

Melanoma 2022

Ryan J. Sullivan, MD Associate Professor, Harvard Medical School Associate Director, Melanoma Program, Mass General Cancer Center

Disclosures

- Consulting Fees: Bristol Myers Squibb, Merck, Novartis, Pfizer
- Contracted Research: Merck
- Royalties: Up-to-Date
- I will be discussing non-FDA approved indications during my presentation.

Treatment of Melanoma

Neo-Adjuvant therapy

Traditionally there were few effective therapies

During the "Era of Futility: Two fundamental and translatable discoveries occurred

Sullivan and Flaherty. Clin Cancer Res. 2015

Adjuvant Melanoma Treatment Landscape 2014

Adjuvant Melanoma Treatment Landscape 2022

Society for Immunotherapy of Cancer

Advances in Cancer ImmunotherapyTM

Adjuvant therapy

Adjuvant therapy

ncol 2021

eting 2021

Neo-Adjuvant therapy

- Current data with Stage III Melanoma
 - Anti-PD1 therapy is SOC (BRAF status independent)
 - No benefit of ipi/nivo vs nivo (CM 915) in Stage III
 - Possible benefit of ipi/nivo vs nivo in resected Stage IV (IMMUNED)
 - BRAF/MEK combo is an alternative SOC for BRAF MT
- Current data with Stage II Melanoma
 - Anti-PD1 therapy is expected to become the SOC
- Pending trials:
- Diagnosis
- Stage IIB/C nivo vs placebo
- Stage III pembro + PCV (Moderna) vs pembro
- Stage III nivo + bempegaldesleukin vs nivo

Adjuvant Melanoma Treatment Stage III Options

What do we do?

BRAF MT, resected Stage III melanoma

BRAF targeted therapy

Immune targeted therapy

#LearnAC

Dummer et al. NEJM 2020

COMBI-AD Summary (5 yr follow up)

- Randomized Phase III trial of adjuvant dab/tram in patients with Stage III, BRAF mutant melanoma
- Met its primary endpoint (RFS, HR 0.51) and secondary endpoint (DMFS, HR 0.55)
- Improvement maintained in all subgroups
- Predictable, reversible toxicity
- 26% discontinuation rate in dab/tram arm (3% in placebo arm)
- No significant difference in rate of additional malignancies

Ascierto et al. Lancet Oncol. 2020

PEMBRO (KN054)

 Met its primary endpoint (RFS, HR 0.59) and secondary endpoint (DMFS, HR 0.60)

Summary of Adjuvant anti-PD-1

(~4 yr follow up)

- Improvement maintained in most subgroups including BRAF MT (initial HR for RFS 0.59; for DMFS 0.55)
- Significant toxicity in a minority of patients
 - irAEs associated with improved RFS
 - Endocrine toxicity (mostly irreversible) in 23% of patients

NIVO (CM238)

- Met its primary endpoint (RFS, HR 0.71) and one secondary endpoint (DMFS, HR 0.79), <u>but was not</u> <u>associated with OS advantage (HR 0.87, p =0.31)</u>,
- Improvement maintained in most subgroups including BRAF MT (HR for RFS 0.79)
- Nivo much better tolerated than Ipi
- Significant toxicity in a minority of patients with Nivo
 - Endocrine toxicity (mostly irreversible) in 24%

Summary of Adjuvant Therapy Effectiveness

Endpoint	COMBI-AD (DT v placebo)	KN054 (pembro v placebo)	CM238 (nivo v ipi)
Primary Endpoint RFS (HR) 4 YR RFS	0.51 55%	0.59 60% (3.5 yr RFS)	0.71 52%
Secondary Endpoint DMFS (HR) OS (HR)	0.55 NA	0.60 NA	0.79 0.87
#LearnACI		D E{	ummer et al. NEJM 2020 ggermont et al. Lancet Oncol 2021

© 2021–2022 Society for Immunotherapy of Cancer

Ascierto et al. Lancet Oncol 2020

Summary of Adjuvant Therapy Side Effects

#LearnAC

© 2021–2022 Society for Immunotherapy of Cancer

Advances in Cancer ImmunotherapyTM

Patrinely et al. JAMA Onc 2021

Table

Grad

Grad IFAE Ty Arth Coli Deri Hep Thy

More on chronicity of irAEs...

