

Immunotherapy for the Treatment of Lung Cancer

Matthew Gubens, MD, MS
University of California, San Francisco

Disclosures

- Consulting
 - AbbVie, ARIAD, AstraZeneca, Bristol-Myers Squibb, Genentech/Roche, Novartis, Pfizer
- Research Funding (to institution)
 - Celgene, Genentech/Roche, Merck, Novartis, OncoMed
- I will discussing non-FDA approved treatment/ indications during my presentation today (research findings)

Case

- 69yo female, current smoker with 60 pack year smoking history, presents with progressive cough
- CT reveals, and PET/CT confirms, 4cm LUL lesion, multifocal mediastinal LAD, and 2cm R adrenal lesion, all hypermetabolic. MRI brain negative
- Bronchoscopy with biopsy of subcarinal node reveals squamous cell carcinoma
- Primary oncologist recommends carboplatin and gemcitabine
- Saw a commercial "with a big wall" and presents for a second opinion and wants to know if she should change therapy

Immunotherapy in Lung Cancer

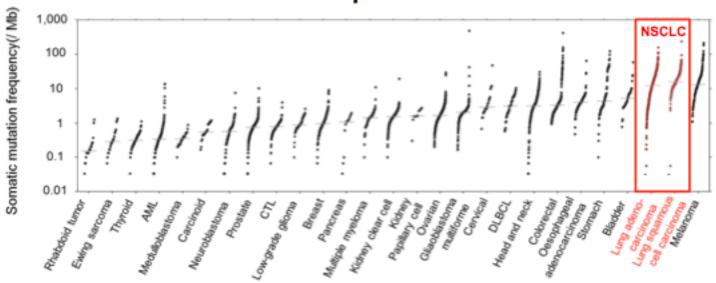
- PD-1/PD-L1 inhibition in the 2nd line
- PD-1 inhibition in the 1st line
- Where we're going: combinations

The New york Times

BUSINESS DAY

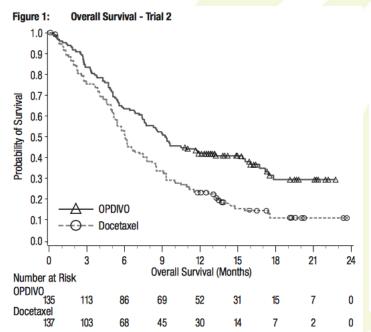
F.D.A. Allows First Use of a Novel Cancer Drug

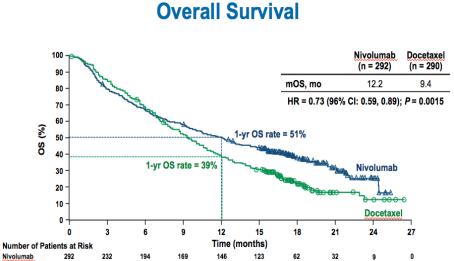
By ANDREW POLLACK SEPT. 4, 2014


The Food and Drug Administration on Thursday approved the first of an eagerly awaited new class of cancer drugs that unleashes the body's immune system to fight tumors.

The drug, which will sell under the name, was approved for patients with advanced melanoma who have exhausted other therapies.

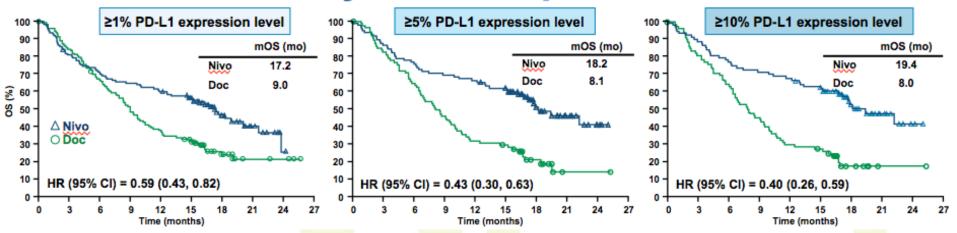
Cancer researchers have been almost giddy in the last couple of years about the potential of drugs like _____, which seem to solve a century-old mystery of how cancerous cells manage to evade the body's immune system.


