

Corona madness: flattening the curve with CAR T

Carl June University of Pennsylvania

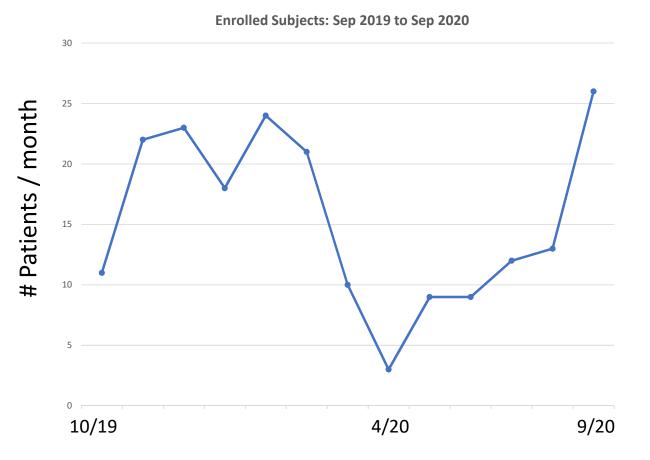
November 9, 2020

Society for Immunotherapy of Cancer #SITC2020

Conflict of Interest Statement

Declaration of financial interest due to intellectual property and patents in the field of cell and gene therapy:

- Royalties and IPR: Novartis
- Scientific Advisory Board for Celldex, Cabaletta, Carisma, Kiadis, Viracta and WIRB-Copernicus Group
- Scientific Founder and equity: Tmunity Therapeutics, DeCart Therapeutics


Conflict of interest is managed in accordance with The University of Pennsylvania policies and oversight

Overview

- Cell therapies during COVID
- CAR T cell dysfunction
- Allogeneic "off the shelf" CAR T cells

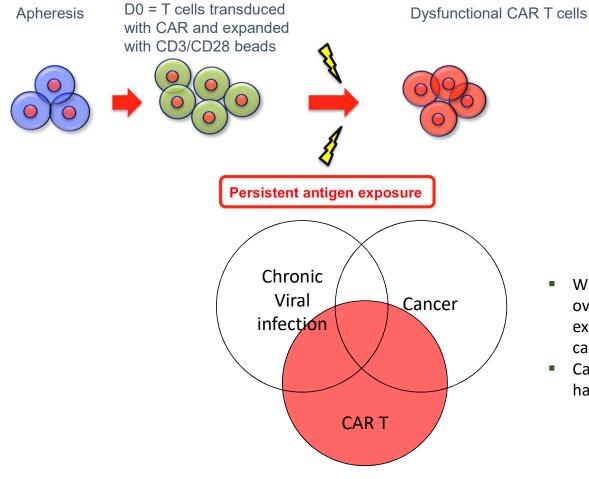
Clinical Updates: Effect of COVID19 on Experimental Cell Therapy at Penn

Completed and Ongoing Cell Therapies for COVID-19 *

Cell Type	Title	Location	Status
NHPBSC	<u>Study Evaluating the Safety and Efficacy of Autologous</u> <u>Non-Hematopoietic Peripheral Blood</u> <u>Stem Cells in COVID-19</u>	Abu Dhabi	Completed
MSC	Mesenchymal Stem Cells for the Treatment of COVID- 19	California	Completed
MSC	Treatment With Human Umbilical Cord-derived Mesenchymal Stem Cells for Severe Corona Virus Disease 2019 (COVID-19)	Wuhan, China	Completed
Treg	REgulatory T Cell infuSion fOr Lung Injury Due to COVID-19 PnEumonia	Hopkins, Columbia, UNC	Ongoing
DC / CTL	Immunity and Safety of Covid-19 Synthetic Minigene Vaccine / CTLs	Shenzhen, China	Ongoing
Allo NK	Phase I / II Clinical Study of Immunotherapy Based on Adoptive Cell Transfer as a Therapeutic Alternative for Patients With COVID-19 in Colombia	Bogata, Columba	Pending

