| TLR2              | TLR4   |  |
| CCR7              | SIRPa  |  |

| NK cell<br>module |         |  |
|-------------------|---------|--|
| NKp30             | CD244   |  |
| NKp44             | CD103   |  |
| NKp46             | CD69    |  |
| NKG2A             | CD96    |  |
| NKG2C             | CD94    |  |
| NKG2D             | Siglec7 |  |
| KIR3DL1 DNAM1     |         |  |
| KIR2DL3           | CD132   |  |
| CD57              | CD25    |  |
| CD161             | TIM3    |  |
| LILRB1            | PD-1    |  |

Additional custom conventional liquid antibodies

#### Cross-tissue immune profiling by mass cytometry in NSCLC patients

(Yonit Lavin, Adeeb Rahman, Christian Becker, Sacha Gnjatic, Miriam Merad, Cell 2017;169:750-765)

Resection tissue Stage I/II adenocarcinoma

Barcode with tissuespecific CD45 isotopes

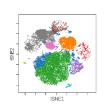
Pool

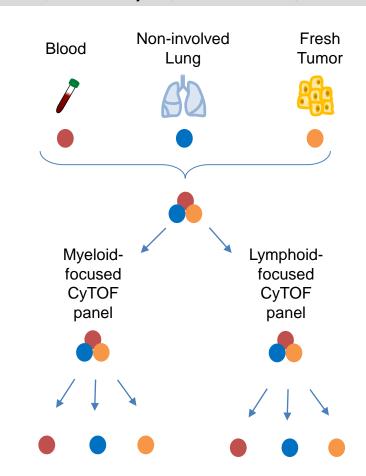
Stain

Acquire on mass cytometry

Deconvolute barcodes and analyze

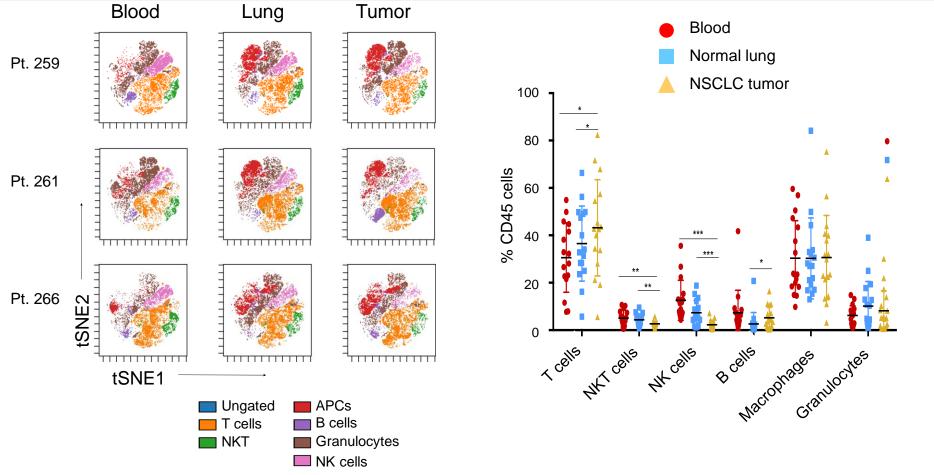






## Immune composition of early non-small cell lung carcinoma (NSCLC)

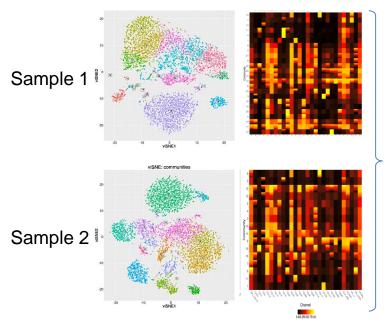
by mass cytometry (Lavin, Rahman, Gnjatic, Merad, Cell 2017;169:750-765)