Immunotherapy-PD1/PD-L1


Somatic mutation frequencies in different tumors¹

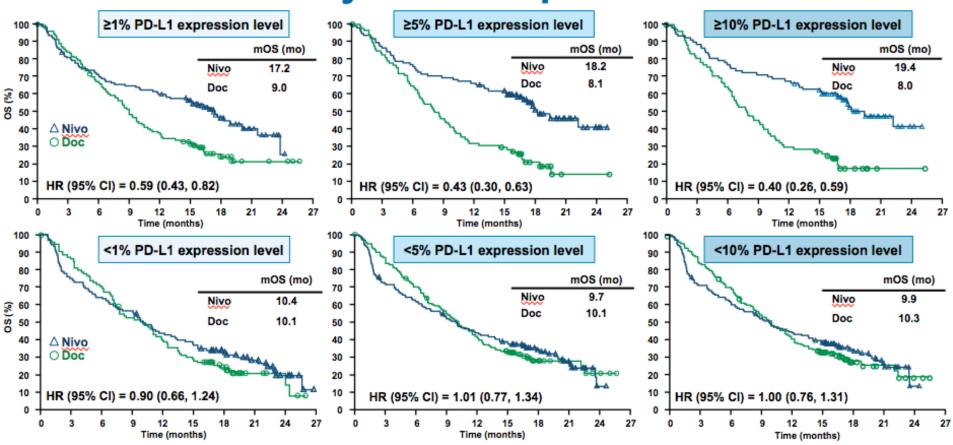
- High rates of somatic mutations in lung cancer may contribute to increased immunogenicity
- Therapies targeting the PD-L1/PD-1 pathway will alter the treatment of NSCLC

Nivolumab vs docetaxel: Checkmate 017/057 Squamous Non-squamous

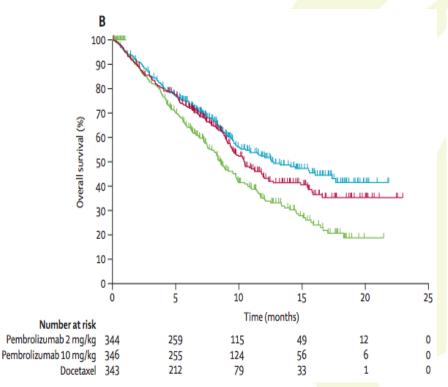


- Response rate on 017
 - Nivo 20% vs docetaxel 9%
- Median duration of response on 017
 - Nivo NR vs docetaxel 8.4mo

- Response rate on 057
 - Nivo 19% vs docetaxel 12%
- Median duration of response on 057
 - Nivo 17.2mo vs docetaxel 5.6mo