Table 2. Incidence of Chronic Immune-Related Adverse Events (irAEs)

387 patients treated with adjuvant anti-PD-1 at 8 academic centers in US and Australia

- 267 (69%) had irAE
 - 53 (19.5%) Gr 3-5

	Patients, No. (%)			
Chronic IrAEs	With chronic IrAEs	Ongoing chronic IrAE at last follow-up		
Total chronic IrAEs	167 (100)	NA		
Required steroids	55 (32.9)	NA		
Symptomatic	82 (49.1)	NA		
Resolved	24 (14.4)	NA		
≥Grade 2	90 (53.9)	NA		

Required steroids	55 (32.9)	NA	i
Symptomatic	82 (49.1)	NA	
Resolved	24 (14.4)	NA	-
≥Grade 2	90 (53.9)	NA	
Grade 3-5	6 (3.6)	NA	
IrAE Type ^a			
Adrenal Insufficiency	12 (3.1)	12 (100)	
Arthritis/arthralgias	22 (5.7)	22 (100)	
Colitis/diarrhea	6 (1.6)	2 (33.3)	
Dermatitis/pruritus	19 (6.6)	17 (89.5)	
Xerostomia ^b	9 (2.3)	8 (88.9)	_
Hypophysitis	8 (2.1)	8 (100)	
Neuropathy	3 (1.8)	1 (33.3)	
Ocular toxic effect ^c	5 (1.3)	5 (100)	
Other neurotoxicity ^d	8 (2.1)	5 (63.0)	
Pneumonitis	6 (1.6)	4 (66.7)	
Thyroiditis/hypothyroid	54 (14.0)	54 (100)	

Key points of consideration

- 1. Patients with the least amount of disease may be the best group to treat with BRAF targeted therapy.
- 2. BRAF targeted therapy and anti-PD-1 therapy appear to have similar efficacy (e.g. cure a similar percentage of patients) in adjuvant setting
- 3. Adjuvant nivo is NOT associated with improved overall survival compared to ipi (Effect of "salvage" anti-PD-1 in metastatic setting?)
- Adjuvant immunotherapy is associated with severe side effects in 15-20% and chronic side effects in >40% of patients

© 2021–2022 Society for Immunotherapy of Cancer

 $\# | earn \Delta($

So, what do I do?

BRAF MT, resected Stage III melanoma

My bias is to give BRAF/MEK combo...

Why?

- **1. Potentially curative**
- **2. Reversible AEs**
- 3. "Salvage" IO in setting of relapse

#LearnAC

Adjuvant Melanoma Treatment Stage II Options

Pembrolizumab Versus Placebo After Complete Resection of High-risk Stage II Melanoma: Efficacy and Safety Results From the KEYNOTE-716 Double-blind Phase 3 Trial

Jason J. Luke¹; Piotr Rutkowski²; Paola Queirolo³; Michele Del Vecchio⁴; Jacek Mackiewicz^{5, 6}; Vanna Chiarion-Sileni⁷; Luis de la Cruz Merino⁸; Muhammad A Khattak^{9,10}; Dirk Schadendorf¹¹; Georgina V. Long^{12,13}, Paolo A Ascierto¹⁴; Mario Mandala¹⁵; Federica De Galitiis¹⁶; Vernon Sondak¹⁷; Richard A. Scolyer^{12,18}; John M. Kirkwood¹; Ke Chen¹⁹; Nageatte Ibrahim¹⁹; Sama Ahsan¹⁹; Alexander M. M. Eggermont²⁰

