

Immunotherapy for the Treatment of Lung Cancer

Sonam Puri MD

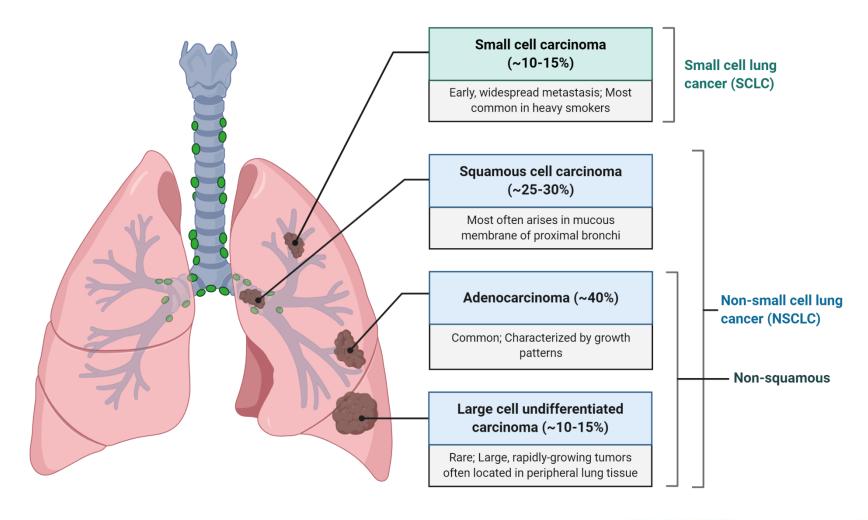
Assistant Professor of Medicine

Division of Medical Oncology

The Huntsman Cancer Institute at the University of Utah

Disclosures

- Consulting Fees: AstraZeneca, G1 Therapeutics
- I will be discussing non-FDA approved indications during my presentation.



Lung cancer

Treatment options for NSCLC

Local disease

- Surgery
- Stereotactic body radiation therapy
- Chemotherapy

Stage III unresectable disease

- Concurrent chemo-radiation
- Consolidation immunotherapy

Metastatic disease

- Chemotherapy
- Targeted therapies
- Immunotherapy
- Radiation therapy

Metastatic NSCLC treatment options overview

Drug type	Molecular format	Administration route	Example for NSCLC	Typical dosing regimen
Chemotherapy	Small molecule	Intravenous, occasionally oral	Nab-paclitaxel	100 mg/m ² on days 1, 8, 15 of 21-day cycle
Targeted therapy	Small molecule	Oral	Osimertinib (kinase inhibitor)	80 mg tablet once a day
Targeted antibody therapy	Antibody	Intravenous	Bevacizumab (VEGF-A inhibitor)	15 mg/kg Q3W
Immune checkpoint inhibitor	Antibody	Intravenous	Pembrolizumab (PD-1 inhibitor)	200 mg Q3W or 400 mg Q6W

Immune checkpoint inhibitors in lung cancer

Nivolumab

___ PD-1

Pembrolizumab

Atezolizumab

PD-L1

Durvalumab

PD-L1

Ipilimumab

__ CTLA-4

2016

2015

NSCLC

Nivolumab:

Nivolumab:

2nd line Non-Sq

Pembrolizumab:

2nd line NSCLC

 $(PD-L1 \ge 50\%)$

2nd line Sq NSCLC

Pembrolizumab: 1st line NSCLC $(PD-L1 \ge 50\%)$

Pembrolizumab: 2nd line NSCLC (PD-L1 ≥ 1%)

Atezolizumab: 2nd line NSCLC

2017

Pembrolizumab + Pemetrexed + Carboplatin: 1st line NSCLC

2018

Durvalumab: Stage III NSCLC (unresectable) s/p chemoradiation w/o 1st line PD-L1+ Stage progression

Nivolumab: 3rd line SCLC

Pembrolizumab + Carboplatin + (nab) Paclitaxel: 1st line Sq NSCLC

Atezolizumab + Bevacizumab + Carboplatin + Paclitaxel: 1st line Non-Sq NSCLC

2019

Atezolizumab + Etoposide/Platinum:

Pembrolizumab: III NSCLC

mutations Atezolizumab: 1st line

≥1% and no EGFR/ALK

1st line metastatic

NSCLC with PD-L1

2020

Durvalumab +

1st line ES-SCLC

Nivolumab +

ipilimumab:

Etoposide/Platinum:

metastatic NSCLC with PD-L1 ≥50% and no EGFR/ALK mutations

Nivolumab + ipilimumab + chemotherapy: 1st line NSCLC with no EGFR/ALK mutations

1st line ES-SCLC

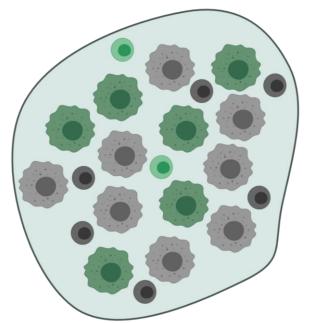
Pembrolizumab: 3rd-line ES-SCLC

Outline

- Non-small cell lung cancer
 - Front-line PD-L1-selected and unselected
 - Later lines of treatment
 - Stage III
- Small cell lung cancer
- Future directions for lung cancer immunotherapy

