

Society for Immunotherapy of Cancer

Immune Checkpoint Agonists

Aung Naing, MD, FACP Lead, Immunotherapy Working Group Associate Professor, Dept. of Investigational Cancer Therapeutics The University of Texas MD Anderson Cancer Center

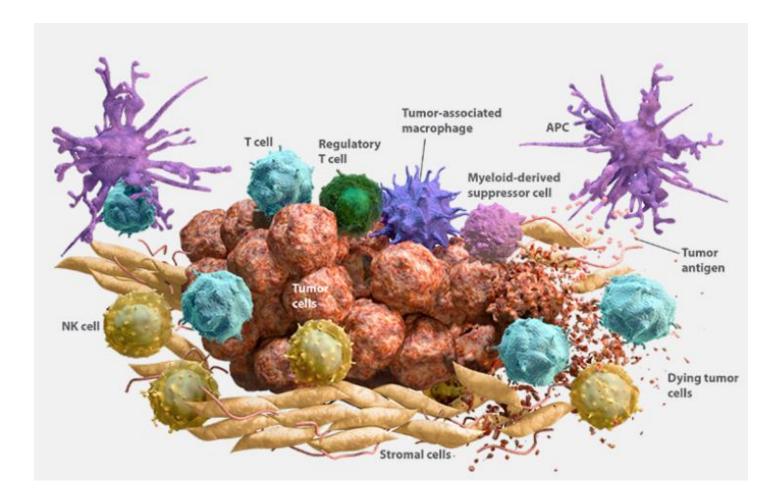
Disclosures

- Research funding from NCI; EMD Serono; MedImmune; Healios Onc. Nutrition; Atterocor; Amplimmune; ARMO BioSciences; Karyopharm Therapeutics; Incyte; Novartis; Regeneron; Merck; BMS; Pfizer, CytomX Therapeutics; Neon Therapeutics; Calithera Biosciences; TopAlliance Biosciences; Eli Lilly; Kymab:
- Immune Deficiency Foundation (Spouse)
- On advisory board of CytomX Therapeutics and Novartis
- Travel and accommodation expense from ARMO BioSciences

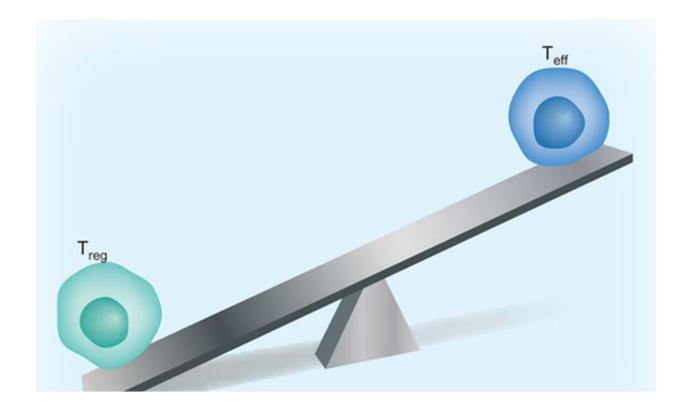
Overview

- Introduction
- Immune Checkpoints
- What's Next?
 - **OX40**
 - **4-1BB**
 - GITR

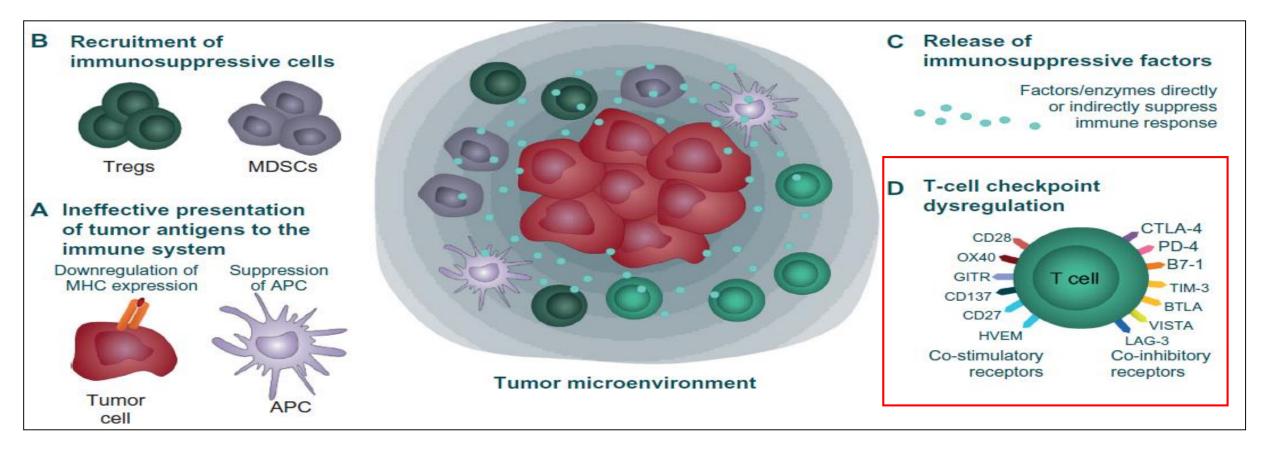
Challenges Associated with Immunotherapy


- Biomarkers of Response
- Resistance to Treatment
- o Immune-related Adverse Events
- Summary

Introduction

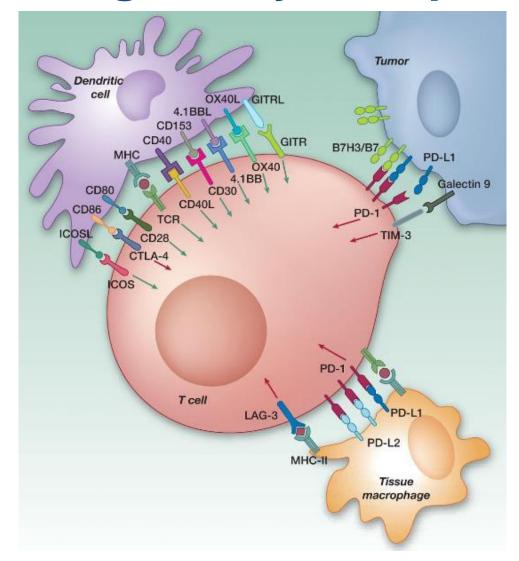


Key Players of the Immune System



Immune Tolerance

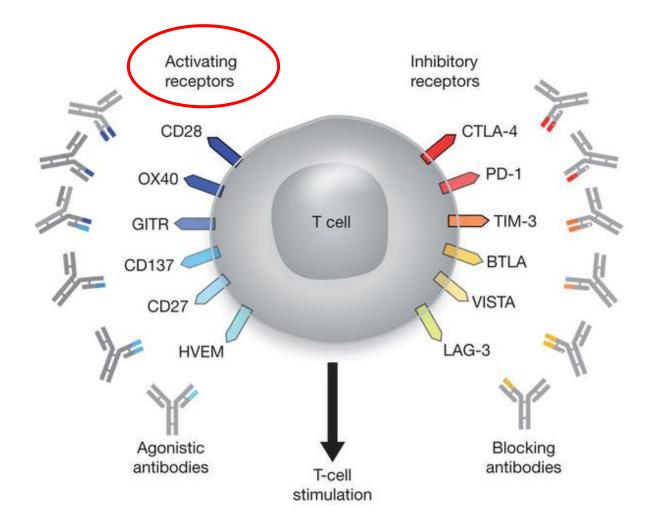
Common Immune Evasion Strategies Used by Tumor Cells