¹UPMC Hillman Cancer Center, Pittsburgh, PA, USA; ²Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland; ³Istituto Europeo di Oncologia - IRCCS, Milano, Italy; ⁴Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy; ⁵Poznan University of Medical Sciences, Poznan, Poland; ⁶Greater Poland Cancer Center, Poznan, Poland; ⁷Istituto Oncologico Veneto, IOV-IRCCS, Padova, Italy; ⁶Hospital Universitario Virgen Macarena, Seville, Spain; ⁹Fiona Stanley Hospital, Perth, Australia; ¹⁰Edith Cowan University, Perth, Australia; ¹¹University Hospital Essen & German Cancer Consortium Partner Site, Essen, Germany; ¹²Melanoma Institute Australia, The University of Sydney, Sydney, Australia; ¹³ Royal North Shore & Mater Hospitals, Sydney, Australia; ¹⁴Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy; ¹⁵University of Perugia, Perugia, Italy; ¹⁶Dermopathic Institute of the Immaculate IDI-IRCCS, Romen, IT; ¹⁷H. Lee Moffitt Cancer Center and Research Institute in Tampa, FL, USA; ¹⁶Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, Australia; ¹¹⁹Merck & Co., Inc., Kenilworth, NJ, USA; ²²University Medical Center Utrecht & Princess Máxima Center, Utrecht, NL

KEYNOTE-716 Study Design (NCT03553836)

HRQoL, health related quality of life; OS, overall survival; Q3W, every 3 weeks; RFS, time from randomization to recurrence of melanoma at any site (skin, regional lymph nodes or distant) or death from any cause, whichever occurred first.

Luke KN716 ESMO 2021

Recurrence-Free Survival (Primary Endpoint)

Adverse Events of Interest^a

NR, not reached; Data cut-off: 04Dec2020

TION, Type 1 Diabetes Melitus.

Luke KN716 ESMO 2021

Summary of Adjuvant PEMBRO for Stage IIB/C

- KN 716 et its primary endpoint (RFS, HR 0.65). Benefit seemingly maintained in all subgroups analyzed
- Significant toxicity in a minority of patients
 - irAEs (Grade 3 or 4) in 17%

PEMBRO

- 16% of patients discontinued early
- Endocrine and cutaneous toxicity most common
- No overall survival data available
- No biomarker data available

© 2021–2022 Society for Immunotherapy of Cancer

#LearnAC

To treat or not to treat?

New patient with Stage IIB/C, melanoma

Pembrolizumab

Active Surveillance

Key points of consideration

- 1. There is NO data with improved overall survival at this point
 - Conceivable that "salvage" anti-PD-1 based therapy will be effective at time of recurrence
- 2. There IS value to not having recurrent disease
- 3. Adjuvant immunotherapy (in Stage III patients) is associated with severe side effects in 15-20% and chronic side effects in >40% of patients (no reason to think this is different in Stage II)

New patient with Stage IIB/C, melanoma

I have LONG conversations with patients about goals, risks, benefits

A brief word about neoadjuvant therapy

Neoadjuvant Therapy

- Potential Benefits:
 - Down-staging, improve surgical resectability (TT > IO)
 - Assess response to treatment tailor adjuvant tx
 - Immunotherapy: broaden T cell responses
 - Use pResponse as surrogate marker for RFS and/or OS
- Concerns:
 - Disease progression during therapy
 - Tx-related toxicity
 - Early resistance to therapy
 - May not be needed with adjuvant therapy
- Well-established roles/diseases:
 - Breast Cancer
 - GIST
 - Rectal Cancer
 - Esophageal Cancer

#LearnACI

Why Neoadjuvant Therapy?

A. Clarifies who benefits

B. May help guide next steps

#LearnACI

© 2021–2022 Society for Immunotherapy of Cancer

Menzies et al. Nature Med. 2021

Improves outcomes?