Immunotherapy for first-line treatment of metastatic NSCLC

Drug	Indication	Dose
Pembrolizumab	1 st line metastatic NSCLC with PD-L1 TPS ≥ 1% and no EGFR/ALK mutations	200 mg Q3W or 400 mg Q6W
Atezolizumab	1 st line metastatic NSCLC with PD-L1 ≥ 50% of tumor cells or ≥ 10% of immune cells with no EGFR/ALK mutations	840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W
Nivolumab + ipilimumab	1 st line metastatic NSCLC with PD-L1 ≥1% and no EGFR/ALK mutations	Nivolumab 3 mg/kg Q2W + ipilimumab 1 mg/kg Q6W
Nivolumab + ipilimumab + platinum- doublet chemotherapy	1st line metastatic NSCLC with no EGFR/ALK mutations	Nivolumab 360 mg Q3W + ipilimumab 1 mg/kg Q6W + 2 cycles of chemotherapy
Pembrolizumab + pemetrexed + platinum	1 st line metastatic non-squamous NSCLC with no EGFR/ALK mutations	200 mg Q3W or 400 mg Q6W
Pembrolizumab + carboplatin + paclitaxel/nab-paclitaxel	1 st line metastatic squamous NSCLC	200 mg Q3W or 400 mg Q6W
Atezolizumab + bevacizumab + paclitaxel + carboplatin	1 st line metastatic non-squamous NSCLC with no EGFR/ALK mutations	For 4-6 cycles: atezolizumab 1200 mg Q3W + chemotherapy + bevacizumab; Maintenance: 840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W
Atezolizumab + nab-paclitaxel + carboplatin	1st line metastatic non-squamous NSCLC with no EGFR/ALK mutations	For 4-6 cycles: atezolizumab 1200 mg Q3W + chemotherapy Maintenance: 840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W



Brief aside: PD-L1 TPS vs CPS

$$TPS = \frac{\text{\# of PD-L1 positive tumor cells}}{number of viable tumor cells} \times 100$$

$$CPS = \frac{\# \ of \ PD-L1 \ positive \ cells \ (tumor \ cells, lymphocytes, macrophages)}{total \ number \ of \ tumor \ and \ immune \ cells} \times 100$$

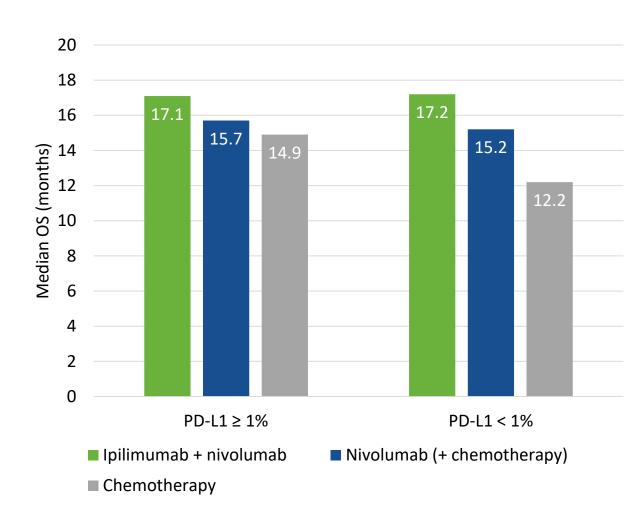
- PD-L1-positive immune cell
- PD-L1-negative immune cell
- PD-L1-positive tumor cell
- PD-L1-negative tumor cell

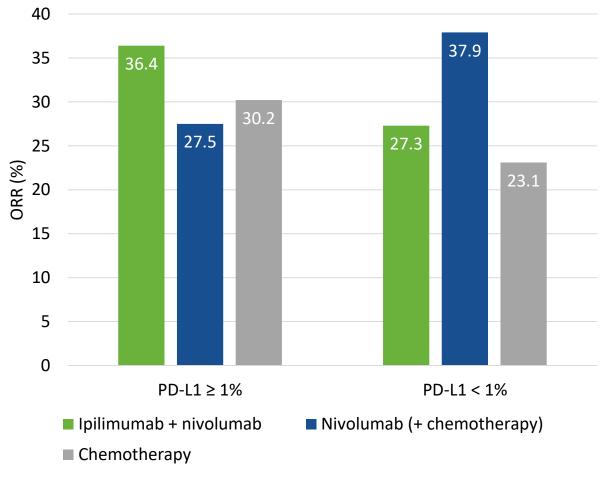
$$TPS = \frac{6 \text{ positive tumor cells}}{14 \text{ total tumor cells}} \times 100 = 43$$

$$CPS = \frac{6 \text{ positive tumor cells} + 2 \text{ positive immune cells}}{22 \text{ total cells}} \times 100 = 36$$

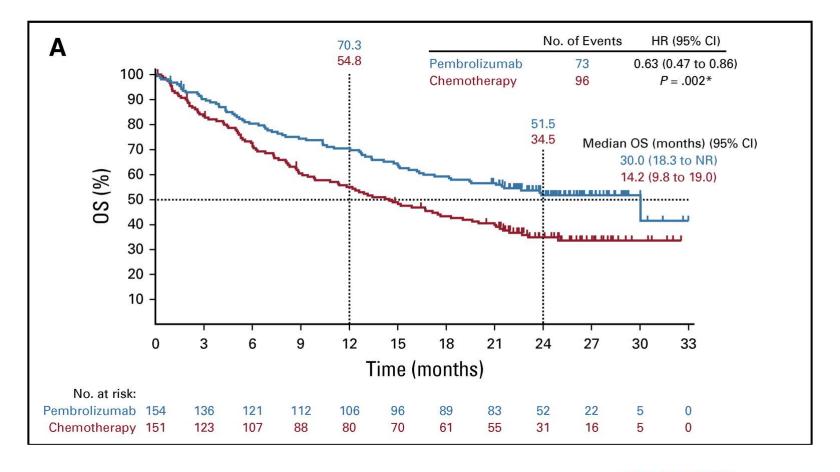
Treatment Naïve Regimens: Competing Strategies in NSCLC by biomarker status

