Workstream 1: The Use of Clinical Endpoints in Cancer Vaccine Trials to Support Efficacy

Summary of Positions

CVCTWG Workshop Nov.10, 2005 Alexandria, VA

John Gutheil Ulrich Keilholz <u>Hans Loibner</u> <u>Giorgio Parmiani</u> Pedro Romero Bruce Scharschmidt Johannes Vieweg Favrille Charite Berlin Apeiron Biologics, Vienna Istituto Tumori, Milano Ludwig Institute Chiron Duke

Thanks to Peter Bross (CBER, FDA) for helpful advice and discussion

Background

- Clinical trials for profiling of cancer vaccines should reflect the unique characteristics of the vaccine candidate (esp. in case of autologous vaccines) and the studied patient population
- Traditional measures of efficacy without appropriate adaption may lead to a premature conclusion of ineffectiveness

• Workstream I of the CVCTWG has elaborated on positions regarding endpoints for efficacy trials of cancer vaccines

Time-to-event endpoints: Overall Survival (OS)

- "Gold standard" of endpoints
- Applicable to advanced/metastatic, adjuvant and preventive setting
- Fully accepted by regulatory authorities
- But: Longest possible study duration
- Two possibly conflicting requirements:
 - Need for optimal patient population: Late stage patients with bulky disease may be immunosuppressed => adjuvant setting ?)
 - Need for reasonable study duration
- Subject to confounding by subsequent therapies

Time-to-event endpoints: Disease-Free Survival (DFS) Progression Free Survival (PFS)

- Delay in the onset of recurrence or progression may lead to improved OS => Surrogate for clinical benefit
- DFS for the adjuvant setting; PFS for the advanced and metastatic setting
- Due to the characteristics of cancer vaccines a delayed onset of activity possible (time required to mount a potentially effective immune response)
- Using traditional definitions may lead to premature study discontinuation
- Modification of definition of progression suggested (to be discussed):
 2 observations, if ultimate response seen after initial progression (to be defined quantitatively), DFS or TTP should be based on date of start of therapy

Response Rate (RR)

- Commonly used efficacy measure for cytotoxic therapies
- Can be used in single-arm setting
- May not reflect properly clinical efficacy characteristics of cancer vaccines, reasons:
 - Early progression before onset of effective immune response
 - No tumor shrinking but progression retarded
- RR may be more useful in hematologic malignancies
- Modification of definition of response rate suggested (to be discussed):

If ultimate regression is seen after initial progression, evaluation should be based on largest tumor volume seen after start of treatment

Design issues relating to endpoints

- Cancer vaccines usually have a very low toxicity profile
- Risk / benefit ratio very different to that of cytotoxic drugs
- => Continuation of vaccination therapy may be justified at the time of first progression
 - If no other therapy immediately required
 - If no effective therapy available
- Continuation of vaccination may be considered also in addition to other therapy (see WS4)

Patient Reported Outcomes (PRO) Quality of Life (QOL)

- Improvement in PRO's can be considered clinical benefit (not a surrogate)
- Relevant, since they reflect the patient's perspective
- Improved QOL accepted as clinical benefit by regulatory authorities but
- Very difficult to measure, since they are very subjective
- Need to agree on and pre-specify what is a meaningful clinical benefit
- Double-blind study designs needed to avoid bias

Biomarkers

- Objectively measured parameter to indicate normal or abnormal biological processes
- Properly validated biomarker could serve as "surrogate endpoint" and potentially substitute for a clinical endpoint
- Up to date no sufficiently validated biomarker exist for determination of efficacy of drugs in oncology (except paraprotein in myeloma)
- Use of biomarkers in proof-of-principle cancer vaccine trials to establish biologic activity and to support the conduct of larger efficacy trials
- Use of biomarkers in controlled Phase III trials may eventually lead to validation

Minimal Residual Disease (MRD)

- Biomarker with particular relevance for the biology of cancer
- MRD detected by different methodologies:
 - Immunocytochemistry
 - Flow cytometry
 - PCR-based methods
- MRD has shown prognostic value in certain diseases (e.g. breast cancer, CML)
- Value of eliminating MRD by immunotherapy in investigation
- Molecular responses not yet fully validated as surrogate for clinical benefit

Immune Response Assays

- Adequate immune response is a measure of biologic activity
- Immune responses should be assessed before start of vaccinations and then at several time points with at least two established reproducible assays
- Validation as surrogate for clinical efficacy is mostly missing
- A variety of immunologic assays are available
 - Antibody assays
 - Other serological assays (eg cytokine patterns)
 - Cell-based assays (with focus on assessment of T-cells)
 - o Tetramer assays
 - o Elispot
 - o Intracellular cytokines
 - o Cytotoxicity assays
 - o Other assays (eg NK-cells)