Neoadjuvant (vs adjuvant) IO leads to increased numbers of peripheral blood clones of tumor-resident TCRs

Blank et al. Nature Med. 2018

a Proprietary magnetic see

Advances in Cancer ImmunotherapyTM

Changes surgical management?

The pathologic response in the largest lymph node (index node) represents the entire lymph node bed

Pathologic response	Index node	Total basin
pCR	7	7
Near-pCR	3	3
pPR	1	1
pNR	1	1

Index node congruent with total basin = 12/12 cases

#LearnACI

2 courses IPI+NIVO

© 2021–2022 Society for Immunotherapy of Cancer

Prof. dr. C.U. Blank, presented ASCO 2020 Schermers et al., BJS 2019

TLND

Summary: Neoadjuvant Therapy 2022

- No approved neoadjuvant regimens
- A number of neoadjuvant therapies have been tested in high-risk stage III/IV patients
 - Neoadjuvant immunotherapy in Stage III melanoma:
 - 1. Leads to pathologic responses is a significant % of patients
 - 2. Those with pathologic response (pPR, near pCR, pCR) have remarkable RFS (>90% at 2 years), albeit with limited follow up
 - 3. The regimen of 2 doses of nivo (3 mg/kg) and ipi (1 mg/kg) followed by no adjuvant therapy is well tolerated and has been adopted as the standard neoadjuvant approach

Neo-Adjuvant therapy

SITC:0720-1

Advanced Melanoma Treatment Landscape 2022

Advanced Melanoma Treatment Landscape 2022

What do we do?

New patients with advanced, BRAF MT melanoma

BRAF targeted therapy

Immune targeted therapy

#LearnACI This is not an either or choice...

SEQUENTIAL COMBO IMMUNO AND TARGET THERAPY (SECOMBIT)

DOR, duration of response; ECOG-PS, Eastern Cooperative Oncology Group performance status; LGX = encorafenib (BRAFi); MEK162 = binimetinib (MEKi); ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PD, progressive disease

Clinicaltrials.gov: NCT02631447.

NCT02224781: Phase 3 Study of Dabrafenib + Trametinib Followed by Ipilimumab + Nivolumab vs Ipilimumab + Nivolumab Followed by Dabrafenib + Trametinib

Randomised Phase 3 trial of dabrafenib + trametinib followed by ipilimumab + nivolumab at progression vs ipilimumab + nivolumab followed by dabrafenib + trametinib at progression in patients with advanced BRAF V600 mutant melanoma

· OS rate, defined as the proportion of patients alive after 2 years of follow-up time

Response rate (RECIST version 1.1)

Does the initial treatment with the dabrafenibtrametinib combination (and subsequent ipilimumab-nivolumab) or ipilimumabnivolumab combination (and subsequent dabrafenib-trametinib combination) improve the 2-year OS significantly in patients with unresectable stage III or stage IV BRAFV600 mutant melanoma?

What to do? Look to randomized clinical trial data

SECOMBIT: the best sequential approach with combo immunotherapy [ipilimumab (I) /nivolumab (N)] and combo target therapy [encorafenib (E)/binimetinib (B)] in patients with BRAF mutated metastatic melanoma. A phase II randomized study

Ascierto PA,¹ Mandalà M,² Ferrucci PF,³ Rutkowski P,⁴ Guidoboni M,⁵ Arance AM,⁶ Ferraresi V⁷, Maiello E,⁸ Guida M,⁹ Del Vecchio M,¹⁰ Fierro MT,¹¹ Queirolo P,³⁻¹² Lebbè C,¹³ Helgadottir H,¹⁴ Melero I,¹⁵ Palmieri G,¹⁶ Giannarelli D.¹⁷ Grimaldi AM.¹ Dummer R.^{18*} Chiarion Sileni V.^{19*}