PD-L1-selected	PD-L1-unselected
Nivolumab + ipilimumab CheckMate 227	Nivolumab + ipilimumab + platinum-doublet CheckMate 9LA
Pembrolizumab KEYNOTE-024, -042	Pembrolizumab + chemotherapy KEYNOTE-189, -407
Atezolizumab <i>IMpower110</i>	Atezolizumab + bevacizumab + chemotherapy IMpower150
	Atezolizumab + chemotherapy Impower130

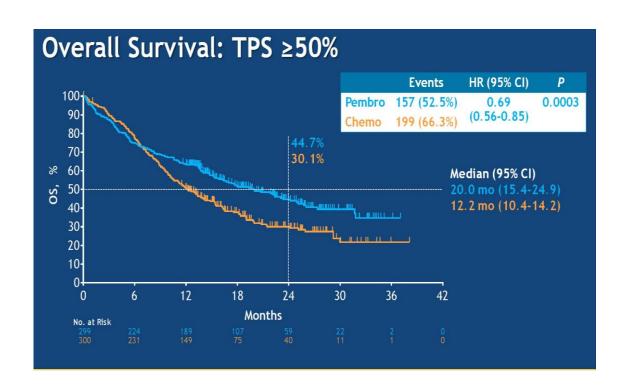


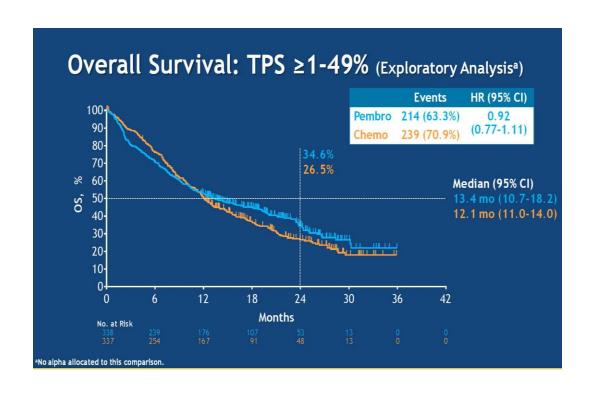


CheckMate 227: Ipilimumab + nivolumab vs chemotherapy for 1L NSCLC



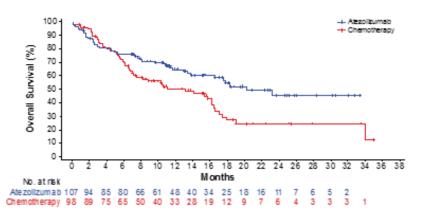
KEYNOTE-024: Pembrolizumab vs. Chemotherapy for PD-L1 ≥ 50% NSCLC

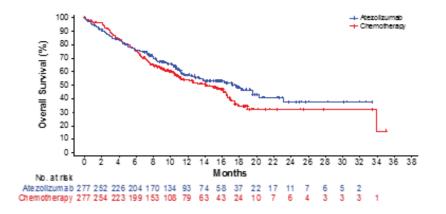




KEYNOTE-042: Pembrolizumab vs. Chemotherapy for PD-L1 ≥ 1% NSCLC

Survival benefit seemed to be driven by the TPS ≥ 50% subset with little benefit witnessed in the subset TPS = 1 - 49%




IMpower110: Atezolizumab vs chemotherapy in 1L NSCLC

SP142 (TC3 or IC3-WT)^a

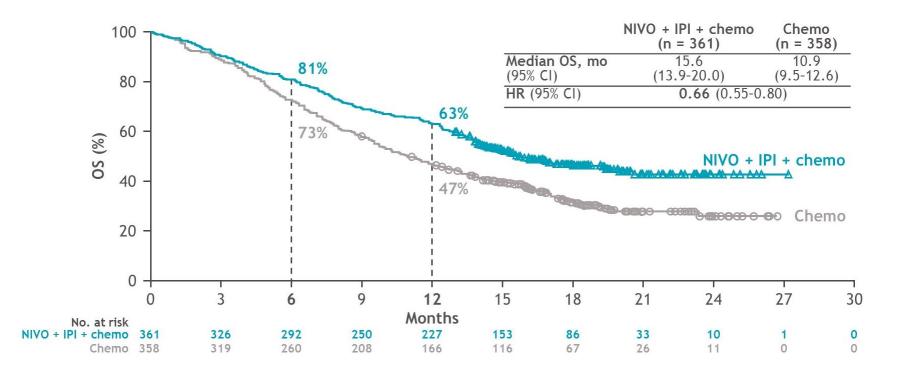
	Atezo (n = 107)	Chemo (n = 98)
mOS, mo	20.2	13.1
HRb	0.59	
(95% CI)	(0.40, 0.89)	