Immune Checkpoints

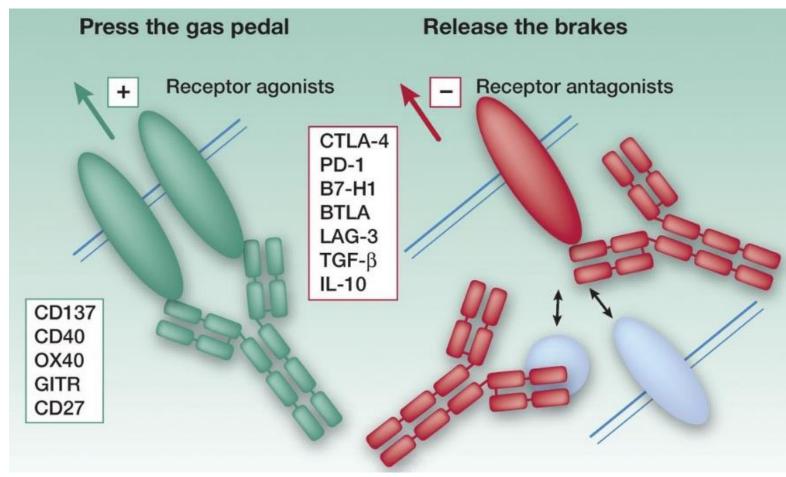
Immune Regulatory Receptors on T Cells

FDA-approved Checkpoint Inhibitors*


Drug	Immune Checkpoint(s)	FDA-approved tumor-type**
Ipilimumab	CTLA-4	Melanoma
Nivolumab	PD-1	Melanoma
		Non-small cell lung cancer
		Small cell lung cancer
		Renal cell carcinoma
		Classical Hodgkin lymphoma
		Squamous cell carcinoma of the head and neck
		Urothelial carcinoma
		Hepatocellular carcinoma
		Mismatch repair deficient and microsatellite instability high metastatic colorectal
		cancer
Pembrolizumab	PD-1	Melanoma
		Non-small cell lung cancer
		Squamous cell carcinoma of the head and neck
		Classical Hodgkin lymphoma
		Urothelial carcinoma
		Gastric or gastroesophageal junction
		Microsatellite instability-high or mismatch repair deficient solid tumors
		Recurrent locally advanced or metastatic Merkel cell carcinoma
		Cervical cancer
		Hepatocellular carcinoma
Atezolizumab	PD-L1	Urothelial carcinoma
		Non-small cell lung cancer
Durvalumab	PD-L1	Urothelial carcinoma
		Non-small cell lung cancer
Avelumab	PD-L1	Merkel cell carcinoma
		Urothelial carcinoma
Nivolumab with Ipilimumab	PD-1 and CTLA-4	Melanoma
		Renal cell carcinoma
		Microsatellite instability-high or mismatch repair deficient metastatic colorectal canc
Pembrolizumab with carboplatin and either paclitaxel or nab-paclitaxel	PD-1	Non-small cell lung cancer

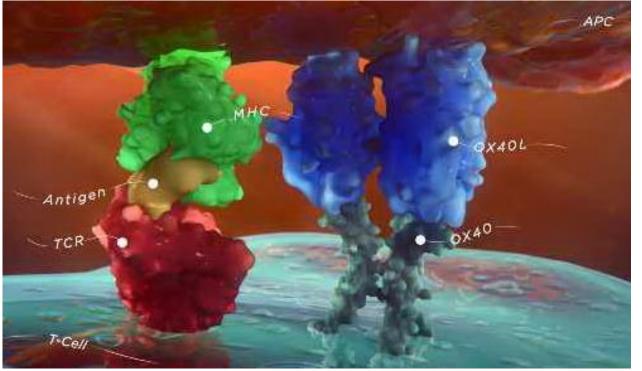
**Tumor type must meet the criteria listed in the above-mentioned website

10

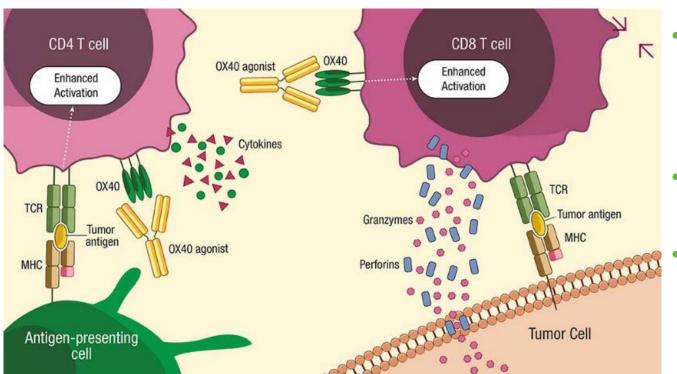


T cell Targets for Immunoregulatory Therapy

T cell Agonists: Stepping on the Accelerator


Green means activator receptor and agonist antibody Red means inhibitory receptor and antagonist antibody

OX40 (CD134)


OX40 (CD134)

- Member of the tumor necrosis factor receptor superfamily4
 - Expressed on <u>activated</u> CD4⁺ and CD8⁺ T cells and Foxp3⁺CD4⁺ regulatory T cells (Tregs)
 - High level of OX40 expression on <u>Tregs in</u> <u>tumor</u> and not periphery
 - OX40 expression is transient; peaking 24-48 hours after activation
 - Typically lasts 3–4 days
- One known ligand OX40L
 - Expressed on <u>activated</u> APCs