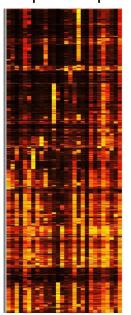


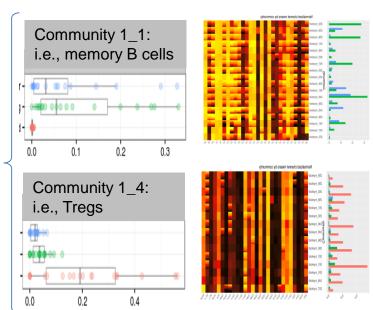
## Automated analysis pipeline for CyTOF

Unbiased identification and characterization of cell populations in individual CyTOF samples

Automated metaclustering of populations across multiple samples Automated analytics to identify populations and protein expression patterns that differ between treatment groups



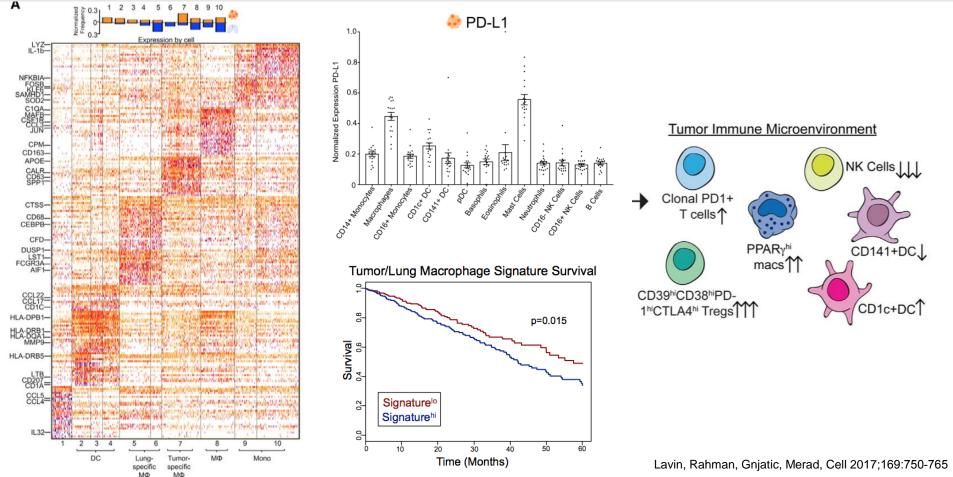




... multiple samples

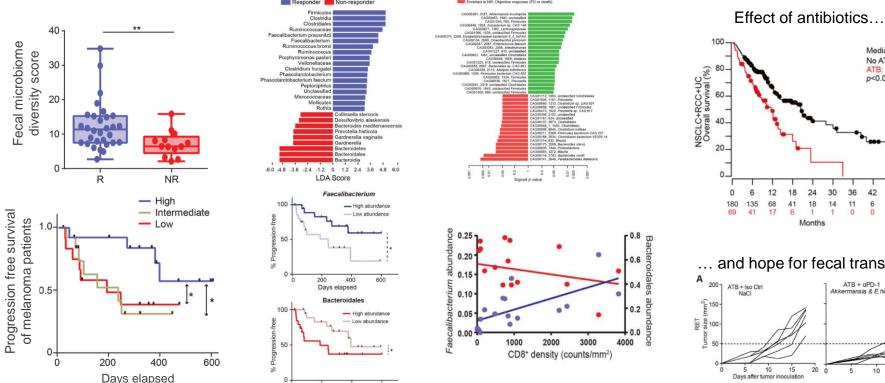
... multiple differing features across samples

# Single cell analyses reveal impaired immune profiles at the tumor site vs. adjacent non-involved tissue in early NSCLC

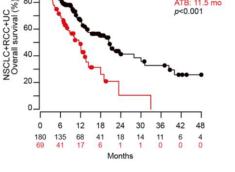


## Role of microbiome as a tumor extrinsic factor contributing to immune recognition during immunotherapy (Jenq+Wargo, Kroemer+Zitvogel)