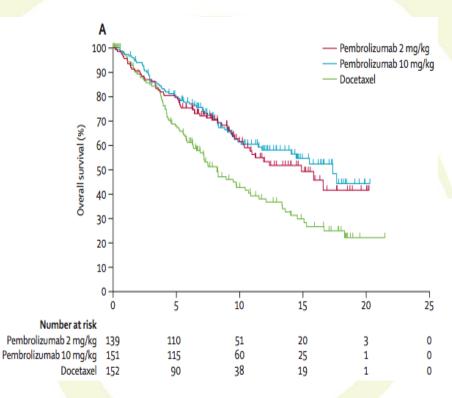

Nivo vs doce in non-squam NSCLC: Checkpoint 057

OS by PD-L1 Expression



Nivo vs doce in non-squam NSCLC: Checkpoint 057

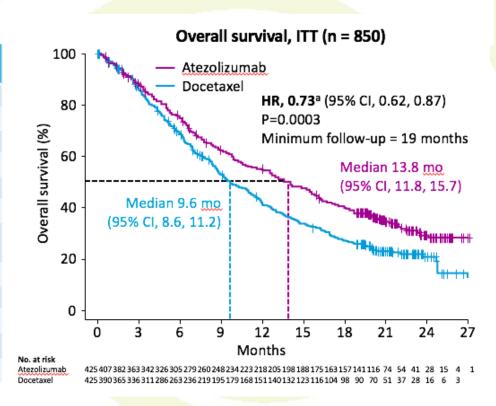
OS by PD-L1 Expression



Pembrolizumab vs docetaxel: KEYNOTE-010

PD-L1>1%

- OS 10.2/12.7 vs 8.5 mos
- RR 18%/18% vs 8%



PD-L1>50%

- OS 14.9/17.3 vs 8.2mo
- RR 30/20% vs 8%

Atezolizumab vs doce, 2nd or 3rd line: OAK

Characteristics	Atezolizumab n = 425	Docetaxel n = 425	
Median age, y	63	64	
≥65 y	45%	49%	
Male	61%	61%	
Nonsquamous	74%	74%	
Squamous	26%	26%	
ECOG PS, 0/1	37%/64%	38%/62%	
No. of prior therapies, 1/2	75%/25%	75%/25%	
History of tobacco use			
Never	20%	17%	
Current/previous	14% / 66%	16% / 67%	
Known EGFR status, %			
Mutant/WT	10% / 75%	10% / 73%	

Take-home points: PD-1/PD-L1 inhibitor 2nd line

- Nivolumab, pembrolizumab, and now atezolizumab with overall similar benefit and toxicity
 - Nivo and atezo approved for all comers 2nd line
 - Pembro approved for PD-L1+ >1% 2nd line
 - Nivo q2w, pembro and atezo q3w
- Toxicities DIFFERENT than chemo
 - Majority find it better tolerated...
 - ...but any organ can be inflamed
 - For new hypoxia or dyspnea, low threshold to evaluate for pneumonitis

Immunotherapy in Lung Cancer

- PD-1/PD-L1 inhibition in the 2nd line
- PD-1 inhibition in the 1st line
- Where we're going: combinations

PD-1 inhibitor 1st line?

- 1st line trials presented at ESMO 2016
 - Pembro vs chemo in PD-L1≥50%
 - Nivo vs chemo in PD-L1≥5%

PD-1 inhibitor 1st line?

• 1st line trials presented at ESMO 2016

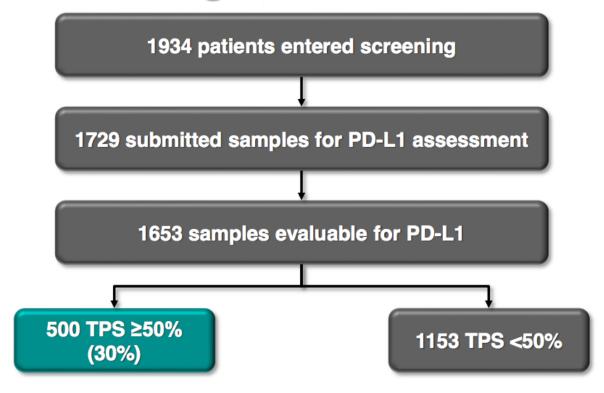
Pembro vs chemo in PD-L1≥50% POSITIVE

• Nivo vs chemo in PD-L1≥5% NEGATIVE

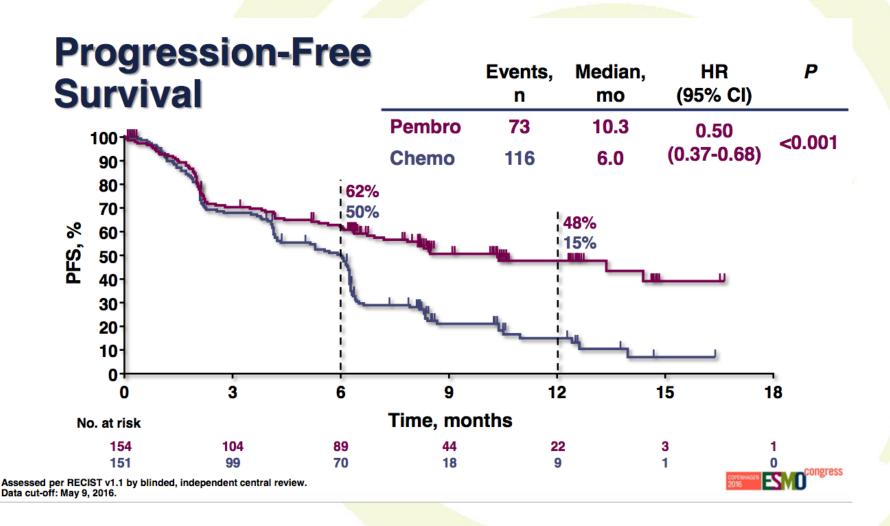
KEYNOTE-024 Study Design (NCT02142738)