SP142 (TC1/2/3 or IC1/2/3-WT)^a

	Atezo (n = 277)	Chemo (n = 277)	
mOS, mo	17.5	14.1	
HR⁵	0.83		
(95% CI)	(0.65, 1.07)		

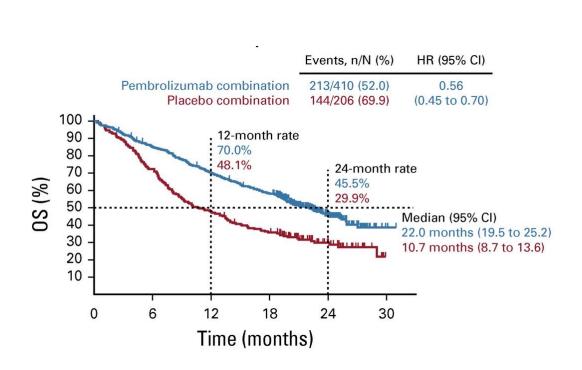
TC3	TC ≥ 50%
IC3	IC ≥ 10%
TC2/3	TC <u>></u> 5%
IC2/3	IC <u>></u> 5%
TC1/2/3	TC ≥1%
IC1/2/3	IC ≥1%

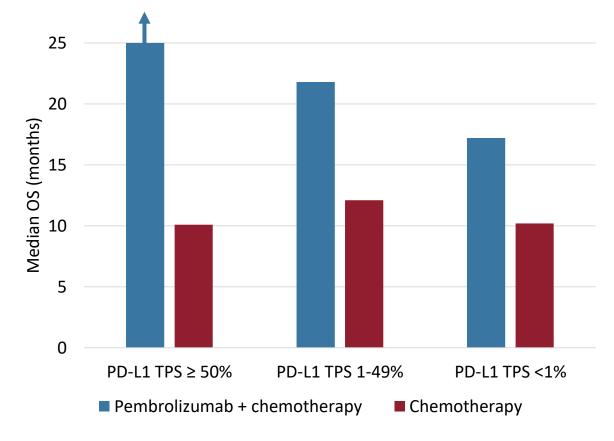
Treatments <u>not</u> reliant on PD-L1 expression



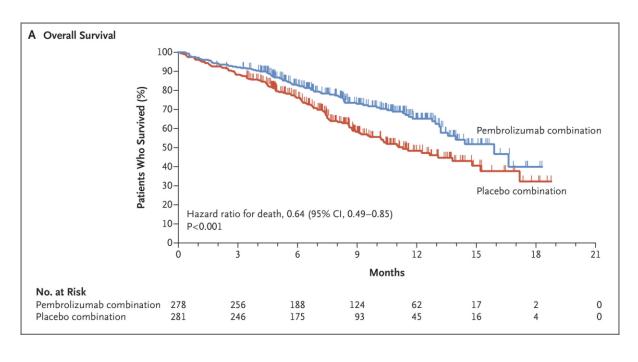
CheckMate 9LA: Nivolumab/Ipilimumab + limited chemo

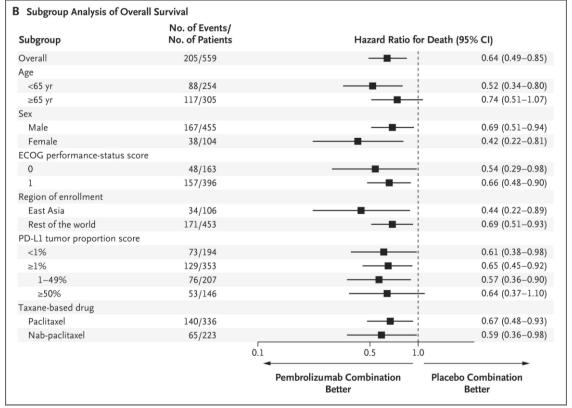
	NIVO + IPI + chemo (n = 361)	Chemo (n = 358)
ORR, n (%)	138 (38)	89 (25)
Odds ratio (95% CI)	1.9 (1.4-2.6)	
BOR, n (%) CR PR SD	8 (2) 130 (36) 164 (45)	4 (1) 85 (24) 185 (52)
PD	32 (9)	45 (13)
DCR, n (%)	302 (84)	274 (76)



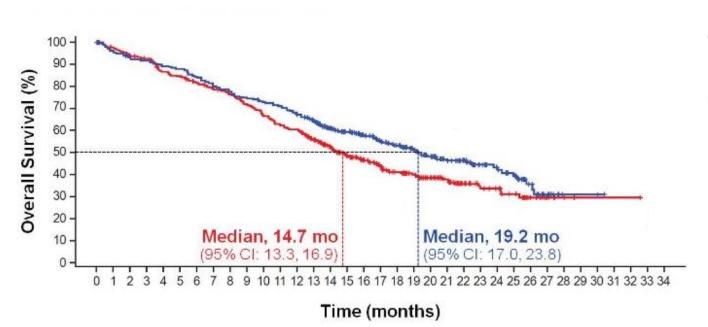


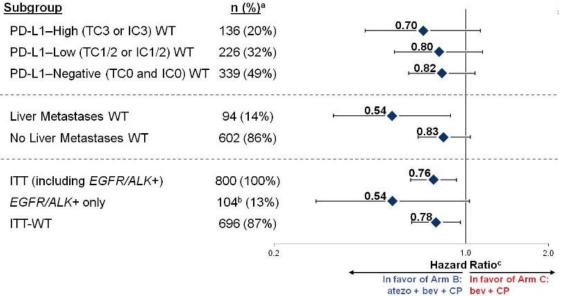
KEYNOTE-189: Pembrolizumab/chemotherapy vs Chemotherapy Alone for Advanced Non-Squamous NSCLC