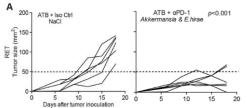
Cancer patients treated with PD-1 blockade, sequenced for gut bacteria by 16S or shotgun metagenomics



Median OS No ATB: 20.6 mo ATB: 11.5 mg p<0.001



and hope for fecal transplants

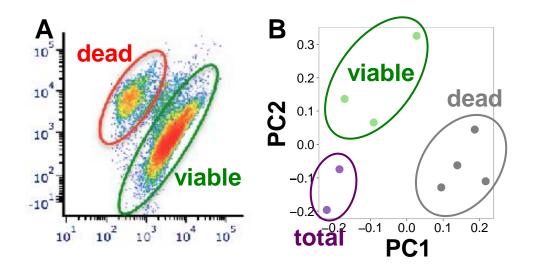


Gopalakrishnan, Spencer, Nezi et al. Science. 2017, in press

Routy al. Science. 2017, in press

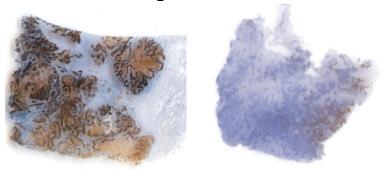
# Improving microbiome analyses with shotgun metagenomics and live cell detection (Clemente, Faith)

Importance of distinguishing live from dead bacteria for QC aspects



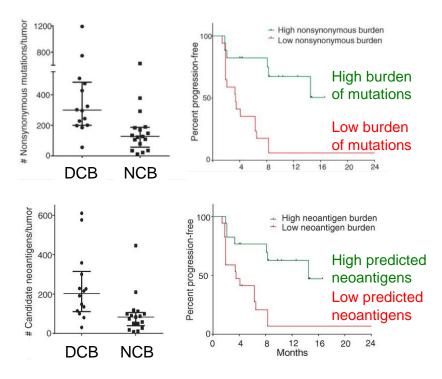
#### Identifying antigens recognized at the tumor site

- Whole exome sequencing and RNASeq to identify tumor-specific mutations that may give rise to neoepitopes, followed by high-throughput tetramer screening or cytokine production of T cells (Schumacher et al)
- Immunohistochemistry and RT-PCR to look for presence of known tumor antigens, such as cancer/testis antigens



 Serological assays to quickly screen for immunogenic target antigens

# Mutational burden correlates with response to PD-1 blockade in NSCLC

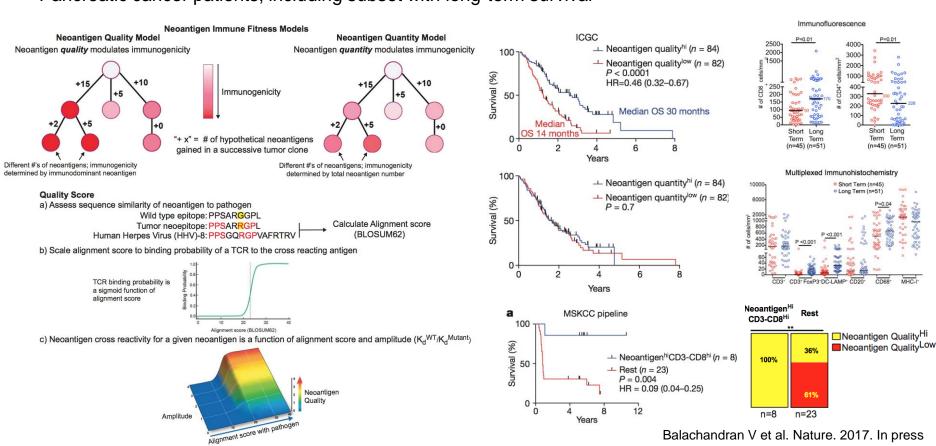


DCB = durable clinical benefit NDB = no durable clinical benefit

Rizvi et al. Science. 2015, 348-124

### In silico modeling improves prognostic value of neoantigens by assessing their quality

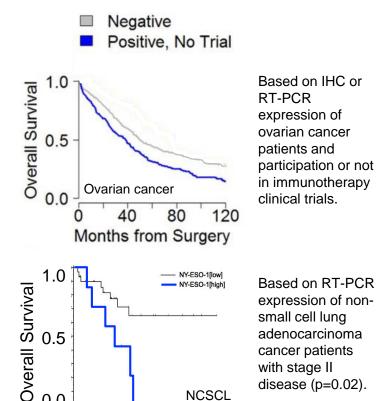
Pancreatic cancer patients, including subset with long-term survival