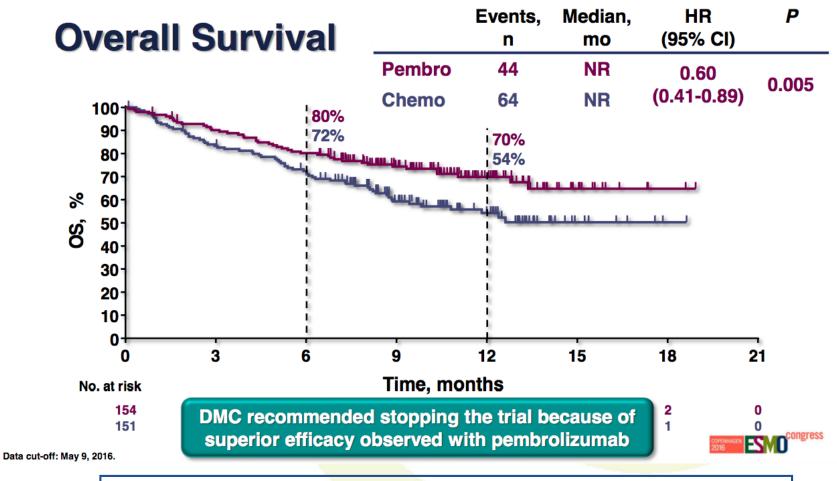
Key End Points

Primary: PFS (RECIST v1.1 per blinded, independent central review)

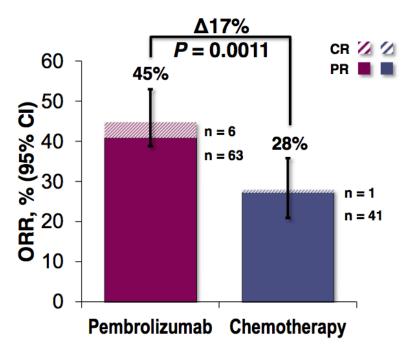

Secondary: OS, ORR, safety

Exploratory: DOR


^aTo be eligible for crossover, progressive disease (PD) had to be confirmed by blinded, independent central radiology review and all safety criteria had to be met.

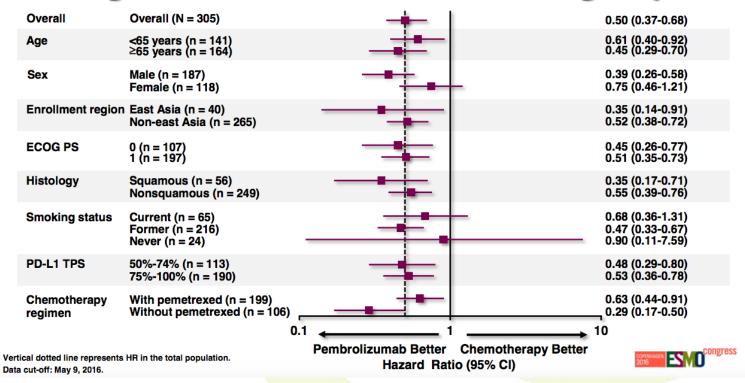


PD-L1 Screening



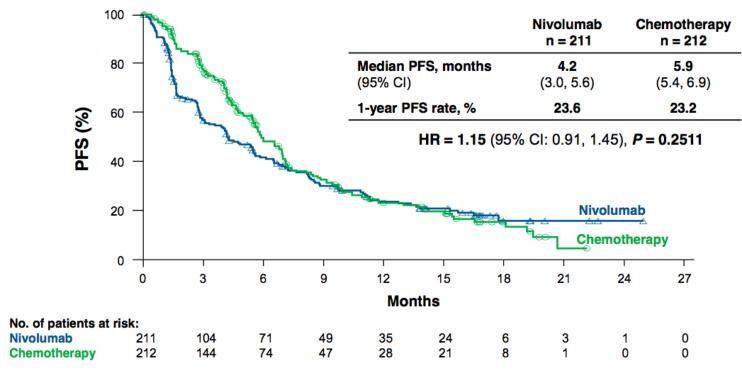
Crossover from chemo to pembro: 66/151 (44%)