KEYNOTE-407: Pembrolizumab/Chemotherapy vs Chemotherapy Alone for Advanced Squamous-Cell NSCLC

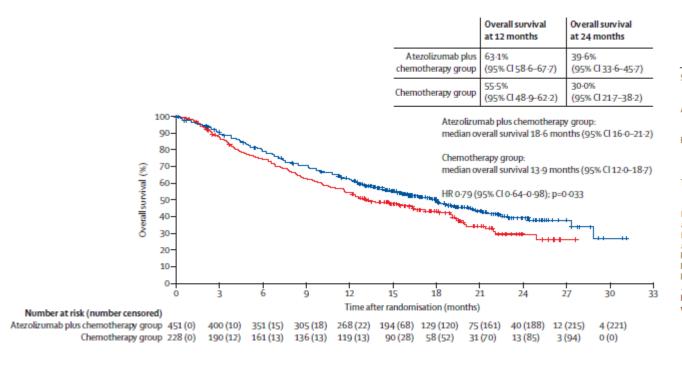


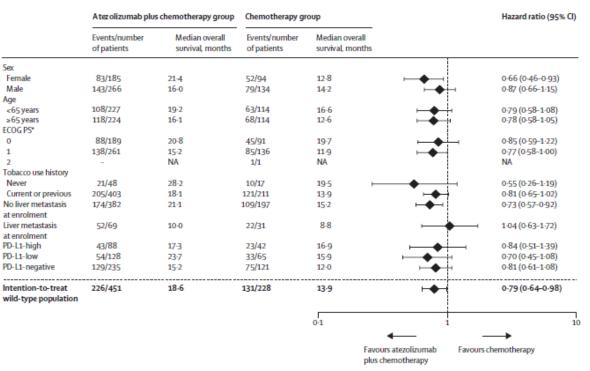


IMpower150: Atezolizumab/Carboplatin/ Paclitaxel/Bevacizumab vs Carboplatin/Paclitaxel/ Bevacizumab in Advanced Non-Squamous NSCLC

Landmark OS, %	Arm B: atezo + bev + CP	Arm C: bev + CP
12-month	67%	61%
18-month	53%	41%
24-month	43%	34%

HR^a, 0.78 (95% CI: 0.64, 0.96) P = 0.0164 Median follow-up: ~20 mo





IMpower130: Atezolizumab + chemo vs chemo alone for non-squamous NSCLC

Immunotherapy for relapsed/refractory NSCLC

Drug	Indication	Dose
Nivolumab	Metastatic squamous or non- squamous NSCLC with progression after chemotherapy (2 nd line)	240 mg Q2W or 480 mg Q4W
Pembrolizumab	Metastatic NSCLC with progression after chemotherapy and PD-L1 ≥ 1%	200 mg Q3W or 400 mg Q6W
Atezolizumab	Metastatic NSCLC with progression after Pt-chemotherapy and targeted therapy if EGFR/ALK mutation-positive	840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W

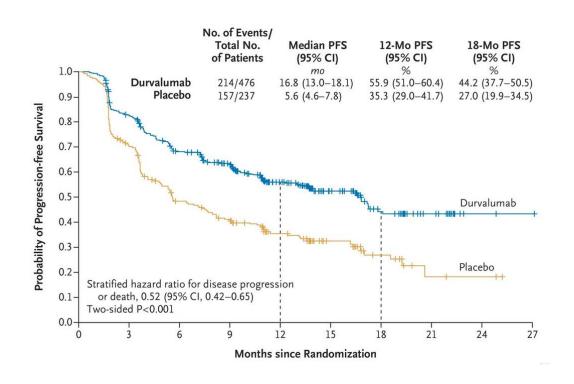
Second-line use of ICIs in NSCLC

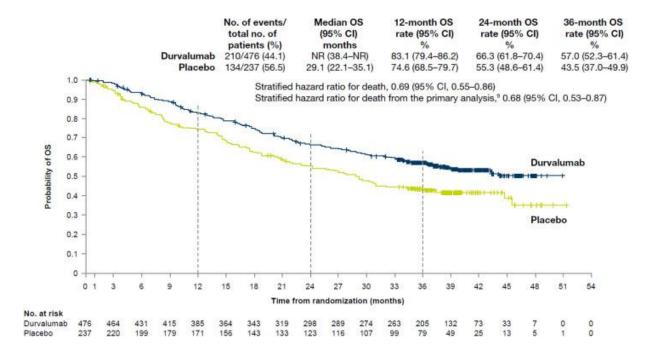
Study	Treatment arms	ORR	Median PFS (months)	Median OS (months)
CheckMate 017 and	Nivolumab	19%	2.56	11.1
CheckMate 057	Docetaxel	11%	3.52	8.1
KEYNOTE-010	Pembrolizumab	18%	4.0	12.7
(PD-L1 TPS ≥ 1%)	Docetaxel	9%	4.0	8.5
	Atezolizumab	14%	2.8	13.8
OAK	Docetaxel	13%	4.0	9.6

Vokes, Ann Oncol 2018. Herbst, Lancet 2016. Fehrenbacker, J Thorac Oncol 2018.