1-Department of Melanoma. Cancer Immunotherapy and Development Therapeutics. I.N.T. IRCCS Fondazione "G. Pascale" Napoli; 2-Department of Oncology and Haematology, Papa Giovanni XXIII Cancer Center Hospital, Bergamo, Italy; 3-Biotherapy of Tumors Unit, Department of Experimental Oncology, European Institute of Oncology, IRCCS, - Milan, Italy; 4-Department of Soft Tissue/Bone Sarcoma, Maria Sklodowska Curie National Research Institute of Oncology, 02-781 - Warsaw/PL: 5-Immunotherapy and Cell Therapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy; 6-Department of Medical Oncology, Hospital Clinic Barcelona, 08036 - Barcelona/ES; 7-Department of Medical Oncology 1; 7-IRCCS Regina Elena National Cancer Institute, Rome, Italy: 8-Department of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, Foogia, Italy: 9-Medical Oncologi Department, National Cancer Research Centre "Giovanni Paolo II", Bari, Italy; 10-Unit of Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy: 11-Department of Medical Sciences, Dermatologic Clinic, University of Turin, Turin, Italy: 12-IRCCS Ospedale Policlinico San Martino, Skin Cancer Unit, Genova, Italy; 13-Institut de Recherche Saint Louis (IRSL), Université de Paris, F-75010 Paris, France; 14-Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden; 15-Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain; 16-Unit of Cancer Genetics, CNR, Sassari, Italy; 17-Regina Elena National Cancer Institute, IRCCS - Biostatistical Unit, Rome, Italy; 18-Department of Dermatology, University and University Hospital Zurich, Zurich, Switzerland; 19-Melanoma Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.

*contributed equally to this study Abstract Number LBA#1997

SEQUENTIAL COMBO IMMUNO AND TARGET THERAPY (SECOMBIT) STUD TOTAL PROGRESSION FREE SURVIVAL

....

......

SEQUENTIAL COMBO IMMUNO AND TARGET THERAPY (SECOMBIT)

	Arm A	Arm B	Arm C
1-yr OS%	81%	81%	87%
(95% Cl)	(72-90)	(72-90)	(69-95)
2-yrs OS%	65%	73%	69%
(95% CI)	(54-76)	(62-84)	(58-80)
3-yrs OS%	54%	62%	60%
(95% CI)	(41-67)	(48-76)	(58-72)
HR (95% CI) Arm B vs A Exploratory analysis	0.73 (0.42-1.26)	-	-
HR (95% CI) Arm C vs A Exploratory analysis	0.81 (0.48-1.37)	-	-

· Time to second progression

% patients alive at 2–3 years

Clinicaltrials.gov: NCT02631447.

0

perative Oncology Group performance status; LGX = encorafenib (BRAFi); MEK162 = binimetinib (MEKi); ORR, objective response rate;

ASCO Plenary Series

ASCO Plenary Series

Characteristic

Age (years)

Sex % Male

Stage

M1A

M1B M1C

ECOG PS 0 (%)

III unresectable

LDH > ULN (%)

DREAMseq (Doublet, Randomized Evaluation in

Michael B. Atkins¹, Sandra Lee², Bartosz Chmielowski³, Antoni Ribas³, Ahmad A. Tarhini⁴, Thach-Giao Truong⁵, Diwakar Davar⁶, Mark O'Rourke⁷, Brendan D. Curti⁸, Joanna M. Brell⁹,

Comprehensive Cancer Center University of California Los Angeles, Los Angeles CA; ⁴H. Lee Moffitt Cancer Center and Research Institute, Tampa FL; ⁶Kaiser Permanente Northern California, Vallejo CA; ⁶Pittsburgh Cancer Institute, Pittsburgh PA; ⁷Greenville Health System Cancer Institute, Greenville SC; Providence Cancer Institute, Portland OR; MetroHealth Medical Center, Cleveland OH; ¹⁰Ohio State University Comprehensive Cancer Center, Columbus OH; ¹¹University of Oklahoma Medical Center, Oklahoma City OK;