Balachandran V et al. Nature. 2017. In press

### NY-ESO-1 expression is a poor prognostic factor but it may be a good predictive marker for immunotherapy

disease (p=0.02).



NCSCL

75

Metastatic melanoma patients with baseline NY-ESO-1 serum antibodies before CTLA-4 (ipilimumab) treatment

| Status at wk 24     | # patients<br>(%) | NY-ESO-1<br>seronegative<br># (%) | NY-ESO-1<br>seropositive<br># (%) |
|---------------------|-------------------|-----------------------------------|-----------------------------------|
| CR                  | 4 (2.9%)          | 3                                 | 1                                 |
| PR                  | 14 (10.0%)        | 10                                | 4                                 |
| SD                  | 30 (21.4%)        | 23                                | 7                                 |
| Clinical Benefit    | <b>48</b> (34.3%) | <b>36</b> (30.5%)                 | <b>12</b> (54.6%)                 |
| No Clinical Benefit | 92 (65.7%)        | <b>82</b> (69.5%)                 | <b>10</b> (45.4%)                 |
| Total               | 140 (100%)        | 118                               | 22                                |

According to immune-related response criteria: Fisher's exact test (two-tailed): **Clinical Benefit:** CR: Complete Response P value 0.0481 PR: Partial Response RR = 1.8 (1.1-2.9)

SD: Stable Disease

POD: Progression of Disease (includes MR) No Clinical Benefit: DOD: Dead of Disease

Szender et al. Gyn Oncol. 2017;145:420-425. Güre AO et al. Clin Cancer Res. 2005:11:8055-8062.

50

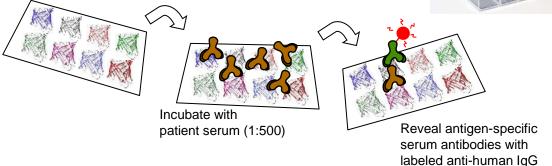
25

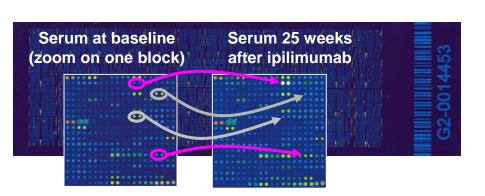
0

# Seromics detects antigen-specific changes in autoantibody profiles during treatment (H. Wada, Osaka JP; H. Shiku, Mie JP; unpublished)

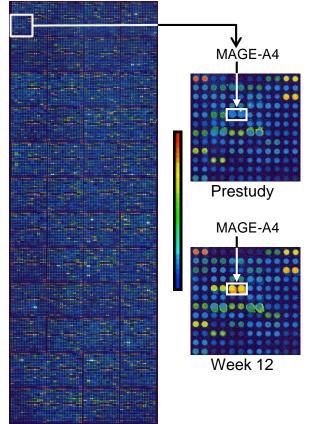
Protoarrays<sup>™</sup> contain >9000 proteins mostly full-length baculovirus-produced GST-fusion proteins randomly selected, both known and predicted sequences





