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Aims of immune monitoring

Explore markers at the tumor site and in the periphery

Just measuring tumor growth and survival in immunotherapy clinical trials

leaves too many questions unanswered

Multidisciplinary approach to find molecular, genetic, microbial, or cellular

signatures that are useful to select patients for the most appropriate treatment

To find better ways to predict patients who may benefit from immunotherapies,

and to design new approaches for those who don’t

Learn from immune monitoring of untreated and treated tumors,

and their antigenic profile for mechanisms and biomarker discovery

Need: High-dimensional immune monitoring and analysis tools



Challenge to find biomarkers for immunotherapy

Adapted from Cold Spring Harbor Laboratory’s website
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The ideal immune monitoring program

Balancing innovation and standardization.

Develop innovative assays to monitor 

disease-relevant immune signatures 

and discover new mechanisms, 

biomarkers and immune targets 

Improve assay standardization 

and minimize experimental 

variability to maximize data 

quality and reproducibility 



A multidisciplinary high-dimensional approach

All using analytically validated assays and procedures
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Example of budget prioritization plan for assays

Serum antibodies to MCPyV

ELISA (3 time points) $

Serum antibody profiling for tumor specificity

Grand Serology (3 time points) $$

Seromics (subset only, 50%) $$$

Sample reception, barcoding, storage,

management, realiquoting post-assay $

Soluble protein analytes, including Flt3L

O-Link (3 time points) $

Phenotyping of biopsies and of peripheral blood

CyTOF of tissue (2 time points) $$

CyTOF of blood (3 time points) $$

CITN-09
Pembrolizumab in Merkel Cell Carcinoma.

Assay and cost rundown per patient.

Tissue multiplex IHC from biopsies

MICSSS (2 time points) $$

P
rio

rity
 

#2

#1

#4
#5

#7

#6

#12

Neoantigen identification of T cell, characterization

(priced at 50% of cost if planned only in subset)

IVS + ELISPOT (2 time points) $$

CD154 sort / tetramer (subset) $$

Data management, storage, sharing $

Data analysis pricing included in assays

Tumor gene expression from biopsies

Nanostrings (2 time points) $

Tumor mutational profile and neoepitope prediction

WES / RNAseq (1 time point) $$

Peptides for neoantigen $$

T cell diversity from biopsies or peripheral blood

TCRSeq (2 time points) $$$

Microbiome analyses

16S sequencing (2 time points) $

#3

#8
#9

#10

#11

#13

#14

Priority 



Optional biopsy

at progression

Pre-treatment biopsy Surgical resection

Planning ahead for sample collection

days

Pre-treatment biopsy On-treatment biopsy End-of-study biopsy

• Blood collected before or after each treatment

• Tumor tissue biopsies or surgical material collected throughout treatment

• Clinical annotations

Blood

Drug

Drug

Blood



Areas of focus

Immune microenvironment by multiplex immunohistochemistry

Immunosupportive role of microbiome composition

Modeling, integration of data, and automated analyses pipelines

Phenotyping by CYTOF mass cytometry

Defining antigen specificity and quality (neoantigens, seromics)



Fridman et al., Nature 

Rev. Cancer, 2012

Meta-analysis of 124 

articles (20 cancer types)

The immune contexture of the tumor influences prognosis

High CD45ROCT/IM

High CD3CT/IM

T cell tumor infiltration as a prognostic marker in various tumors

and a predictive biomarker of PD-1 response in melanoma
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Galon et al., Science, 2006; 

Pagès et al., J Clin Oncol, 2009

Immunoscore

(colorectal cancer)

PC Tumeh et al. Nature 515, 568-71 (2014)

CD8 T cell infiltration before and during 

pembrolizumab in advanced melanoma.
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Applying multiplex IHC to query effect of checkpoint blockade

Remark R, Merghoub T, 

Grabe N, Litjens G, 

Damotte D, Wolchok

JD, Merad M, Gnjatic S. 

Science Immunology; 

1:aaf6925 (2016).



Multiplex IHC on tissue microarrays to identify prognostic biomarkers

NSCLC tissue microarray

n=75 patients

Heterogeneity of immune 

markers in non-small cell 

lung cancer (NSCLC)

Remark R, Merghoub T, Grabe N, Litjens G, 

Damotte D, Wolchok JD, Merad M, Gnjatic S. 

Science Immunology; 1:aaf6925 (2016).
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Next frontier in tissue imaging:

higher multiplexing, 3D-4D analyses, and neural network image learning

More than 40 markers using metal-conjugated antibodies

And an ion-beam or CYTOF for mass cytometry analysis

From Stanford.edu

Li, Germain, Gerner. PNAS 2017; 114:E7321

3D imaging of lymph node

Normal pancreas

Stroma

Neuroendocrine pancreatic tumor

CD3 lymphocytes

Gnjatic et al. Unpublished. With QuPath software

(http://biorxiv.org/content/early/2017/01/12/099796)



Bendall & Nolan. Nature Biotechnology 2012;30:639–47

Mass cytometry (CyTOF) to explore phenotypic and functional composition in high dimensions

35 markers can be routinely analyzed using 

dimensionality-reduction algorithm (viSNE, etc.)

Amir El-Ad et al. Nat Biotechnol. 2013;31:545-52. 



