

Cancer Is A Disorder of Cell Death: Biologic Impact of Targeted Therapies

Michael T. Lotze, MD

Vice Chair and Chief, Translational Research

Departments of Surgery and Bioengineering

University of Pittsburgh Cancer Institute

Effect of tumour cells killed by x-rays upon the growth of admixed viable cells. LÁSZLÓ [Laci] RÉVÉSZ (1926-2000) [Nature. 1956 Dec 22;178(4547):1391-2. Karolinska

Effect of cells lethally damaged by 15,000 R γ -irradiation on growth of viable cells + a spontaneous C3H mammary carcinoma. REVESZ L. Effect of lethally damaged tumor cells upon the development of admixed viable cells. J Natl Cancer Inst. 1958 Jun:20(6):1157-86.

Stimulation Exerted by Dead Cells

- Specific stimulation by homologous cell products
- •A 'feeder effect' in which the dead
- cells release essential nutrients
- •Stimulation through provoking an inflammatory response and/or vascularization from the side of the host

TLRs, NLRs, and RLRs

Cell Death and Differentiation (2006), 1–18 © 2006 Nature Publishing Group All rights reserved 1350-9047/06 \$30.00

www.nature.com/cdd

Review

Death Used to be Simpler Apoptosis [I], Autophagy [II] and Necrosis [III]

Cell Death

	N	ECROSIS	APOPTOSIS		CASPASE- NDEPENDENT POPTOSIS	AUTOPHAGY	WD	EXCITO- TOXICITY	ERYTHRO- -POIESIS	PLT	CORNI- FICATION	LENS
	Genetic Program	None	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
	Membrane	Lysed	intact PS exposure	intact PS exp.	intact PS exp.	intact PS exposure	intact	intact	intact	intact	intact	
Curront	Organelles	Lysed	intact	intact	intact	intact lipid-	intact	intact	intact	intact	crosslinked lipid-	
<u>Current</u> Model	Mitos	Blown	intact	intact		reassembly			lost		lost	lost
11 forms	Nucleus		chr.condens. DNA fragm.	chr.cond. DNA frag	chr.cond DNA fragm.	chr.condens. DNA fragm.			lost	lost	lost	lost
of cell death	Enzymes	None	caspases	caspases	calpains	lysosomal beclin1	VPR	calpains NCX	calpains		TG 1,3,5	ΤG
	Receptors		Death Rec									
[Regulators		Bcl family IAP					NO calcium	GATA2		AP1 calcium	
Classical Mo	<u>del</u>											
Type1: Apop	otosis	-1-	-2-	-3-	-4-	-5-	-6-	-7-	-8-	-9-	-10-	-11-
Type2: Auto	phagy											
Type3 Necr	osis											

Different types of "Cell Death"

G. Mollino, P. Nicotera et al., Cell Death and Differentiation, 12 (2005)

www.nature.com/onc

REVIEW

Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy

S Fulda and K-M Debatin

University Children's Hospital, Ulm, Germany

•Current cancer therapies, for example, chemotherapy, γ-irradiation, immunotherapy, or suicide gene therapy, primarily exert their antitumor effect by triggering apoptosis in cancer cells

•So far, no clear pattern has emerged between the level of apoptosis or proteins that regulate apoptosis and treatment response in most solid tumors

•Strategies Targeting the Intrinsic Pathway

Bcl-2 Family ProteinsSmac/Diablo AgonistsIrradiation

Process of Autophagy

- environmental stressors lead to isolation of double membranebound structures thought to be derived from the "phagophore"

- membrane structures elongate and mature and MAP-LC3 is recruited to the membrane

 elongated double membranes form autophagosomes and sequester cytosolic proteins and organelles

- sequesteration requires ATP and microtubules

- process can be inhibited by blocking ATP production or microtuble assembly

- the autophagosome fuses with the lysosome which proceeds with degredation

• Overexpression of beclin-1 (the yeast homolog of Atg6) induces autophagy in tumor cells and inhibits their tumorogenicity (acts as tumor supressor). Beclin-1 is regulated by BCL-2

• Other tumor supressor genes linked to autophagy include PTEN and tensin homologs

• Tamoxifen induces autophagic cell death of breast cancer cells through the oestrogen receptor and occurs through downregulation of AKT