Confirmed Objective Response Rate



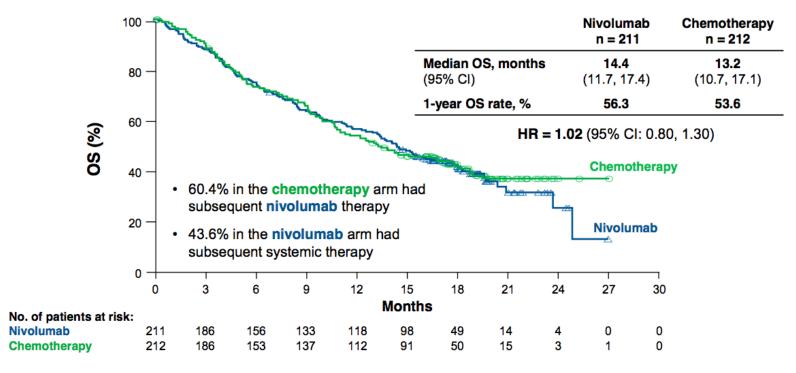
	Pembro Responders n = 69	Chemo Responders n = 42
TTR, mo median (range)	2.2 (1.4-8.2)	2.2 (1.8-12.2)
DOR, mo median (range)	NR (1.9+ to 14.5+)	6.3 (2.1+ to 12.6+)

Assessed per RECIST v1.1 by blinded, independent central review. Data cut-off: May 9, 2016.


Progression-Free Survival in Subgroups

Nivolumab 1st line (PD-L1≥5%)

Primary Endpoint (PFS per IRRC in ≥5% PD-L1+)


CheckMate 026: Nivolumab vs Chemotherapy in First-line NSCLC

All randomized patients (≥1% PD-L1+): HR = 1.17 (95% CI: 0.95, 1.43)

Nivolumab 1st line (PD-L1≥5%)

OS (≥5% PD-L1+)
CheckMate 026: Nivolumab vs Chemotherapy in First-line NSCLC

All randomized patients (≥1% PD-L1+): HR = 1.07 (95% CI: 0.86, 1.33)

Nivolumab 1st line (PD-L1≥5%)

PFS and OS Subgroup Analyses (All Randomized Patients)

CheckMate 026: Nivolumab vs Chemotherapy in First-line NSCLC

	Pat	ients, n	Unstrat	ified HR	Unstratified F	IR (95% CI)
Subgroup	Nivolumab	Chemotherapy	PFS	os	PFS	os
Overall	271	270	1.19	1.08	•	-
≥65 years	123	137	1.21	1.04	<u>.</u>	-
<65 years	148	133	1.17	1.13	<u>:</u>	-
Male	184	148	1.05	0.97	<u>:</u>	<u>-</u>
Female	87	122	1.36	1.15	:	_
ECOG PS = 0	85	93	1.69	1.11	-	<u> </u>
ECOG PS ≥1	185	177	1.01	1.02	-	-
Squamous	65	64	0.83	0.82		→ ÷
Non-squamous	206	206	1.29	1.17	-	: •-
Never smoker	30	29	2.51	1.02		_ -
Former smoker	186	182	1.14	1.09	: •-	- :•-
Current smoker	52	55	1.03	1.05	-	-
≥50% PD-L1+	88	126	1.07	0.90	<u>:</u>	 ÷-

Take-home points: 1st line

NCCN Guidelines Version 2.2017 Non-Small Cell Lung Cancer

NCCN Guidelines Index Table of Contents Discussion

PD-L1 EXPRESSION POSITIVE^a

FIRST-LINE THERAPY

SUBSEQUENT THERAPY

And 2nd line (if chemo 1st line):