Functional applications of CyTOF mass cytometry 

IL-2 TNF

α

IFNγ IL-17

IL-13 GM-CSF



Optimization of CyTOF with beads and lyophilized panels

Core set of consensus 

markers to identify major 

immune cell subsets

Additional custom conventional liquid antibodies
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Optimized panels to provide detailed 

characterization of specific subsets

Rahman et al. Unpublished
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Blood
Non-involved 
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Fresh 
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Cross-tissue immune profiling by mass cytometry in NSCLC patients
(Yonit Lavin, Adeeb Rahman, Christian Becker, Sacha Gnjatic, Miriam Merad, Cell 2017;169:750-765)
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Immune composition of early non-small cell lung carcinoma (NSCLC)

by mass cytometry (Lavin, Rahman, Gnjatic, Merad, Cell 2017;169:750-765)
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Automated analysis pipeline for CyTOF

Unbiased identification and 

characterization of cell populations 

in individual CyTOF samples

… multiple samples

Automated meta-

clustering of 

populations across 

multiple samples

… multiple differing features across samples

Sample 1

Sample 2

Automated analytics to identify populations 

and protein expression patterns that differ 

between treatment groups

Community 1_4:

i.e., Tregs

Community 1_1:

i.e., memory B cells

Rahman et al. Unpublished



Single cell analyses reveal impaired immune profiles at the tumor site

vs. adjacent non-involved tissue in early NSCLC

Lavin, Rahman, Gnjatic, Merad, Cell 2017;169:750-765



Role of microbiome as a tumor extrinsic factor contributing to

immune recognition during immunotherapy (Jenq+Wargo, Kroemer+Zitvogel)
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Cancer patients treated with PD-1 blockade, sequenced for gut bacteria by 16S or shotgun metagenomics

Gopalakrishnan, Spencer, Nezi et al. Science. 2017, in press

Days elapsed

Routy al. Science. 2017, in press

Effect of antibiotics…

… and hope for fecal transplants



Improving microbiome analyses with shotgun metagenomics

and live cell detection (Clemente, Faith)
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Identifying antigens recognized at the tumor site

• Whole exome sequencing and RNASeq to identify 

tumor-specific mutations that may give rise to 

neoepitopes, followed by high-throughput tetramer 

screening or cytokine production of T cells 

(Schumacher et al)

• Immunohistochemistry and RT-PCR to look for 

presence of known tumor antigens, such as 

cancer/testis antigens

• Serological assays to quickly screen for 

immunogenic target antigens
Rizvi et al. Science. 

2015. 348-124

DCB = durable clinical benefit

NDB = no durable clinical benefit

Mutational burden correlates with response 

to PD-1 blockade in NSCLC

DCB 

DCB 

NCB 

NCB 

High burden

of mutations

Low burden

of mutations

High predicted
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Low predicted

neoantigens



In silico modeling improves prognostic value of neoantigens

by assessing their quality

Balachandran V et al. Nature. 2017. In press

Pancreatic cancer patients, including subset with long-term survival



NY-ESO-1 expression is a poor prognostic factor

but it may be a good predictive marker for immunotherapy

Szender et al. Gyn Oncol. 2017;145:420-425.

Güre AO et al. Clin Cancer Res. 2005;11:8055-8062.

Status at wk 24
#  patients

(%)

NY-ESO-1 

seronegative

# (%)

NY-ESO-1

seropositive

# (%) 

CR 4 (2.9%) 3 1

PR 14 (10.0%) 10 4

SD 30 (21.4%) 23 7

Clinical Benefit 48 (34.3%) 36 (30.5%) 12 (54.6%)

No Clinical Benefit 92 (65.7%) 82 (69.5%) 10 (45.4%)

Total 140 (100%) 118 22

Fisher's exact test

(two-tailed):

P value   0.0481

RR = 1 .8 (1.1-2.9)

According to immune-related response criteria:

Clinical Benefit: CR: Complete Response

PR: Partial Response

SD: Stable Disease

No Clinical Benefit: POD: Progression of Disease (includes MR)

DOD: Dead of Disease

Yuan, Gnjatic, et al. PNAS, 2011;108:16723

Metastatic melanoma patients with baseline NY-ESO-1 serum 

antibodies before CTLA-4 (ipilimumab) treatment
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Seromics detects antigen-specific changes in autoantibody profiles

during treatment (H. Wada, Osaka JP; H. Shiku, Mie JP; unpublished)

for biomarkers of treatment:
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Changes in cytokine secretion at the tumor site
Cross-assay correlations with various data sets

Mass cytometry

immune populations

Meta-analyses across studies

Seromics Multiplex IHC

Clinical/demographic patient data



Integrating datasets: Luminex, CyTOF, RNAseq

Lavin, Rahman, Gnjatic, Merad, 

Cell 2017;169:750-765



Take home message

Single cell data analyses and data mining are the next frontiers

for discoveries in immunotherapy

High-dimensional immune monitoring assays are poised to explain mechanisms

of novel drugs or treatment and provide complex signatures to predict outcome

Immune monitoring supports immune atlas efforts, to define baseline characteristics

and mechanisms of response or resistance to various immuno-oncology drugs 

It is unlikely that a single predictive biomarker will be found for immuno-oncology

Era of personalized combined biomarkers
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