

Tumor Immune Microenvironment: A Holistic Approach Workshop

April 21-22, 2022 • San Diego and Virtually

#SITCworkshop

Lactic acid uptake through MCT11 enforces dysfunction in terminally exhausted T cells

Ronal Peralta

5th year PhD Candidate

PI: Greg Delgoffe, PhD

Disclosures

• Patent for the use of anti-MCT11 licensed by Remplir Bio

Tumor Immune Microenvironment: A Holistic Approach Workshop

Exhausted T cells in the tumor microenvironment (TME) exist in a state of metabolic dysfunction

- CD8+ T cells infiltrating the TME experiencing chronic TCR stimulus become exhausted
 - High expression of PD1, TIM3, CTLA4 and LAG3
 - Reduction in polyfunctionality

#SITCworkshop

Exhausted T cells in the tumor microenvironment (TME) exist in a state of metabolic dysfunction

- CD8+ T cells infiltrating the TME experiencing chronic TCR stimulus become exhausted
 - High expression of PD1, TIM3, CTLA4 and LAG3
 - Reduction in polyfunctionality
- Exhausted CD8+ T cells' functions in the TME are repressed by suppressive cells

#SITCworkshop

Exhausted T cells in the tumor microenvironment (TME) exist in a state of metabolic dysfunction

- CD8+ T cells infiltrating the TME experiencing chronic TCR stimulus become exhausted
 - High expression of PD1, TIM3, CTLA4 and LAG3
 - Reduction in polyfunctionality
- Exhausted CD8+ T cells' functions in the TME are repressed by suppressive cells and by nutrient availability and buildup of metabolic wastes
 - Low glucose & amino acids
 - Hypoxia
 - Increased extracellular lactate & acidosis
 - Reduced mitochondrial biogenesis
- Despite the lack of nutrients/metabolites, exhausted CD8+ T cells persist in the TME

#SITCworkshop

Low oxygen tension & metabolites

What sustains exhausted T cell metabolism in the TME?

- Nutrient transporters expressed on the cell surface control access to metabolites in different environments
- Members of the solute carrier (SLC) superfamily are involved in transport of a wide variety of metabolites
- Some SLCs are preferentially expressed in terminally exhausted T cells

Solute carrier gene superfamily

What metabolites are transported by these molecules?

Do these molecules promote or hinder antitumor Immunity?

#SITCworkshop

Slc16a11 (MCT11) is highly and uniquely expressed in exhausted CD8+ TIL

- Slc16a11 is the third highest non granzyme gene differentially expressed in terminally exhausted T cells
- MCT11 is highly expressed on the surface of terminally exhausted T cells across tumor models
- MCT11 is also expressed on human exhausted CD8+ TIL

sitc

» #SITCworkshop

- A member of the *Slc16* family, which are monocarboxylates transporters (MCTs): short chain carbons like lactate, pyruvate and ketone bodies
- MCT11 was first described in 2014 only 4 studies since
- MCT11 is a type 1 proton-coupled monocarboxylate transporter & is chaperoned to cell surface by CD147 (basigin)
- Lactic acid is the most abundant monocarboxylate in the TME

Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms

Victor Rusu,^{1,2,18,19} Eitan Hoch,^{2,3,18} Josep M. Mercader,^{2,4,5} Danielle E. Tenen,^{6,7} Melissa Gymrek,^{2,8,20} Christina R. Hartigan,⁶ Michael DeRan,⁶ Marcin von Grotthuss,² Pierre Fontanillas,^{2,21} Alexandra Spooner,² Gaelen Guzman,⁶ Amy A. Deik,⁶ Kerry A. Pierce,⁶ Courtney Dennis,⁶ Clary B. Clish,^{3,6} Steven A. Carr,⁶ Bridget K. Wagner,⁶ Monica Schenone,⁶ Maggie C.Y. Ng,⁹ Brian H. Chen,¹⁰ MEDIA Consortium, SIGMA T2D Consortium, Federico Centeno-Cruz,¹¹ Carlos Zerrweck,¹² Lorena Orozco,¹¹ David M. Altshuler,^{2,13,14,15,16,22} Stuart L. Schreiber,⁶ Jose C. Florez,^{2,3,4,15,*} Suzanne B.R. Jacobs,^{2,3,4} and Eric S. Lander^{6,16,17,23,*}

	TMD 8
MCT11	VVAVAAMG D AGA R LVCGWLADQGW
MCT1	LLSILAFVDMVARPSMGLVANTKP

MCT11 shares charged residues on inner pore with MCT1 MCT1 – Known lactic acid transporter

#SITCworkshop

- A member of the Slc16 family, which are monocarboxylates transporters (MCTs): short chain carbons like lactate, pyruvate and ketone bodies
- MCT11 was first described in 2014 only 4 studies since
- MCT11 is a type 1 proton-coupled monocarboxylate transporter & is chaperoned to cell surface by CD147 (basigin)
- Lactic acid is the most abundant monocarboxylate in the TME
- Do exhausted T cells from the TME take up lactic acid?