81 (62%)

53 (40%)

16 (12%)

76 (58%)

53 (40%)

21 (17%)

II LVVI

NCT02224781: Phase 3 Study of Dabrafenib + Trametinib Followed by Ipilimumab + Nivolumab vs Ipilimumab + Nivolumab Followed by Dabrafenib + Trametinib

(# at risk)

Society for immunometapy of Cancer

Prior Treatment (adjuvant)*

ASCO Plenary Series

DREAMseg (Doublet Randomized Evaluation in

© 2021–2022 Society for Immunotherapy of Cancer

(# at risk)

So, what do we do?

New patients with advanced, BRAF MT melanoma

BRAF targeted therapy We start with anti-PD-1 based therapy Immune targeted therapy

What do we do?

Singlo-agont anti-DD-1

New patients with advanced, BRAF MT or BRAF WT melanoma

\bigcirc	Single	agent anti-r		
\downarrow	Agent(s)	Pembro (front-line)	Nivo	IPI/Nivo
	ORR (%)	46	45	58
	5-yr PFS (%)	n/a	28	36
\wedge	5-yr OS (%)	43	44	52
	<hr/>		Lo La	ng et al. ASCO 2020 rkin et al. NEJM 2019
\mathbf{N}	Combi	ned anti-PD	-1/anti-C	TLA4

Why not always combined anti-PD-1/anti-CTLA-4 in the first-line?

TOXICITY

Combined IPI/NIVO is associated with more frequent, more severe, and multiple toxicities than NIVO or IPI

	NIVO + IPI (N=313)		NIVO (N=313)		IPI (N=311)	
Patients Reporting Event, %	Any Grade	Grade 3–4	Any Grade	Grade 3–4	Any Grade	Grade 3–4
Treatment-related adverse event (AE)	95.5	55.0	82.1	16.3	86.2	27.3
Treatment-related AE leading to discontinuation	36.4	29.4	7.7	5.1	14.8	13.2
Treatment-related death	0		0.3		0.3	

Modified from Wolchok et al. ASCO 2015; Larkin et al. NEJM 2015

Are there scenarios where we always consider combined anti-PD-1/anti-CTLA-4 in the first-line?

CNS disease

Summary of Contemporary Regimens in CNS disease

Study	New or Recurrent	Treatment	# of patients	Median PFS (mo)	6 mo PFS (%)	Cerebral RR
Goldberg Lancet Oncol 2016	Both	Pembrolizumab	18	NA	22	22
COMBI-MB Davies Lancet Oncol 2017	New	Dabrafenib and trametinib	Cohort A, 76	5.6	<20	58
CM-204 Tawbi Lancet Oncol 2021	New	Ipilimumab and nivolumab	A: 101 B: 18	NR 1.2	61** 33	54 11
ABC Long Lancet Oncol 2018	New	Nivolumab Ipilimumab and nivolumab	25 26	2.5 NR	20 53	20 46

NA – not available NR – not reached ** 18 mo OS 75%

And then

So, what do we do?

New patients with advanced, BRAF MT or BRAF WT melanoma

We use clinical factors (CNS disease, rapidity of growth, liver mets, symptomatic disease, high LDH, etc.) to determine which patients to offer combined checkpoint inhibitor therapy

Single-agent anti-PD-1

Combined anti-PD-1/anti-CTLA4

Relatlimab (RELA) + nivolumab (NIVO) versus NIVO in first-line advanced melanoma: primary phase 3 results from **RELA**TIVITY-047 (CA224-047)