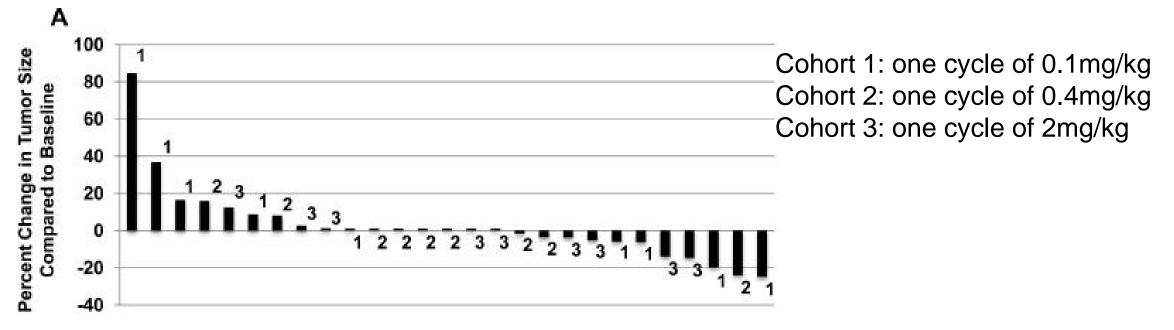
OX40 Signaling

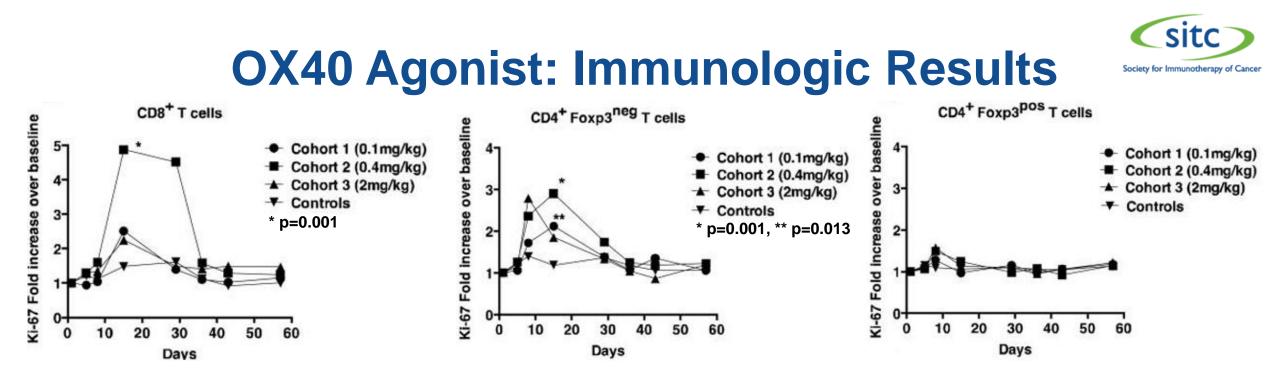
- Promotes effector T cell expansion and survival
- Enhances expression of survivin, cyclin A, cyclin-dependent kinases, Bcl-2 antiapoptotic molecules, cytokines, and cytokine receptors
- Impairs conversion of naïve T-cells into FoxP3⁺ Tregs
- Depletes <u>tumor infiltrating</u> Tregs that Impairs suppressing ability of Tregs in the tumor

OX40 and Tregs

- OX40 blocks the suppressive function of Treg cells in vivo
- In TGF-β1-treated cultures, OX40 agonist increased IFN-γ and IL-4 production and blocked TGF-β1-mediated Treg conversion of activated T cells
- However, in the absence of IFNγ or IL-4, OX40 stimulation in naive mice, enhanced Treg proliferation and accumulation in vivo.
- OX40 can push Treg cells in both directions, <u>depending</u> upon the context of stimulation and the <u>cytokine milieu</u>

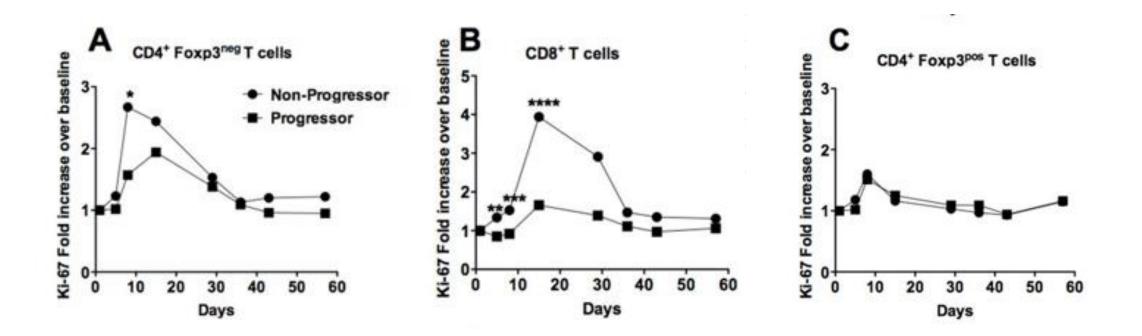
OX40 Agonist: Phase I Proof-of-principle Study


- N=30 patients with advanced cancer
- <u>Murine agonistic</u> anti-human OX40 mAb used
- Single cycle of anti-OX40 given intravenously (IV) on days 1, 3 and 5
- 3 dose levels: 0.1mg/kg; 0.4mg/kg; 2mg/kg
- Most common toxicities: Lymphopenia, fatigue, rash and flu-like symptoms with fever and chills
- MTD was not reached within the dose levels tested


Adverse events						
Toxicity	Grade 1	Grade 2	Grade 3	Grade 4		
Lymphopenia	3	10	6	1		
Fatigue	7	12				
Rash/Skin Changes	4	6				
Pruritis	5	1				
Fever/Chills	11	2				
Splenomegaly	7					
Arthralgias/Myalgias	5	5				
Nausea/Vomiting	4	3				
Increased AST, ALT or alkaline phosphatase	2	1				
Anemia	1	8				

OX40 Agonist: Efficacy Results

- Tumor shrinkage in 12 and no change in 6 patients
- SD in patients with melanoma, renal cancer, squamous cell carcinoma of the urethra, prostate cancer and cholangiocarcinoma
- Longest interval of SD lasted 470 days in a patient with renal cancer



- Significant increase in proliferation of both CD4⁺ and CD8⁺ T cells
- Did not increase CD4+/FoxP3+ Treg proliferation
- Preferential upregulation of OX40 in TIL Tregs than PBL Tregs
- Major limitation: High human Anti-mouse Ab production, which precluded the administration of multiple cycles

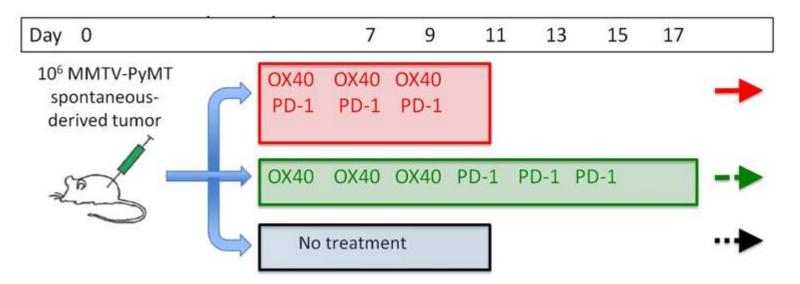
OX40 Agonist: Immunologic Results by Response

OX40 Agonist Monotherapy: in Clinical Development

OX40	Tavolimab (MEDI0562)	lgG1	AstraZeneca	Phase I
	PF-04518600	lgG2	Pfizer	Phase II
	BMS-986178	lgG1	Bristol-Myers Squibb	Phase II
	MOXR-0916	lgG1	Roche	Discontinued; phase at termination: phase II clinical
	GSK-3174998	lgG1	GlaxoSmithKline	Phase I
	INCAGN01949	lgG1	Incyte	Phase II

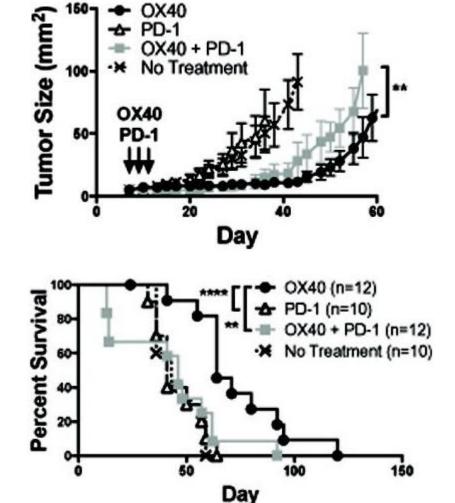
PF-8600, fully human IgG2 agonistic mAb against human OX40: Phase I