- Nivolumab
- Pembrolizumab (PD-L1>1%)
- Atezolizumab

ttReck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016; October 9

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

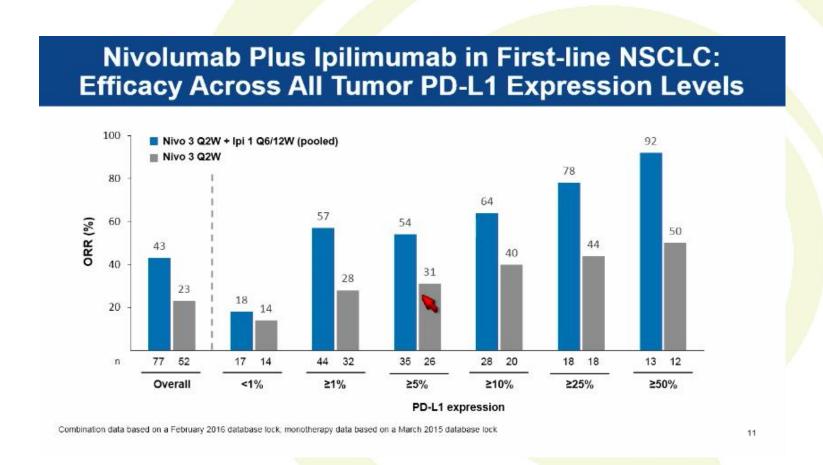
See Principles of Pathologic Review (NSCL-A).

Case

- 69yo female, current smoker with 60 pack year smoking history, presents with progressive cough
- CT reveals, and PET/CT confirms, 4cm LUL lesion, multifocal mediastinal LAD, and 2cm R adrenal lesion, all hypermetabolic. MRI brain negative
- Bronchoscopy with biopsy of subcarinal node reveals squamous cell carcinoma
- What to do?
 - PD-L1 by 22C3
 - If PD-L1≥50%, pembrolizumab
 - Otherwise, platinum-based chemo, then 2nd line nivolumab, pembrolizumab (if PD-L1≥1%) or atezolizumab

Immunotherapy in Lung Cancer

- PD-1/PD-L1 inhibition in the 2nd line
- PD-1 inhibition in the 1st line
- Where we're going: combinations

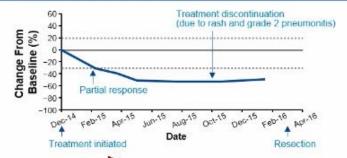

Future of immunotherapy in NSCLC

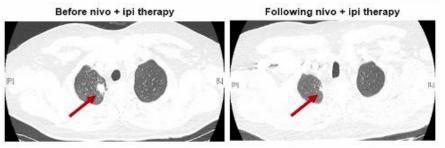
- Use PD1 inhibitors with chemo?
 - Motivation: Cancer cell death → release of cancer cell antigens
 → improved priming and activation might let PD1 inhibitors work better
 - Caveats:
 - Steroids with some chemos
 - General immunosuppressive state post-chemo
 - Compound toxicity
- Awaiting phase 3 studies of chemo +/- PD1 inhibitors
 - Early data: Langer et al (Lancet Oncol and ESMO), n=123 carbo/pem +/- pembro
 - RR 55 vs 29%, PFS 13.0 vs 8.9 mo

Future of immunotherapy in NSCLC

- Use PD1 inhibitors with other immunotherapy?
 - Motivation: PD1 inhibition alone only works in 20% of tumors— what about the rest?
 - Caveats:
 - Hard to anticipate results based on pre-clinical models
 - Additive (even synergistic) efficacy possible, but so is additional toxicity
- Awaiting studies of chemo vs PD1 vs PD1/CTLA4
 - CTLA4 inhibitor already approved in melanoma (ipilimumab)
 - Early data: Hellman et al (ASCO 2016) nivo vs nivo/ipi