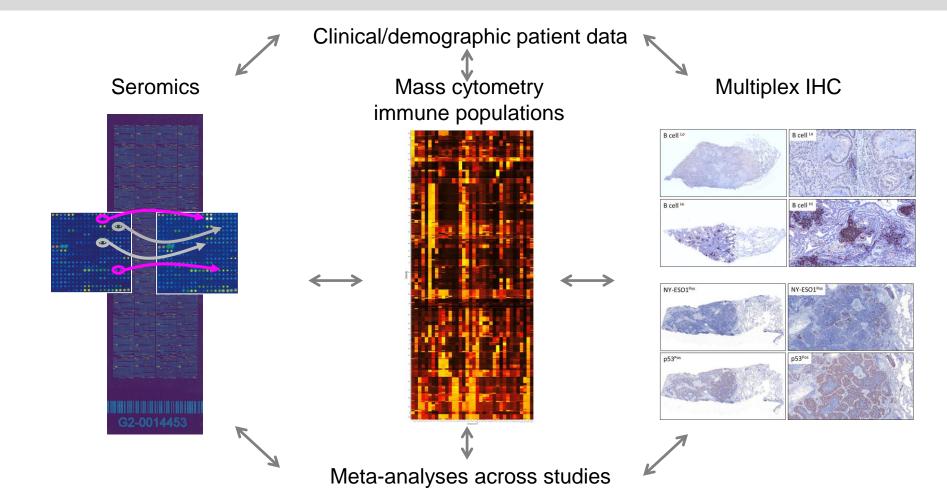


for biomarkers of treatment:

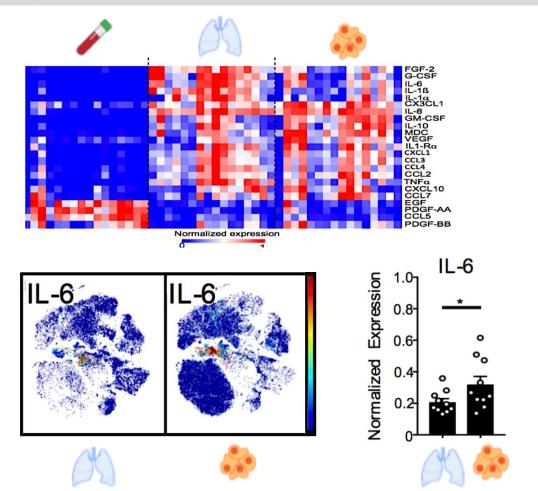


MAGEA4 protein vaccination of esophageal cancer patient

#### **Cross-assay correlations with various data sets**



## Integrating datasets: Luminex, CyTOF, RNAseq



## Take home message

High-dimensional immune monitoring assays are poised to explain mechanisms of novel drugs or treatment and provide complex signatures to predict outcome

It is unlikely that a single predictive biomarker will be found for immuno-oncology

Single cell data analyses and data mining are the next frontiers for discoveries in immunotherapy

Immune monitoring supports immune atlas efforts, to define baseline characteristics and mechanisms of response or resistance to various immuno-oncology drugs

Era of personalized combined biomarkers

#### **Acknowledgments**

Icahn School of Medicine at Mount Sinai, New York, NY

Romain Remark Seunghee Kim-S Adeeb Rahman Christian Becker

Yeray Arteaga Sarah Nataraj

Luis Ferran Ilaria Laface

Yonit Lavin Naoko Imai

El-Ad Amir Takuro Saito Mary Beth Beasley Raja Flores

Patricia Kovatch Michael Donovan

Jose Clemente Jeremiah Faith

Jeff Hammerbacher Ben Greenbaum

Nina Bhardwaj Miriam Merad

MSKCC, New York, NY

Jianda Yuan Jedd Wolchok
Achim Jungbluth Erika Ritter
Steven Leach Taha Merghoub

Yale University, New Haven, CT

Mario Sznol Ruth Halaban

Roswell Park Cancer Institute, Buffalo, NY

Kunle Odunsi Takemasa Tsuji

Junko Matsuzaki

Ludwig Institute for Cancer Research, New York, NY Lloyd J. Old

**Support from:** 

Cancer Research Institute Ludwig Institute for Cancer Research NCI P01 CA190174 NCI U24 CA224319 (CIMAC)

ARRA RC2 NCI