- N=52 [melanoma (n = 15), HCC (n = 19), head and neck squamous cell (n = 9) or renal cell carcinoma (n = 9)]
- Most commonly-reported AE (all grade): fatigue, nausea, decreased appetite
- No DLTs up to 10mg/kg.
- Dose expansion in HCC to find RP2D
- PR=2 (melanoma & HCC; n=1 each), SD=28, PD=19


MEDI0562, a humanized IgG4 OX40 monoclonal antibody: Phase I

- N=55 pts with advanced solid tumors
- TRAe in 67%; most common trAEs were fatigue (31%) and infusion-related reaction (15%).
- Gr 3 TRAEs in 16%; most common pyrexia (4%)
- No Gr 4 or 5 TRAEs.
- No DLT; suggested MEDI0562 Phase 2 dose of ≥ 3 mg/kg Q2W was selected.
- 50 evaluable; 2 PR (SCC of larynx and bladder cancer [n=1 each]), SD in 22 (>3 months in 20),

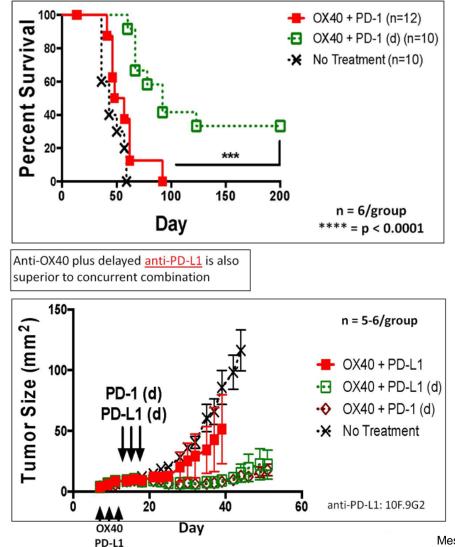
OX40 agonism + PD-1 blockade: Timing is Important



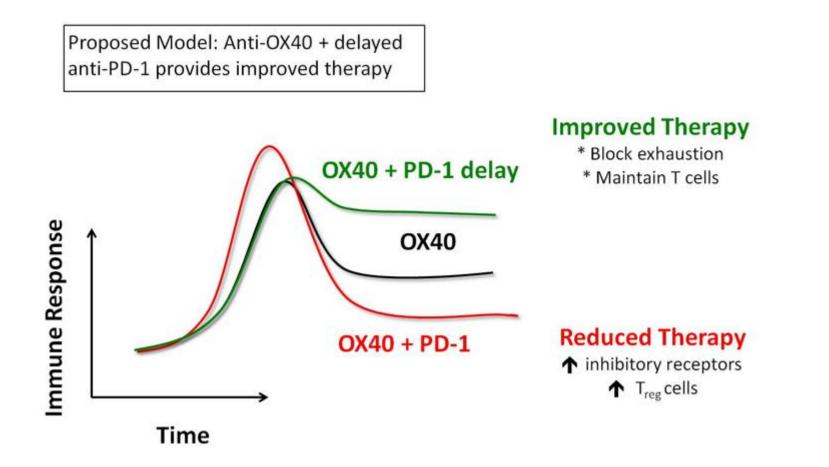
- Orthotopically-transplanted murine mammary tumor virus polyoma middle T (MMTV-PyMT) mammary cancer model
 - Model is refractory to PD-1 blockade
 - With sequencing, tumor progression delayed significantly.

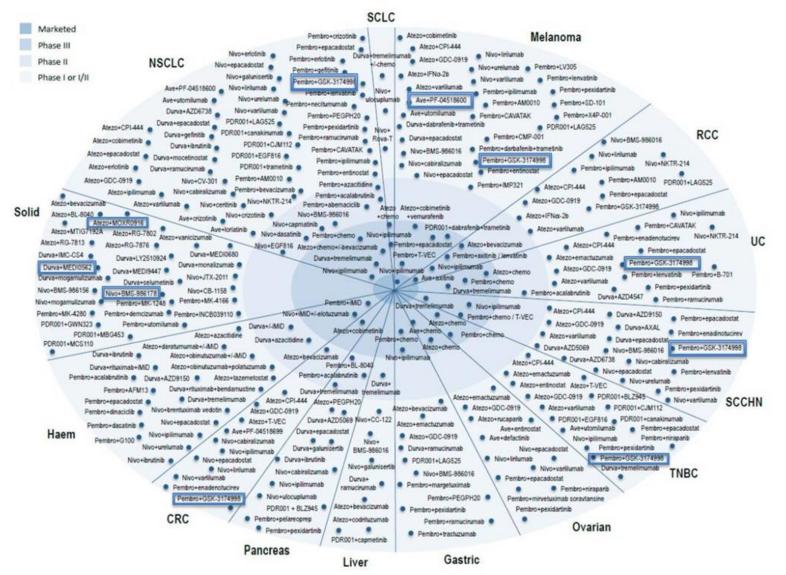
Concurrent Administration

- Increases proliferation of TILs but short lived and this metric does not correlate with therapeutic response
- Weakened anti-tumor effect
 - Suppressed the therapeutic effect of anti-OX40 antibody
- Heightened expression of immune checkpoint proteins CTLA-4 and TIM-3 on T cells
- Acute increase in serum cytokines



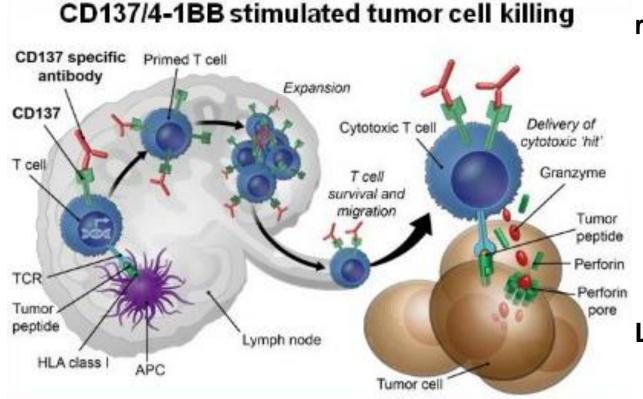
Sequential Administration


Anti-OX40 plus delayed anti-PD-1 is superior to concurrent combination


- Delaying anti-PD-1 administration
 - Greatly enhanced the effects of anti-OX40 monotherapy
 - Complete regression of tumors in about 30 percent of the mice
 - Provided durable responses
 dependent on both CD4+ and CD8+ T
 cells that eliminated tumors in a
 substantial portion of animals.