- Control
- MCT11 overexpression

- A member of the *Slc16* family, which are monocarboxylates transporters (MCTs): short chain carbons like lactate, pyruvate and ketone bodies
- MCT11 was first described in 2014 only 4 studies since
- MCT11 is a type 1 proton-coupled monocarboxylate transporter & is chaperoned to cell surface by CD147 (basigin)
- Lactic acid is the most abundant monocarboxylate in the TME
- Do exhausted T cells from the TME take up lactic acid?

Lactic acid pHrodo gMFI – Ctrl pHrodo gMFI = ∆pHrodo gMFI

Tumor Immune Microenvironment: A Holistic Approach Workshop

- A member of the *Slc16* family, which are monocarboxylates transporters (MCTs): short chain carbons like lactate, pyruvate and ketone bodies
- MCT11 was first described in 2014 only 4 studies since

= $\Delta pHrodo gMFI$

Exhausted T cells can take up lactic acid

to cell surface by CD147 (basigin)

- Lactic acid is the most abundant monocarboxylate in the TME
- Do exhausted T cells from the TME take up lactic acid?

Does MCT11 promote or alleviate exhaustion?

MCT11 overexpression increases PD1+Tim3+ population and decreases cytokine production

Tumor Immune Microenvironment: A Holistic Approach Workshop

Does MCT11 promote exhaustion in endogenous TIL?

Conditional T cell knockout of MCT11 reduces tumor burden

 Conditional T cell knockout of MCT11 increases CD8+ TIL

#SITCworkshop

Does MCT11 promote exhaustion in endogenous TIL?

 Conditional T cell knockout of MCT11 decreases coinhibitory marker expression in T cells

 Conditional T cell knockout of MCT11 increases exhausted T cell cytokine production

#SITCworkshop

MCT11 promotes T cell exhaustion in the TME

 Conditional T cell knockout of MCT11 increases exhausted T cell cytokine production

PD'

Could lactic acid uptake be blocked with anti-MCT11 antibody?

Tumor Immune Microenvironment: A Holistic Approach Workshop

Could lactic acid uptake be blocked with anti-MCT11 antibody?

Can anti-MCT11 be used therapeutically?

Tumor Immune Microenvironment: A Holistic Approach Workshop

Does anti-MCT11 therapy require adaptive immunity? mlgG2a 200 µg/dose x 5 anti-MCT11 Rag KO Tumor injections Treat Treat **D7 D9 D5 D0 MEER HNSCC B16 Melanoma**

Tumor Immune Microenvironment: A Holistic Approach Workshop

Does anti-MCT11 deplete T cells by ADCC or block MCT11 function?

Tumor Immune Microenvironment: A Holistic Approach Workshop

Does anti-MCT11 deplete T cells by ADCC or block MCT11 function?

Single agent Anti-MCT11 therapy reduces tumor burden by blocking T cell lactic acid uptake & promotes memory

#SITCworkshop

Conclusions & Future Directions

- MCT11 is highly and uniquely expressed by exhausted CD8+ TIL
- Exhausted CD8+ TIL are sensitized to toxic lactic acid through MCT11
- MCT11 enforces CD8+ T cell exhaustion in the TME
- Single-agent antibody therapy against MCT11 reduces tumor burden in mice

#SITCworkshop

Acknowledgements

Delgoffe Lab

Greg Delgoffe PhD (Friday @ 8:35AM)

Dayana Rivadeneira PhD

Konstantinos Lontos MD/PhD

Supriya Yoshi PhD

Alok Kumar PhD

Jeremy Wang

Jess Janna

Rachel Cumberland

Mary Philbin

Funding

- NIAID F31 (AI152429-01A1)
- Autoimmunity & Immunopathology T32 (5T32AI089443-09) (2018-2020)

Paolo Vignali Kristin DePeaux (Poster 20) Andrew Frisch (Poster 27)

<u>Former lab Members</u> Nicole Scharping, PhD Mac Watson, PhD

Thesis Committee

Larry Kane PhD Simon Watkins PhD Craig Byersdorfer MD/PhD Chris Bakkenist PhD

Tumor Immune Microenvironment: A Holistic Approach Workshop