Immunotherapy for stage III NSCLC

Drug	Indication	Dose
Durvalumab	Stage III NSCLC, ineligible for surgery and without progression after chemoradiation	10 mg/kg Q2W
Pembrolizumab	1 st line stage III NSCLC (not candidate for resection or definitive chemoradiation) with PD-L1 TPS ≥ 1%	200 mg Q3W or 400 mg Q6W

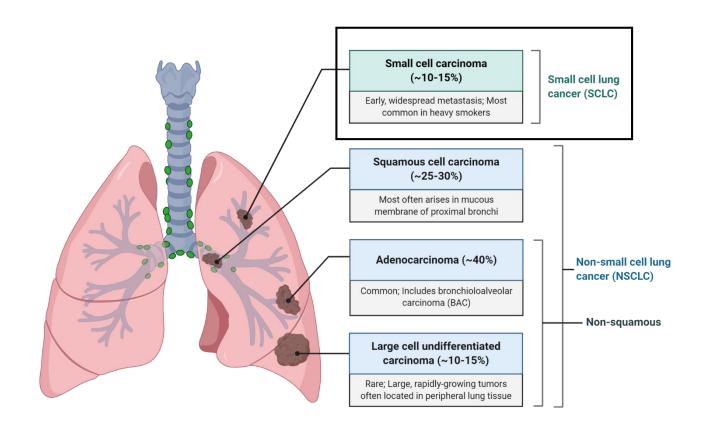




PACIFIC: Durvalumab consolidation therapy for stage III NSCLC

Outline

- Non-small cell lung cancer
 - Front-line PD-L1-selected and unselected
 - Later lines of treatment
 - Stage III
- Small cell lung cancer
- Future directions for lung cancer immunotherapy

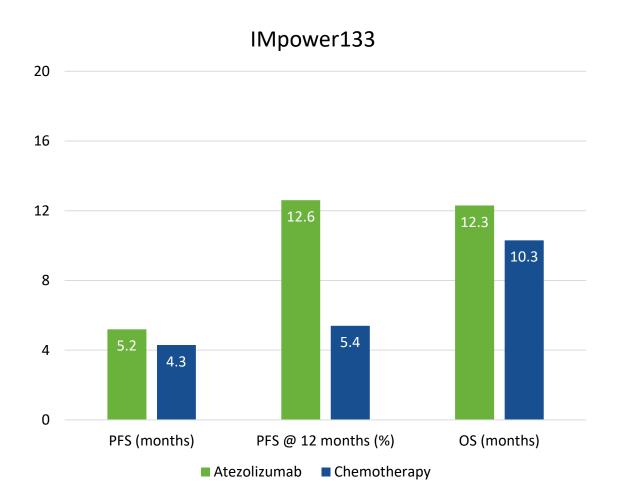


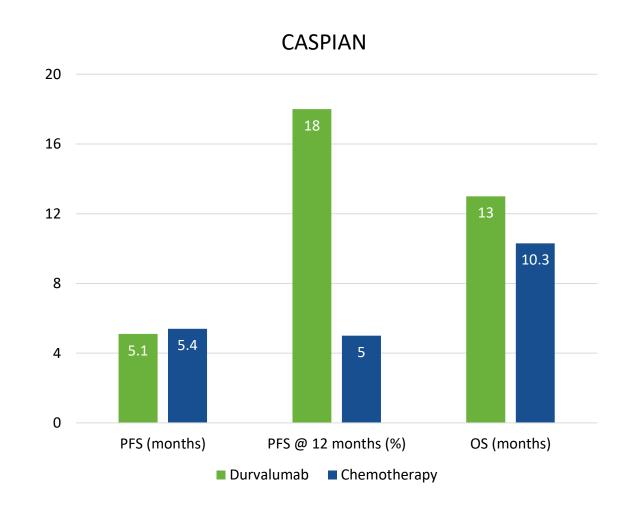
Small cell lung cancer

- Median survival 1-2 years after diagnosis
- Until recently, only one FDA-approved 2nd line option: topotecan – DOR: 3.3 months
- Recent approvals of immunotherapies mark the first progress in decades