Timing is Important

OX40 Combinations in Clinical Development sitc

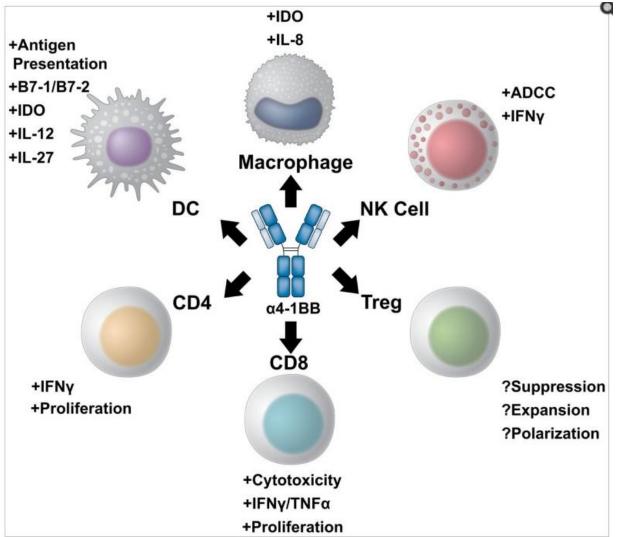


4-1BB (CD137)

4-1BB (CD137)

Member of the tumor necrosis factor receptor superfamily9

- Expressed on <u>activated</u> CD8+ and CD4+ T cells, activated natural killer (NK) and natural killer T (NKT) cells, regulatory T cells, dendritic cells (DC), stimulated mast cells, differentiating myeloid cells, monocytes, neutrophils, and eosinophils
- Peaks 12-24 hours following stimulation
- Declines by 72 hours


Ligand: 4-1BBL

- Expressed on activated APCs
- Myeloid progenitor cells and hematopoietic stem cells

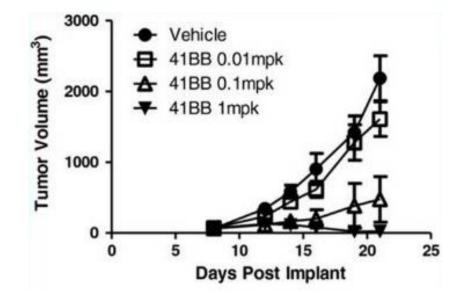
Wang C et al. Immune regulation by 4-1BB and 4-1BBL: complexities and challenges, *Immunological Reviews, 2009* Bartkowiak T and Curran MA. 4-1BB Agonists: Multi-Potent Potentiators of Tumor Immunity, *Front Oncol.* 2015. Segal NH et al, A phase 1 study of PF-05082566 (anti-4-1BB) in patients with advanced cancer. *J Clin Oncol,* 2014

Multi-potent Roles of 4-1BB

- Diverse immune effector responses on both the innate and adaptive immune arms.
- Most potent action on CD8+ cytotoxic T cells:
 - Increased T cell proliferation and effector potential through increased IFN γ production and expression of multiple granzymes; prolonged CD8 T cell survival
- CD4+ effector T cells: stimulated to expand and produce pro-inflammatory cytokines.
- Controversial role on Tregs:
 - Either inhibit differentiation of conventional effector cells into Tregs and inhibit Treg suppression
 - Or maintain Treg expansion and suppressive capacity
- NK cells: stimulate antibody-dependent cellmediated cytotoxicity through Fc/FcR interactions,
- DC: Induce maturation and antigen presentation. In addition, α4-1BB stimulated DCs begin to express IL-12 and IL-27 as well as the enzyme IDO to modulate T cell function.
 - 4-1BB+ macrophages: stimulated to increase antigen presentation and produce IL-8 as well as IDO.

Bartkowiak T and Curran MA. 4-1BB Agonists: Multi-Potent Potentiators of Tumor Immunity, *Front Oncol.* 2015. Segal NH et al, A phase 1 study of PF-05082566 (anti-4-1BB) in patients with advanced cancer. *J Clin Oncol*, 2014

4-1BB Signaling/Agonist Action



- Ligation recruits TNFR-associated factor (TRAF) 1 and TRAF2 and induces signaling through the NF-kB and MAPKs.
- Increase co-stimulatory molecule expression and markedly enhance cytolytic T lymphocyte responses
- Results in durable anti-tumor protective T-cell memory responses
- Promotes T-cell migration into tumor lesions due to increased expression of the cellular adhesion molecules ICAM-1, VCAM-1, and E-selectin on tumor vasculature
- Fully human mAbs against CD137 (urelumab or BMS-663513, Utomilumab or PF-05082566) have been developed
- Liver toxicity associated with 4-1BB agonist antibodies has dampened the clinical development of the agent

4-1BB Monotherapy: Preclinical Data

- In several tumor models, 4-1BB agonists have demonstrated antitumor efficacy
- CD-137 agonist antibodies show a dose dependent inhibition of tumor growth:

CT26 Mouse Model

Urelumab: Proof-of-concept Study

- A fully human IgG4 with a point mutation (S228P)
- Phase I/ II trial in 115 patients with advanced/metastatic solid tumors
- Most frequent AE fatigue, transaminitis, neutropenia, rash, and diarrhea
- Grade ≥2 laboratory abnormalities were: increases in alanine aminotransferase (ALT) (15%), aspartate transaminase (AST) (12%), leukopenia (8%), neutropenia (6%), thrombocytopenia (4%), and hyperbilirubinemia (<1%)
- Optimal dose was not identified
- Partial remissions and sustained stable diseases were observed.
- Increase peripheral activated CD8 T cells and IFN-inducible genes

Urelumab: Phase II

- Randomized, multi-dose study in previously treated melanoma patients with stage IV disease
- Four arms:
 - arm 1, 0.1 mg/kg every 3 weeks
 - arm 2, 1 mg/kg every 3 weeks
 - arm 3, 1 mg/kg every 6 weeks
 - arm 4, 5 mg/kg every 3 weeks
- The study was terminated in May 2009 due to unusually high incidence of grade 4 hepatitis
- Cause is related to increased CD8+ T cell accumulation and activation in the liver following treatment
- In December 2008, enrolment was stopped for all urelumab studies following the occurrence of two hepatotoxicity-related deaths

Urelumab: Phase Ib

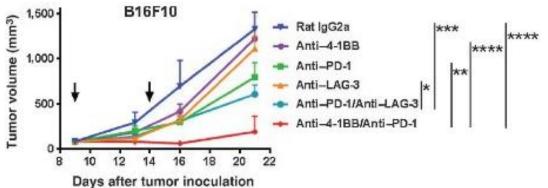
- 3 monotherapy studies restarted in February 2012
- N=347; doses ranging from 0.1 to 15 mg/kg every 3 weeks
- TRAEs in urelumab doses between 1 and 15 mg/kg greater than than in doses of 0.1 or 0.3 mg/kg
- Two deaths occurred at the higher dose range (1 and 5 mg/kg).
- 15 of 25 patients rechallenged at the same dose did not have recurrence of same AEs
- Urelumab 0.1 mg/kg every 3 weeks was demonstrated to be safe