Early data: 1st line nivo/ipi

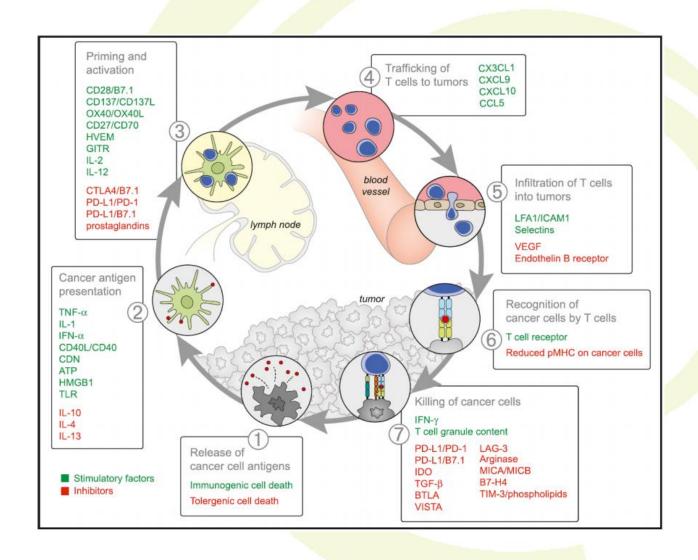



Await data from adequately powered phase 3 trials... next year?

Early data: 1st line nivo/ipi

Case of Pathological CR in One Patient Treated With Nivo 3 Q2W + Ipi 1 Q6W

- 54-yr-old male (former smoker, 52 pack-yr) with metastatic large-cell lung cancer (PD-L1 <1%^a)
 - 53% total tumor size reduction by RECIST
 - Radiographic residual lesions in the lung and mediastinal lymph nodes, without distant disease


No viable tumor in resected residual lesion
Right upper lobe wedge resection (nodule #1) Mar-2016

Courtesy of Dr. William Travis, MSKCC

*Patient was included as having partial response and PD-L1 expression unknown in analysis at time of database lock

13

Future of immunotherapy in NSCLC

Take-home points: Future of immunotherapy

- Stay tuned for data on chemo combos
- Stay tuned for data on immunotherapy combos
- Stay tuned for data on immunotherapy in earlier stage disease
- Stay tuned for data on better biomarkers than PD-L1
- Clinical trials are the way forward
 - Special role for immunoREFRACTORY patients
- Value in medicine

BUSINESS DAY

Lung Cancer Treatment Using Immune System Wins F.D.A. Approval

The first immune-based treatment for lung cancer won approval from the Food

By ANDREW POLLACK MARCH 4, 2015

8	1.1
and Drug Administration on Wednesday, and	it could displace more conventiona
chemotherapy for certain patients, at least.	
The drug, , from	is one of a class of medicines
that have electrified oncologists in recent years	s because they free the body's own
immune system to attack tumors.	
, also known as nivolumab, was ap	proved last year to treat advanced
cases of the skin cancer melanoma, but the app	proval for lung cancer is in some
ways more significant.	

BUSINESS DAY

Lung Cancer Treatment Using Immune System Wins F.D.A. Approval

By ANDREW POLLACK MARCH 4, 2015

The first immune-based treatment for lung cancer won approval from the Food and Drug Administration on Wednesday, and it could displace more conventional chemotherapy for certain patients, at least.

The drug, from is one of a class of medicines that have electrified oncologists in recent years because they free the body's own immune system to attack tumors.

, also known as nivolumab, was approved last year to treat advanced cases of the skin cancer melanoma, but the approval for lung cancer is in some ways more significant.

Lung cancer is the leading cause of cancer deaths by far, with 224,000 new diagnoses and nearly 160,000 deaths last year. That means approval to treat lung cancer could help more patients and also result in much larger sales for Bristol-Myers. The drug sells for about \$12,500 a month.

Take-home points: Future of immunotherapy

- Stay tuned for data on chemo combos
- Stay tuned for data on immunotherapy combos
- Stay tuned for data on immunotherapy in earlier stage disease
- Clinical trials are the way forward
 - Special role for immunoREFRACTORY patients
- Value in medicine
 - These are expensive drugs...
 - ...but optimizing them (better combos, better patient selection)
 may yield superior value by meaningfully improving survival in
 our patients

Thank you!