Treatment	Proposed target	Cancer type
Tamoxifen	Oestrogen receptor	Breast cancer
Temozolomide	DNA	Malignant glioma
γ-Irradiation	DNA	Breast cancer, prostate cancer, colon cancer, malignant glioma
Sodium butyrate and SAHA	HDAC	Cervical cancer that over expresses $BCL-X_L$
Hyperthermia	Unknown	Malignant glioma
Arsenic trioxide	Multiple targets (for example, mitochondria)	Malignant glioma
Resveratrol	Multiple targets (for example, oestrogen receptor and mitochondria)	Ovarian cancer
Soybean B-group triterpenoid saponins	Unknown	Colon cancer
Rapamycin	mTOR	Malignant glioma

Therapies that induce autophagy in cancer cells Kondo Y et al., Nature Reviews, 5 (2005)

HDAC, histone deacetylase; mTOR, mammalian target of rapamycin; SAHA, suberoylanilide hydroxamic acid.

Autophagy and Cancer

Compound	Modification of cellular component	Cancer type
3-MA	PI3K inhibitor. Inhibits the formation of pre- autophagosomal structure	Breast cancer, prostate cancer, colon cancer, malignant glioma and cervical cancer
Bafilomycin A ₁	H ⁺ -ATPase inhibitor. Blocks the fusion of the autophagosome and lysosome	Breast cancer, prostate cancer, colon cancer, malignant glioma, cervical cancer
HCQ	A lysosomotropic agent. Blocks the fusion of the autophagosome and lysosome	Cervical cancer
Monensin	Proton exchange for potassium or sodium. Blocks the fusion of the autophagosome and lysosome	Cervical cancer
siRNA against ATG5, BECN1, ATG10, ATG12	Blocks translation of these proteins	Cervical cancer

Inhibitors of autophagy

3-MA, 3-methyladenine; HCQ, hydroxychloroquine; PI3K, phosphatidylinositol 3-phosphate kinase; siRNA, small interfering RNA.

• MAP-LC3

(Microtubule Associated Protein Light Chain 3) Homolog of the yeast Apg8 protein which is essential for formation of autophagosomes. Present as two isoforms (I&II). LC3-II Localizes to the limiting membranes of autophagosomes after processing.

• Monodansylcadaverine (MDC)

lysomotrophic compound that has been shown to accumulate in autophagosomes (Biederbeck et al., 1995)

The ArrayScan VTI and High Content Screening (HCS)

Autophagy in Melanoma

Hoechst 33342

MDC

LC3

MERGE

PBS

(-) CaMg

WM9 undergoes autophagy in response to starvation and arsenic trioxide as measured by an increase in cytoplasmic spot intensity

Cells appear to be protected from autophagy in the presence of Ca⁺⁺ and Mg⁺⁺ cations

LTR = Lysotracker Red MDC = Monodansylcadaverine LC3 = MAP LC3

Classes of Molecules That Initiate The Innate Immune Response – Signal 0

Pathogen-associated Molecular Patterns (PAMPs):

Molecules expressed or released by invading microorganisms that are structurally unique to the pathogen. Ruslan Medzhitov, 2000

<u>Damage-associated Molecular Patterns</u> (DAMPs):

Molecules expressed or released that are normally unavailable to the immune system but are released and recognized by immune cells following tissue injury.

Walter L Land, 2003

Classes of Molecules That Initiate The Adaptive Immune Response – Signal 3

Classes of Molecules That Promote Continued Adaptive Response – Signal 0 – Environmental Stress

T Helper	Signal 0	Inducer	Transcription Factor	Products	
	Signal 5				
Th1	HMGB1, LPS, ?	IL12	T-bet	IFNγ	
Th2	???	IL4	GATA3	IL4, IL5	
Th3	???	IL10, TGFβ	FoxP3	IL10, TGFβ	
Th4 [Th17]	↓?? Neut apoptosis	IL23	RORy	IL17, IL6	

HMGB1

Intracellular HMGB1 Extracellular HMGB1

Co-transcriptional Factor

Structural DNA binding protein Stabilizes Nucleosomes Transcriptional regulation Inflammatory Cytokine

Neutrophil Chemotaxis Macrophage activation Dendritic cells maturation Vascular Leakage Acute Lung Injury Hepatic Injury Multiple Organ Failure

Immunobiology of HMGB1

May 2006

nature

LETTERS

IL-23 promotes tumour incidence and growth

John L. Langowski¹*, Xueqing Zhang¹*, Lingling Wu¹, Jeanine D. Mattson¹, Taiying Chen¹, Kathy Smith¹, Beth Basham¹, Terrill McClanahan¹, Robert A. Kastelein¹ & Martin Oft¹

Figure 1 | Overexpression of IL-23 but not of IL-12 in human cancer.