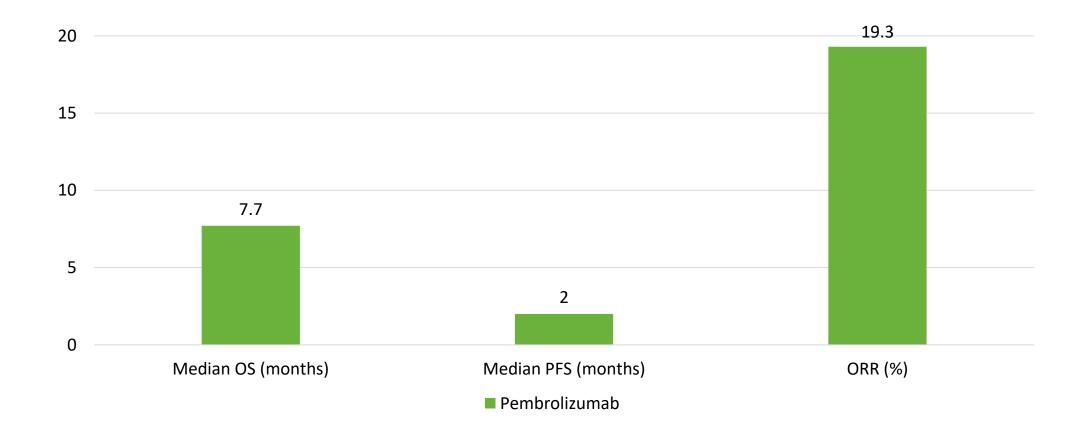
Approved checkpoint inhibitors in SCLC

Drug	Indication	Dose
Pembrolizumab	Metastatic small cell lung cancer with progression on Pt-chemotherapy and one other therapy (3 rd line)	200 mg Q3W or 400 mg Q6W
Atezolizumab + carboplatin + etoposide	1 st line extensive stage SCLC	For 4 cycles: atezolizumab 1200 mg + carboplatin + etoposide Q3W Maintenance: 840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W
Durvalumab + etoposide + carboplatin/cisplatin	1 st line extensive stage SCLC	For 4 cycles: 1500 mg durvalumab Q3W + chemotherapy; Maintenance: 1500 mg durvalumab Q4W





Front-line ICIs in SCLC

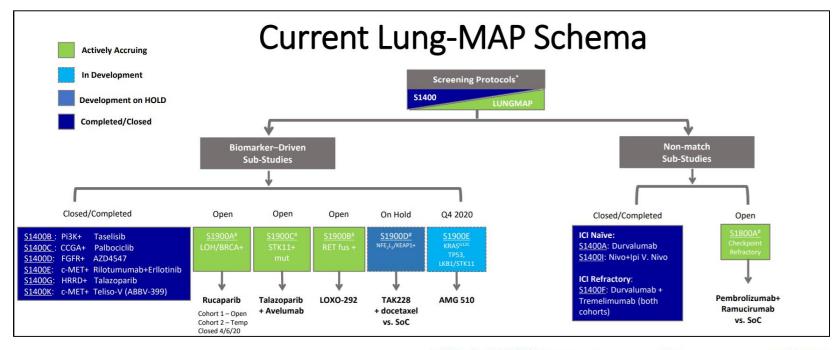


Later-line ICIs in SCLC

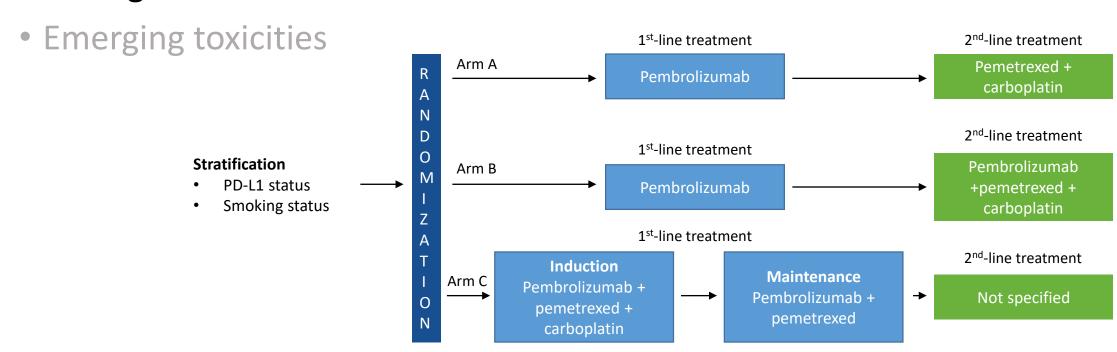
Outline

- Non-small cell lung cancer
 - Front-line PD-L1-selected and unselected
 - Later lines of treatment
 - Stage III
- Small cell lung cancer
- Future directions for lung cancer immunotherapy

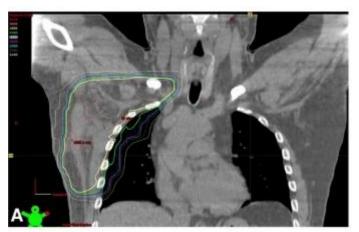
- Biomarker-driven treatment
- Timing of different treatments and combinations
- Emerging toxicities

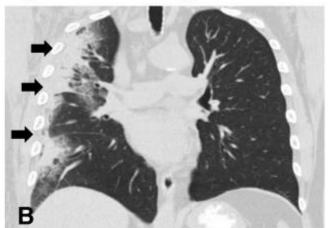


- Biomarker-driven treatment
- Timing of different treatments and combinations
- Emerging toxicities



- Biomarker-driven treatment
- Timing of different treatments and combinations




- Biomarker-driven treatment
- Timing of different treatments and combinations
- Emerging toxicities radiation and ICIs

Axillary radiation treatment field from September-October 2017 demonstrating overlap with peripheral lung.

Chest CT performed 5 months after completing right axillary radiotherapy (March 2018) and 1.5 months after initiating nivolumab therapy

Immunotherapy for mesothelioma

Drug	Indication	Dose
Nivolumab + ipilimumab	Frontline unresectable malignant pleural mesothelioma	Nivolumab 360 mg Q3W + ipilimumab 1 mg/kg Q6W

- Approval based on CheckMate 743
 - Nivolumab + ipilimumab vs platinum-based chemotherapy
 - Median OS: 18.1 months vs 14.1 months
 - 2-year OS: 41% vs 27%
 - Median PFS: 6.8 months vs 7.2 months
- First FDA approval for mesothelioma since 2004

Conclusions

- NSCLC has been a proving ground for checkpoint inhibitors
- Many front-line options available for NSCLC
- Clear-cut biomarkers still lacking
- SCLC and mesothelioma are beginning to benefit from immune checkpoint inhibitor treatments