<u>Evan J. Lipson</u>,¹ Hussein A. Tawbi,² Dirk Schadendorf,³ Paolo A. Ascierto,⁴ Luis Matamala,⁵ Erika Castillo Gutiérrez,⁶ Piotr Rutkowski,⁷ Helen J. Gogas,⁸ Christopher D. Lao,⁹ Juliana Janoski De Menezes,¹⁰ Stéphane Dalle,¹¹ Ana Arance,¹² Jean-Jacques Grob,¹³ Shivani Srivastava,¹⁴ Mena Abaskharoun,¹⁴ Katy L. Simonsen,¹⁴ Bin Li,¹⁴ Georgina V. Long,^{a,15} F. Stephen Hodi^{a,16}

¹Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; ²The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³University Hospital Essen, Essen, Germany; ⁴Istituto Nazionale Tumori Fondazione "G. Pascale", Napoli, Italy; ⁵Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago, Chile; ⁹FAICIC Clinical Research, Veracruz, Mexico; ⁷Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; ⁸National and Kapodistrian University of Athens, Athens, Greece; ⁹University of Michigan, Ann Arbor, MI, USA; ¹⁰Hospital Nossa Senhora da Conceição, Porto Alegre, Brazii; ¹¹Hospices Civils de Lyon, Cancer Research Center of Lyon, Pierre-Bénite, France; ¹²Hospital Clinic Barcelona, Barcelona, Spain; ¹³Aix-Marseille University of Nutersity, GHU Timone, Marseille, France; ¹⁴Bristol Myers Squibb, Princeton, NJ, USA; ¹⁵Melanoma Institute Australia, The University of Sydney, and Royal North Shore and Mater Hospitals, Sydney, Australia; ¹⁶Dana-Farber Cancer Institute, Boston, MA, USA ^eCo-senior author

Presentation Number 9503

• RELATIVITY-047 is a global, randomized, double-blind, phase 2/3 study

		RELA + NIVO	NIVO		
Subgroup		Events/no.	of patients	Unstratified HR for pre	ogression or death (95% CI)
Overall		180 (355)	211 (359)		0.76 (0.62-0.92)
Age categorization, years	≥ 18 and < 65	99 (187)	117 (196)		0.83 (0.64-1.09)
	≥ 65 and < 75	50 (102)	60 (103)		0.69 (0.47-1.00)
	≥ 65	81 (168)	94 (163)		0.69 (0.51-0.93)
	≥ 75	31 (66)	34 (60)	<u>_</u>	0.69 (0.42-1.13)
Sex	Male	98 (210)	123 (206)		0.68 (0.52-0.89)
	Female	82 (145)	88 (153)		0.88 (0.65-1.19)
LDH	≤ ULN	100 (224)	127 (231)	- - - ;	0.70 (0.54-0.91)
	> ULN	79 (130)	84 (128)		0.80 (0.59-1.09)
	≤ 2 × ULN	158 (322)	186 (328)		0.75 (0.60-0.92)
	> 2 × ULN	21 (32)	25 (31)		0.75 (0.42-1.35)
ECOG PS	0	108 (236)	136 (242)		0.74 (0.57-0.95)
	1	72 (119)	75 (117)	 +	0.78 (0.56-1.07)
Tumor burden per BICR	< Q1	26 (74)	37 (83)		0.62 (0.37-1.03)
	Q1 to <q3< th=""><th>84 (161)</th><th>96 (153)</th><th><u>+</u></th><th>0.80 (0.60-1.07)</th></q3<>	84 (161)	96 (153)	<u>+</u>	0.80 (0.60-1.07)
	≥ Q3	53 (84)	53 (75)		0.72 (0.49-1.06)
BRAF mutation status	Mutant	67 (136)	83 (139)		0.74 (0.54-1.03)
	Wild-type	113 (219)	128 (220)	i	0.76 (0.59-0.98)
AJCC v8 M stage	M0/M1any[0] LDH not elevated	104 (232)	130 (237)		0.71 (0.55-0.92)
	71-1	(/	(/		(//
PD-L1	≥ 1%	68 (146)	67 (147)		0.95 (0.68-1.33)
	< 1%/nonquantifiable	112 (209)	144 (212)		0.66 (0.51-0.84)
	≥ 5%	33 (88)	36 (86)		0.86 (0.54-1.38)
	< 5%/nonquantifiable	147 (267)	175 (273)		0.73 (0.58-0.90)
LAG-3	≥ 1%	131 (268)	151 (269)		0.75 (0.59-0.95)
	< 1%	49 (87)	60 (90)	- • +	0.78 (0.54-1.15)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 RELA + NIVO ↔ NIVO

Now what?