Type, Density, and Location of Immune Cells Within Human Colorectal Tumors Predict Clinical Outcome

Jérôme Galon,¹*† Anne Costes,¹ Fatima Sanchez-Cabo,² Amos Kirilovsky,¹ Bernhard Mlecnik,² Christine Lagorce-Pagès,³ Marie Tosolini,¹ Matthieu Camus,¹ Anne Berger,⁴ Philippe Wind,⁴ Franck Zinzindohoué,⁵ Patrick Bruneval,⁶ Paul-Henri Cugnenc,⁵ Zlatko Trajanoski,² Wolf-Herman Fridman,^{1,7} Franck Pagès^{1,7}†

The role of the adaptive immune response in controlling the growth and recurrence of human tumors has been controversial. We characterized the tumor-infiltrating immune cells in large cohorts of human colorectal cancers by gene expression profiling and in situ immunohistochemical staining. Collectively, the immunological data (the type, density, and location of immune cells within the tumor samples) were found to be a better predictor of patient survival than the histopathological methods currently used to stage colorectal cancer. The results were validated in two additional patient populations. These data support the hypothesis that the adaptive immune response influences the behavior of human tumors. In situ analysis of tumor-infiltrating immune cells may therefore be a valuable prognostic tool in the treatment of colorectal cancer and possibly other malignancies.

29 SEPTEMBER 2006 VOL 313 SCIENCE

Survival (months)

Classes of Molecules That Promote Innate Response – Signal 0 – Environmental Stress

Sentinel	Stress	Antigen	Target	Signal 0	
				Signal 5	
NK	Genomic	_	MICA,	HMGB1,	
	Metabolic		MICB	LPS, ?	
NKT	Cell	Glycolipid	CD1d	???	
	Membrane				
CD4	Cell	13-20	Class II	???	
	membrane	Peptide			
CD8	ER Stress	8-10	Class I	↓?? Neut	
		Peptide		apoptosis	

Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins

Uta-Maria Ohndorf*, Mark A. Rould†≇, Qing He*, Carl O. Pabo† & Stephen J. Lippard*

* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

[†] Department of Biology and Howard Hughes Medical Institute,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

d(GpG) and d(ApG) adducts

Nature. 1999 June 17 399:708-12.

5'-C₁ C₂ T₃ C₄ T₅ C₆ T₇ G₈ G₉ A₁₀C₁₁C₁₂T₁₃T₁₄C₁₅C₁₆-3' 3'-G₃₂G₃₁A₃₀G₂₉A₂₈G₂₇A₂₆C₂₅C₂₄T₂₃G₂₂G₂₁A₂₀A₁₉G₁₈G₁₇-5'

39, USA		Helix I		Helix II	Loop 2	Helix	
	10	20	30	40	50	60	70 71
rHM31 domA	PREKKSBYA	FVOTOREEHK	KKHPDAS	BEFERKCBER	KTMSAKEK	RFEDMARADE	ARYEREMETY
rHM31 domB	PKRPPSAFFI	FCEEYRPKIK	GEHPGLS1	BDVAKKLGEM	WNNTAADDK(PAEKKYVKY	EKYEKDIAA3
hSSRP1	PKRPMSAYMI	MLMASREKIK	SDHPGLS1	TDLSKKAGEI	WROMEREKKI	REWDRPAEDAR	RDYEKAMKEY
YNHP6A	PKRALSAYM	FAMENEDIVE	EENPDITF	BOAGKKFGEK	WKALTPEEK(OPYRAKAQADK	KRYESEKEL?
HM3-D	PKRFLSAYMI	MLNSARESIK	RENPGIKL	TEVAKRGGEL	WRAMKDKS	SEWEAKAAKAK	DDYDRAVKER
hsry	VERENNAFIN	WSRDORRENA	LENPRMRD	BEISKOL/GYO	WKULTEAEK)	PFFQEAQKL	AMHREKYPNY
mLEF-1	IKEPLNAFMI	MERCENERANV	AECTLES	AAINCILGER	WHALSREEO	AKYY ELARKE	OLHMQL YPG
hTCF-1	IKKPLNAFMI	YMKEMRARVI	ARCTLERS	AAINQILGER	WHALEREEQ	AKYYELARKER	QIHMQLYPGW