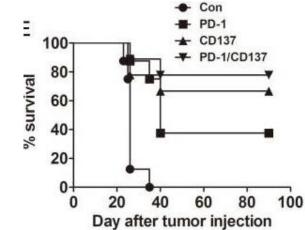
36

• More marked agonistic activity on the receptor than utomilumab

	Urelumab 0.1 mg/kg	Urelumab 0.3 mg/kg	Urelumab ≥1 mg/kg			
Event	$(n = 61)^{c}$	(n = 56) ^c	(n = 229) ^c			
Any grade ≤4 AEs ^a , % (grade 3-4, %) ^d						
AST increased	8.2	14.3 (3.6)	27.1 (13.5)			
ALT increased	6.6 (1.6)	10.7 (3.6)	26.6 (16.6)			
Fatigue	16.4	14.3	24.0			
Rash	4.9	7.1	19.7			
Nausea	13.1	3.6	13.5			
Pruritus	4.9	5.4	13.1			
Decreased appetite	8.2	3.6	12.2			
Pyrexia	4.9	1.8	12.2			
Diarrhea	3.3	3.6	12.2			
Asthenia	8.2	0	7.9			
Headache	1.6	1.8	7.0			
Neutropenia	4.9 (3.3)	0	6.1 (2.6)			
Vomiting	3.3	0	5.2			

Utomilumab: Phase I


• A fully human IgG2


37

- N=34 patients with advanced cancer
- 3+3 design (0.006 to 0.3 mg/kg) Time-To-Event CRM design for higher doses (0.6 to 5 mg/kg)
- Grade 1 AEs: Rash (n=3), fever, nausea/vomiting (n=2 each), weight loss, fatigue, thrombocytopenia (n=1 each)
- Grade 3 elevation in alkaline phosphatase (n=1) at 0.06 mg/kg dose
- No dose-limiting toxic effects in humans at doses up to 10 mg/kg
- Best overall response of stable disease was observed in 22% (6/27) patients

Utomilumab+ Pembrolizumab: Pre-clinical

- T-cell activation and cytokine production (e.g., IFNγ) by 4-1BB may induce increased PD-L1 expression, limiting T cell function
- Combination has complementary action and may produce additive or synergistic antitumor activity

- Poorly immunogenic B16F10 melanoma
 Ov model,
 - Combination produced antitumor activity
 - Elevated CD8+/regulatory T-cell ratio
 - Increased activity of tumor-specific cytotoxic T
- 38 lymphocytes

- Ovarian cancer model,
 - Improved survival
 - Increase in effector CD8+ T cells
 - $_{\odot}\,$ Decrease in Tregs and MDSCs

Chen S et al, Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. *Cancer Immunol Res* 2015 Wei H et al, Dual targeting of CD137 co-stimulatory and PD-1 co-inhibitory molecules for ovarian cancer immunotherapy. *Oncoimmunology* 2014

• 5 had RCC Adverse event^a All Grade 3 All Grade 3 grades 4^b grades 4^l

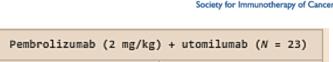
Co

De

Na

Co

D

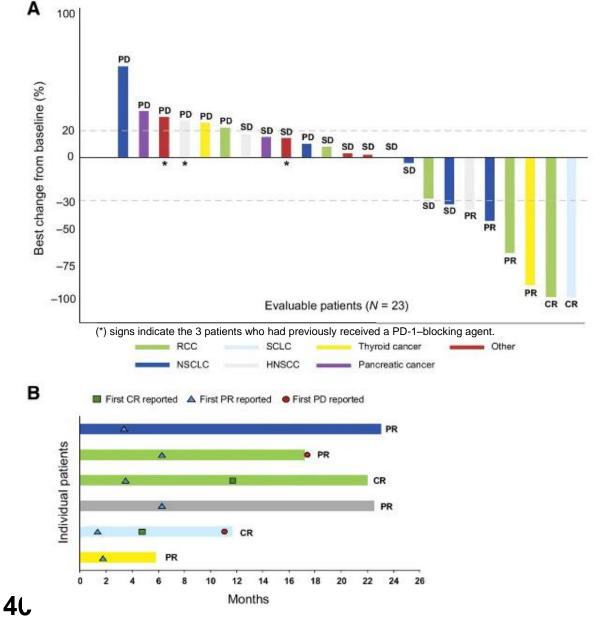

Up in

- o 3 had HNSCC
- 2 each had pancreatic or thyroid cancer
- 1 each had small-cell lung cancer (SCLC), colon cancer, sarcoma, thymic cancer, or ocular melanoma
- Utomilumab (0.45–5.0 mg/kg) and pembrolizumab (2 mg/kg) every 3 weeks.
- No DLTs were reported.
- TRAEs were mostly Grade 1/2

Utomilumab+ Pembrolizumab: Phase lb

N=23 patients

0	6	had	NSCLC


Treatment emergent

sit

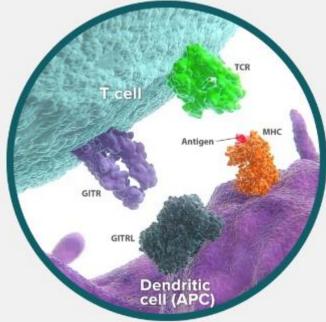
Treatment related

dverse event ^a	All grades	Grade 3- 4 ^b	All grades	Grade 3- 4
atigue	10 (43.5)	1 (4.3)	8 (34.8)	0
ash	10 (43.5)	8	8 (34.8)	0
ough	8 (34.8)	0	1 (4.3)	9
ecreased appetite	7 (30.4)	9	3 (13.0)	9
ausea	7 (30.4)	0	3 (13.0)	9
onstipation	6 (26.1)	0	1 (4.3)	9
ruritus	6 (26.1)	0	5 (21.7)	9
yrexia	5 (21.7)	0	3 (13.0)	9
omiting	5 (21.7)	0	1 (4.3)	9
nemia	4 (17.4)	3 (13)	9	9
yspepsia	4 (17.4)	0	2 (8.7)	9
pper respiratory tract nfection	4 (17.4)	0	9	9

^aNone of the patients discontinued due to treatment-related adverse events. ^bTreatment-related grade 3 adverse events reported in this study included adrenal insufficiency and hypokalemia (n = 1 each).

Utomilumab+ Pembrolizumab: Phase Ib

- ORR: Six out of 23 treated patients (26%) per RECIST 1.1
- CR in SCLC (n=1), PRs in RCC (n=2), NSCLC (n=1), H&N (n=1) and anaplastic thyroid (n=1)
- Median duration of response has not been reached
- Five of the 6 responders maintained a response for >6 months



4-1BB Agonist + Chemotherapy

- α4-1BB with 5-FU:
 - Profound tumor regressions
 - Increased overall survival rates
- α4-1BB with the DNA-alkylating platinum-containing derivatives, particularly cisplatin:
 - Produced cooperative anti-tumor responses; complete rejection of CT26 colon adenocarcinoma
 - Increased survival
 - Protection from cisplatin-induced nephrotoxicity
- α4-1BB with cyclophosphamide (CTX):
 - Increased overall survival by eliciting polyclonal expansion of antitumor T cells
 - Significantly enhanced effector function

Glucocorticoid induced TNFR (GITR)

Cell type	GITR expression		
	Naïve	Activated	
Regulatory T cells	High	Very high	
T cells (CD4/CD8)	Intermediate	High	
NK cells	Intermediate	High	
Granulocytes	Intermediate	High	
Mast cells	Intermediate	Intermediate	
Eosinophils	Intermediate/low		
Basophils	Intermediate/low		
Monocytes/macrophages	Low	Intermediate	