Resources

Brahmer et al. Journal for ImmunoTherapy of Cancer (2018) 6:75 https://doi.org/10.1186/s40425-018-0382-2

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of non-small cell lung cancer (NSCLC)

Julie R. Brahmer¹, Ramaswamy Govindan², Robert A. Anders³, Scott J. Antonia⁴, Sarah Sagorsky⁵, Marianne J. Davies⁶, Steven M. Dubinett⁷, Andrea Ferris⁸, Leena Gandhi⁹, Edward B. Garon¹⁰, Matthew D. Hellmann¹¹, Fred R. Hirsch¹², Shakuntala Malik¹³, Joel W. Neal¹⁴, Vassiliki A. Papadimitrakopoulou¹⁵, David L. Rimm¹⁶, Lawrence H. Schwartz¹⁷, Boris Sepesi¹⁸, Beow Yong Yeap¹⁹, Naiyer A. Rizvi²⁰ and Roy S. Herbst^{21*}

Case Study

Case Presentation

Mr Y is 61 y.o male never smoker who was diagnosed with Stage IV adenocarcinoma from lung primary with an EGFR exon 19 deletion on tumor next generation sequencing and a tumor PD-L1 TPS (22C3) of 80%. He was started on 1st line therapy with EGFR Tyrosine Kinase inhibitor Osimertinib , with a good response to treatment that lasted for 2 years before he developed widespread progression of disease. A plasma- based next generation panel was checked and he currently does not have any potentially targetable actionable mutations. He presents in clinic today to discuss options for next line treatment. Which of the following would <u>NOT</u> be preferred as an option for second line treatment for him?

- 1. Carboplatin + pemetrexed with or without bevacizumab
- 2. Carboplatin + paclitaxel + bevacizumab plus atezolizumab
- 3. Single agent nivolumab, pembrolizumab or atezolizumab

Case Study 1

Mr Y is 61 y.o male never smoker who was diagnosed with Stage IV adenocarcinoma from lung primary with an EGFR exon 19 deletion on tumor next generation sequencing and a tumor PD-L1 TPS (22C3) of 80%. He was started on 1st line therapy with EGFR Tyrosine Kinase inhibitor Osimertinib , with a good response to treatment that lasted for 2 years before he developed widespread progression of disease. A plasma- based next generation panel was checked and he currently does not have any potentially targetable actionable mutations. He presents in clinic today to discuss options for next line treatment. Which of the following regimens would NOT be preferred as an option for second line treatment for him?

- 1. Carboplatin + pemetrexed with or without bevacizumab
- 2. Carboplatin + paclitaxel + bevacizumab plus atezolizumab
- 3. Single agent nivolumab, pembrolizumab or atezolizumab

Immunotherapy in driver mutated NSCLC

IMMUNOTHERAPY IN TREATMENT OF NSCLC WITH MUTATIONS IN EGFR OR ALK: When and how?

- Patients harboring EFGR sensitizing and ALK mutations failed to demonstrate benefit from PD-1/PD-L1 therapy in the phase III trials that evaluated single agent immunotherapy vs Docetaxel in relapse/ refractory advanced NSCLC. ¹⁻⁵
- PD-L1 expression has been described as mechanism of immune invasion for EGFR mutant NSCLC in preclinical studies ad may not be a marker of adaptive immune response.
- Most of the first line chemo-immunotherapy trials excluded patients with EGFR sensitizing or ALK mutations
 except IMpower150 that included a subset of chemotherapy and immunotherapy naïve patients with EGFR or
 ALK mutations
 - In subset analysis chemotherapy and immunotherapy naïve patients with EGFR sensitizing mutations showed an improvement in OS (HR:0.31, 95% CI 0.11,0.83) and PFS (HR: 0.41 95% CI 0.23,0.75) when treated with combination of carboplatin, (nab)paclitaxel, atezolizumab and bevacizumab compared to carboplatin, (nab)paclitaxel and bevacizumab. ⁷
- There are several ongoing studies evaluating the role of immunotherapy combinations in this unique subset of patients with NSCLC (NCT03786692, NCT03515837)

References

- Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med 2015;373:1627-39. 10.1056/NEJMoa1507643.
- 2. Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. *Lancet*2016;387:1540-50. 10.1016/S0140-6736(15)01281-7
- 3. Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 2017;389:255-65. 10.1016/S0140-6736(16)32517-X
- 4. Gainor JF, Shaw AT, Sequist LV, et al. EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective Analysis. *Clin Cancer Res* 2016;22:4585-93. 10.1158/1078-0432.CCR-15-3101
- 5. Lee CK, Man J, Lord S, et al. Checkpoint Inhibitors in Metastatic EGFR-Mutated Non-Small Cell Lung Cancer-A Meta-Analysis. *J Thorac Oncol* 2017;12:403-7. 10.1016/j.jtho.2016.10.007
- 6. Akbay EA, Koyama S, Carretero J, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. *Cancer Discov* 2013;3:1355-63. 10.1158/2159-8290.CD-13-0310
- 7. M. Reck, R. Jotte, T.S.K. Mok, D.W.-T. Lim, F. Cappuzzo, F. Orlandi, et al., 1040 IMpower150: an exploratory analysis of efficacy outcomes in patients with EGFR mutations, Ann. Oncol. 30 (2019) mdz063.02.