Release of HMGB1 from Melphalan But not Oxaliplatin Treated Cells

HCT 116 16 hours after treatment with Melphalan

Petar Popovic/Herb Zeh

Flow Cytometry Intracellular HMGB1/Histone H1

Histone H1 (FI)

HMGB1 Release Following Immune Mediated Lysis?

HMGB1 Release Following Immune Mediated Lysis?

HCT-116 cells treated with chemotherapeutic agents

Melphalan

HMGB1 Release Assessed Within An ELISA

Western blot of supernatant derived from tumor cells incubated with chemotherapeutic agents [48 hours].

oVo
•

Intracellular nuclear staining following treatment with melphalan or oxaliplatin (WM2348 melanoma cell line)

Histone H1 (Relative Fluorescence Intensity)

Intracellular nuclear staining of HMGB1 diminishes following treatment with cells with LAK activity 80 +PBMC^{P2} P2 +LAK Tumor HCT-116 (Relative Fluorescence Intensity) 40 13.3 9.7 24.280 P2 P2 P2 P1.28 10.6 13.4 18.0 80 P2 P2 P2 HMGB1 P89 40 35.3 37.6 51.9 10⁴ 10⁵ 10² יייידין דיייידי 10⁴ 10⁵ 10 10² 10² 103 10⁰ +PBMC Tumor +LAK +NP40 Histone H1 (Relative Fluorescence Intensity)

LAK Induces Intracellular HMGB1 Release

Immune Mediated Lysis of Tumor Cells Release HMGB1

Max(T+NP40)=100

Tumor: 451Lu, 4h, 5x10⁶/ml E/T=10/1

Immune Mediated Lysis of Tumor Cells Release HMGB1

Apoptosis and Necrosis

At The Event Horizon

Conclusions 1: Necrosis and Apoptosis and HMGB1

- DAMPs and HMGB1 are links between inflammation and necrotic cell death
- Apoptotic cell death causes sequestration of HMGB1 in the nucleus [phosphorylation of Histone 2B] – preliminary Marco Bianchi
- Platination of dsDNA causes sequestration of HMGB1 in the nucleus [dGpG and dGpA]
- Treatment of cancer [and arthritis] with platinums may succeed because of their ability to sequester HMGB1

Conclusions 2

- HMGB1 is indeed a pleiotrophic endokine an endogenous danger signal promoting DC maturation and found in the serum of acute and chronic inflammatory states
- HMGB1 synergizes with other cytokines in the mouse and man to promote acute immune reactivity [?Schlepping or Chaperoning]
- HMGB1 in chronic inflammation may promote PDC suppression, promoting healing
- Targeting HMGB1 with antibodies or soluble receptors may represent important strategies for treatment of microbial and inflammatory diseases

Contributors

- Herb Zeh/Dave Bartlett/Pawel Kalinski/Zhong Shen Guo/Eric Dong/Petar Popovic/Nicole Schapiro
- Sanjiv Agarwala/John Kirkwood/Howard Edington/ Walter Storkus/Hassane Zarour/Lisa Butterfield
- Shaiv Dave, Scott Plevy
- Jukka Vakkila/Lina Lu/Mitchell Fink/Tim Billiar
- Richard DeMarco/David Montag/Norimasa Ito/Ramin Lotfi/Katie Horvath/Elisa Latorre/Tina Kilgore/Yuan Yu
- Anna Rubartelli
- Marco Bianchi
- Kevin Tracey
- Ann Marie Schmidt
- Theresa Ostberg, Helena Harris and Ulf Andersson
- Steven Rosenberg/John Wunderlich