43

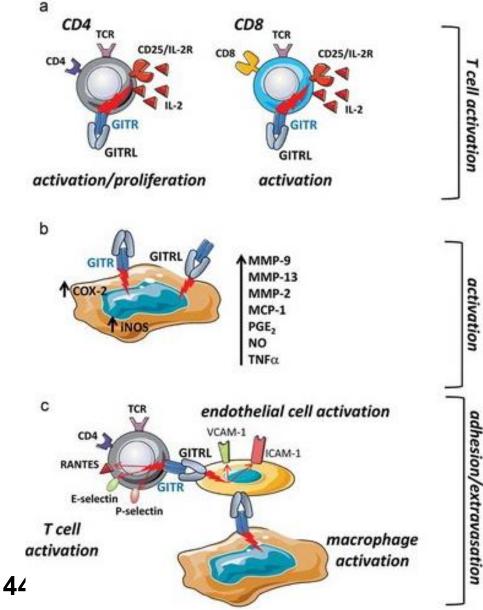
GITR (CD357)

- Member of the tumor necrosis factor receptor superfamily18
 - Peaks after 2-3 days
 - $_{\circ}$ Declines by day 5
- GITR ligand (GITRL)
 - Expressed at low levels by antigenpresenting cells such as dendritic cells (DCs), macrophages, and B cells
 - Upregulated upon activation

Riccardi C et al, Glucocorticoid-induced TNFR-related gene (GITR) as a therapeutic target for immunotherapy, *Expert Opinion on Therapeutic Targets*, 2018 Schaer et al, Modulation of GITR for cancer immunotherapy, *Curr Opin Immunol*. 2012

https://www.immunooncologyhcp.bmsinformation.com/antitumor-immunity/pathways/additional-effector-t-cell-pathways/

Role of GITR


Increased

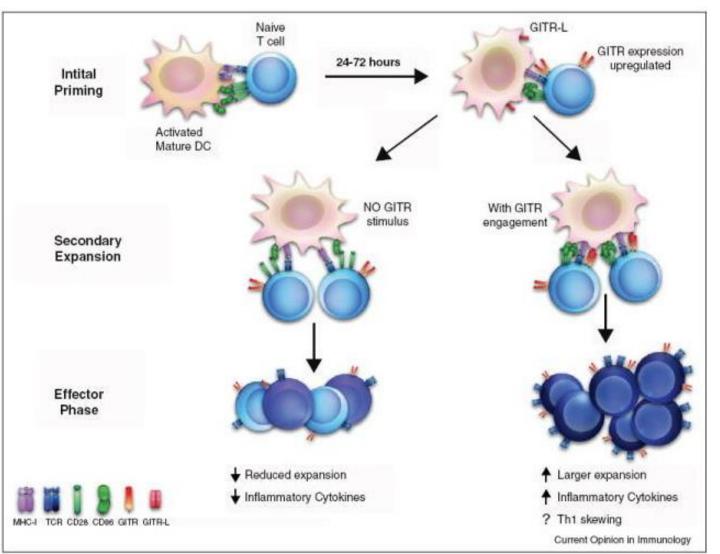
macrophage

increased

increased

- TCR-stimulated T lymphocytes:
 - Increases activation and proliferation, particularly in the setting of suboptimal TCR stimulation
 - Protects T cell from activation-induced cell death
 - $_{\odot}$ upregulates IL-2R α , IL-2 and IFN γ

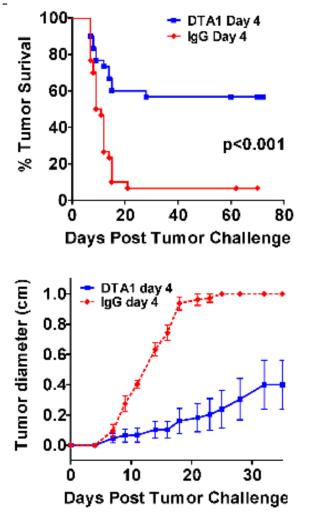
Macrophages: upregulation of


 Matrix metalloproteinase (MMP)-2, -9, and 13, monocyte chemoattractant protein (MCP)-1, TNFα, COX-2 and inducible nitric oxide synthase enzymes

Favors leukocyte activation, migration and extravasation

- Upregulates the adhesion molecules VCAM-1 and ICAM-1
- Activate T cells that upregulate the chemotactic molecule CCL5 or RANTES and the adhesion molecules E-selectin and P-selectin
- Tregs:
 - Induces Treg expansion, inhibits Treg suppressive function and promotes Teff resistance to Treg suppression

GITR Signaling



- Initial priming:
 - Naïve T cells are activated by interaction between TCR and MHC molecule
- Secondary priming and expansion:
 - Upregulation of GITR on activated T cells 24–72 h after initial activation
- If GITR-L is expressed by DCs:
 - Enhances the Teff to Treg ratio
 - In part through its costimulatory role of enhancing the CD8+ T cell population,
 - Also through its depletion of Tregs
 - Increased persistence of the antigen-specific T cells

GITR Monotherapy: Preclinical Data

B16 Melanoma tumor model

- The most widely used agonist antibody is DTA-1 (rat IgG2b anti-mouse GITR agonist antibody)
- In wide range of syngeneic mouse models:
 - Compelling antitumor activity attributed to:
 - Costimulatory role on CD4+ and CD8+ T cells
 - Inhibition or depletion of intratumoral Tregs
 - GITR+ Tregs are killed by myeloid and NK cells present in the tumor (Treg-specific and tumor-specific action)

site

Society for Immunotherapy of Cancer

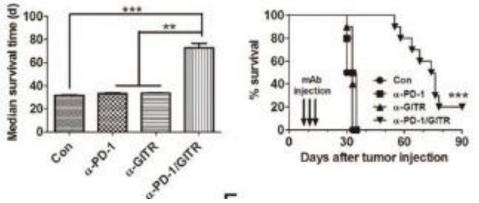
GITR Agonist: in Clinical Development

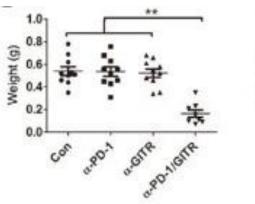
GITR	TRX-518	Aglycosyl IgG1	Leap Therapeutics	Phase I
	MK-4166	lgG1	Merck & Co.	Phase I
	MK-1248	lgG4	Merck & Co.	Phase I
	GWN-323	lgG1	Novertis	Phase I
	INCAGN01876	lgG1	Incyte	Phase I/II
	BMS-986156	lgG1	Bristol-Myers Squibb	Phase I/II
	AMG-228	lgG1	Amgen	Phase I
	MEDI 1873	GITR-ligand/lgG1 agonist fusion protein	MedImmune	Phase I