Individualized therapy for advanced melanoma

- BRAF MT status offers multiple options, but anti-PD-1 based therapy is preferred
- Combined immune checkpoint inhibition with IPI/NIVO has numerically higher ORR, PFS, and OS but also higher toxicity
 - No great biomarker to predict who should receive this
 - Consider this for patients with rapidly progressing disease
 - SOC for patients with brain metastases
- Emerging data with combined anti-PD-1 and anti-LAG3 may change treatment landscape in near future
- Better biomarkers are needed to help select front-line immunotherapy when there are three choices: anti-PD-1, combined anti-PD-1/anti-CTLA-4 (IPI/NIVO), combined anti-PD-1/anti-LAG3

One last thing...

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Overall Survival Benefit with Tebentafusp in Metastatic Uveal Melanoma

Paul Nathan, M.D., Ph.D., Jessica C. Hassel, M.D., Piotr Rutkowski, M.D., Ph.D., Jean-Francois Baurain, M.D., Ph.D., Marcus O. Butler, M.D., Max Schlaak, M.D., Ryan J. Sullivan, M.D., Sebastian Ochsenreither, M.D., Reinhard Dummer, M.D., John M. Kirkwood, M.D., Anthony M. Joshua, M.D., Ph.D.,
Joseph J. Sacco, M.D., Ph.D., Alexander N. Shoushtari, M.D., Marlana Orloff, M.D., Josep M. Piulats, M.D., Ph.D., Mohammed Milhem, M.D., April K.S. Salama, M.D., Brendan Curti, M.D., Lev Demidov, M.D., Lauris Gastaud, M.D., Cornelia Mauch, M.D., Ph.D., Melinda Yushak, M.D., M.P.H., Richard D. Carvajal, M.D., Omid Hamid, M.D., Shaad E. Abdullah, M.D., for the IMCgp100-202 Investigators*

IMCgp100-202 – study design

Hassel et al. AACR Annual Meeting 2021 Sullivan et al. Melanoma Bridge Meeting 2021

Society for Immunotherapy of Cancer

Advances in Cancer ImmunotherapyTM

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Overall Survival Benefit with Tebentafusp in Metastatic Uveal Melanoma

Paul Nathan, M.D., Ph.D., Jessica C. Hassel, M.D., Piotr Rutkowski, M.D., Ph.D., Jean-Francois Baurain, M.D., Ph.D., Marcus O. Butler, M.D., Max Schlaak, M.D., Ryan J. Sullivan, M.D., Sebastian Ochsenreither, M.D., Reinhard Dummer, M.D., John M. Kirkwood, M.D., Anthony M. Joshua, M.D., Ph.D.,
Joseph J. Sacco, M.D., Ph.D., Alexander N. Shoushtari, M.D., Marlana Orloff, M.D., Josep M. Piulats, M.D., Ph.D., Mohammed Milhem, M.D., April K.S. Salama, M.D., Brendan Curti, M.D., Lev Demidov, M.D., Lauris Gastaud, M.D., Cornelia Mauch, M.D., Ph.D., Melinda Yushak, M.D., M.P.H., Richard D. Carvajal, M.D., Omid Hamid, M.D., Shaad E. Abdullah, M.D., for the IMCgp100-202 Investigators*

Tebentafusp FDA-approved for HLA-A*0201+, uveal melanoma in January 2022

Thank you!