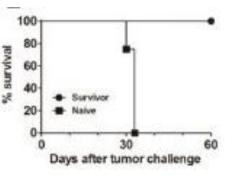
AMG 228: Phase I

- N=30 patients with refractory CRC, head and neck squamous cell carcinoma, urothelial carcinoma, NSCLC and melanoma
- Most common TRAEs: fatigue (13%), infusion-related reaction (7%), pyrexia (7%), decreased appetite (7%), and hypophosphatemia (7%)
- 3 fatal AEs: pneumonitis (related), acute hypoxemic respiratory failure (not related), and progressive disease (melanoma)
- No DLT; MTD not reached
- 27 evaluable for response by irRC; CR/PR=0; SD=7; PD=17
- Despite GITR coverage in peripheral blood and tumor biopsies, there was no evidence of T-cell activation or anti-tumor activity, so not expanded

MEDI1873: Phase I


- N=40, dose escalation (n=28) and pharmacodynamic (n=12) cohorts
- Any-grade drug-related AEs in 82.5% of patients
 - Headache (25%) and infusion related reaction (20%)
 - Grade 3 TRAEs occurred in 22.5% of pts; Amylase increase was the only one reported in > 1 pt (n = 2)
 - No drug-related Grade 4 or 5 AEs
- Three DLTs occurred:
 - Grade 3 worsening tumor pain at 250 mg
 - Grade 3 nausea and vomiting at 500 mg
 - Grade 3 non-STEMI at 750 mg
- MTD was not reached (maximum administered dose was 750 mg)
- Best overall response was stable disease (SD) in 42.5% of patients
 - o 17.5% had SD ≥ 24 weeks
 - Three pts (pancreatic neuroendocrine tumor, lung cancer and mesothelioma) stayed for ≥52 weeks without PD
- Translational data:
 - MEDI1873 engaged GITR on CD4+ T cells
 - o Increased CD4⁺Ki67⁺ T cells at doses ≥25 mg
 - o Intratumorally, induced a ≥ 25% decrease in GITR+/FOXP3+ T cells in 5 of 5 pts with evaluable cells.





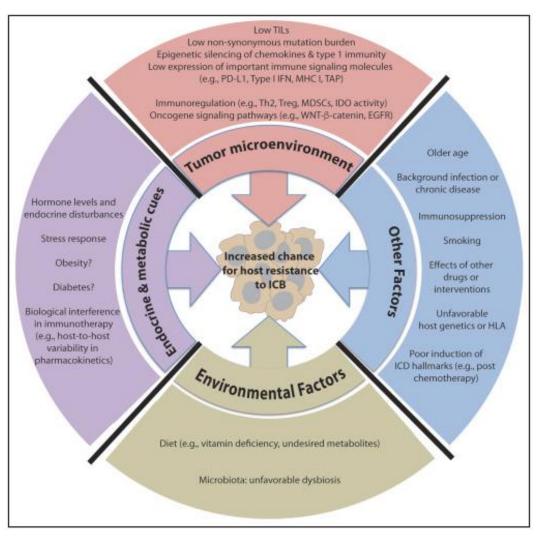
GITR Agonist + PD-1 inhibitor

- Poorly immunogenic ID8 murine ovarian cancer model
 - Inhibited peritoneal ID8 tumor growth
 - Memory immune response conferred by CD4+ cells and CD8+ T cells.
 - Increased the frequencies of interferon-γ-producing effector T cells
 - Decreased immunosuppressive regulatory T cells and myeloid-derived suppressor cells, shifting an immunosuppressive tumor milieu to an immunostimulatory state
 - Antigen-specific immune response as evidenced by antigen-specific IFN-γ production and cytolytic activity of spleen cells from treated mice.

Rechallenged with ID8 cells and their overall survival was recorded. Naïve mice were challenged with ID8 cells as control

MK1248 +/- Pembrolizumab

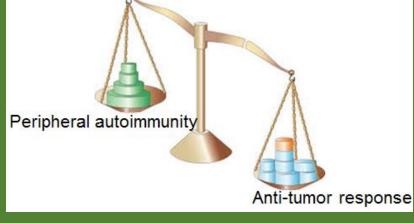
- N=37 patients; Monotherapy (n=20), Combination (n=17)
- Tumor types: CRC (8 pts), melanoma (5 pts), RCC (4 pts) and 20 pts with 16 other solid tumors.
- MK-1248 at the dose up to 170 mg as monotherapy and 60 mg in combination with pembrolizumab was well tolerated
- 17 pts (48.6%) had ≥1 TRAEs; 3 (8.1%) had grade 3-5 TRAEs
- No DLT or treatment-related deaths were observed


Challenges Associated with Immunotherapy

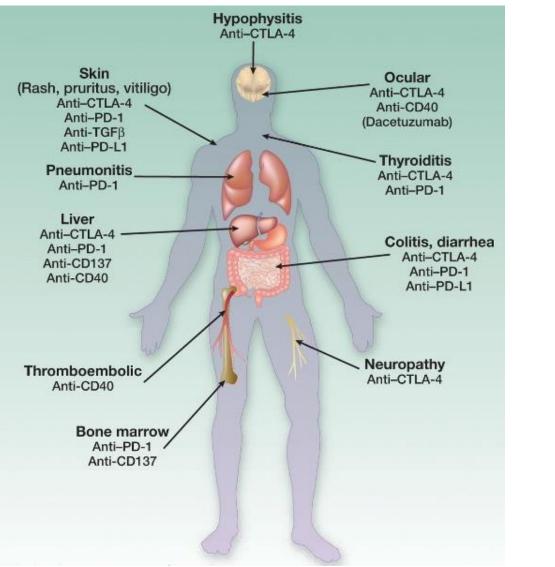
Resistance to Treatment

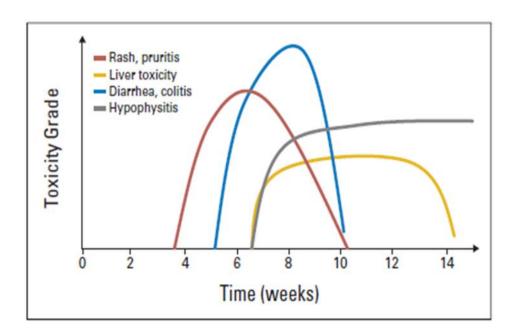
Resistance Mechanisms

Despite initial response, eventual relapse or progression is inevitable


Mechanisms to Overcome Resistance

- Combination therapies are potentially synergistic and are far more effective than monotherapies
- As tumors use multiple pathways to evade immune elimination, a multi-pronged attack of complimentary pathways may be beneficial
- Tumors may prevent initiation of a local endogenous immune response, in whom preconditioning regimens such as chemotherapy or radiotherapy may be beneficial




Immune-Related Adverse Events (irAEs)

Most Frequent irAEs

I Melero et al, Clinical Development of Immunostimulatory Monoclonal Antibodies and Opportunities for Combination, *CCR Focus*, 2013 Weber JS et al: Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 2012

Summary

- OX40, 4-1BB and GITR share similarities in their expression patterns and downstream signaling pathways, they also exhibit unique characteristics, suggesting they are not redundant molecules.
- "Combination" is the key word to overcome resistance to therapy, with emphasis on study design
- Immune system is dynamic; the success of any of these agents, especially as combination partners, will depend heavily on the interrogation of the TME and pharmacodynamics of these agents
- Immune signatures predictive of response is much needed
- Prompt identification and treatment of irAE critical