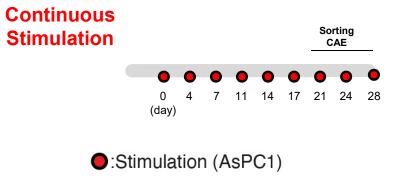
* Clinicaltrials.gov, accessed Nov 7, 2020

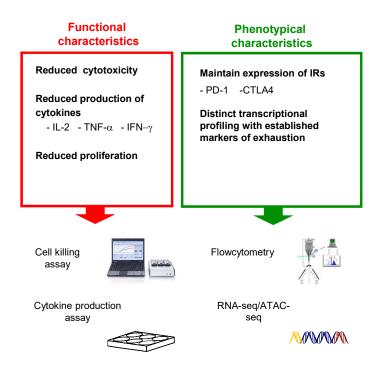
Cell Therapies for COVID-19: Crazy or Not?


- Cell therapies for advanced O2-dependent patients in ICU?
 - It is possible that Tregs or MSC infusions could accelerate repair of pulmonary damage
 - These studies are very difficult to conduct when the standard of care already includes high dose corticosteroid therapy and patients with many comorbidities
- Prophylactic therapies to prevent COVID?
 - Infusions of CTLs are effective in many viral infections, including respiratory infections:

=>Walter EA et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. *NEnglJMed.* 1995;333(16):1038-44.

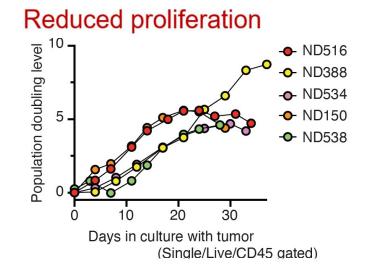
=>Leen AM. Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. *Blood.* 2009;114(19):4283-92.

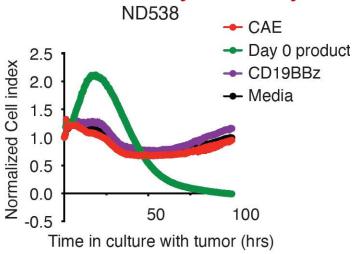



In vitro and In vivo Mechanisms of CAR T Dysfunction

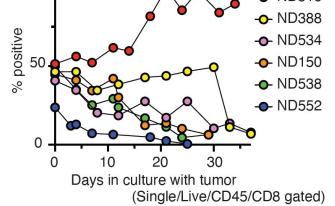
- Will hallmarks of CAR T cell dysfunction overlap with identified signatures of T cell exhaustion in chronic viral infection and cancer?
- Can we use this model to identify novel hallmarks of CAR T cell dysfunction?

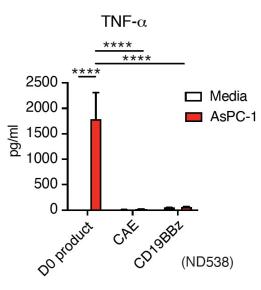
In Vitro Model of CAR T Cell Dysfunction


Shunichiro Kuramitsu MD PhD Charly Good PhD

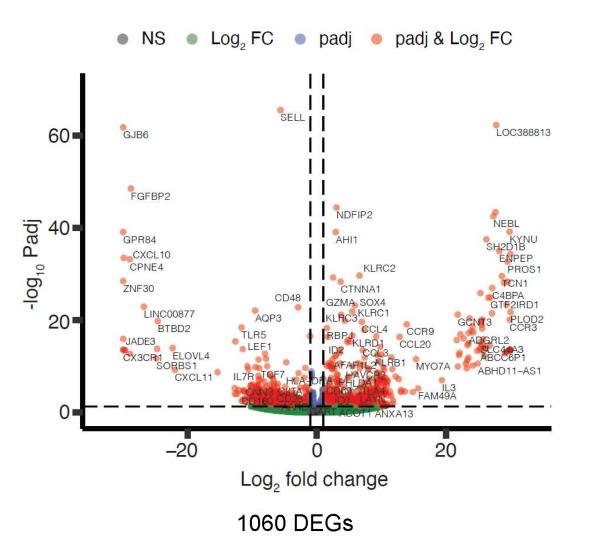


<u>Points</u>

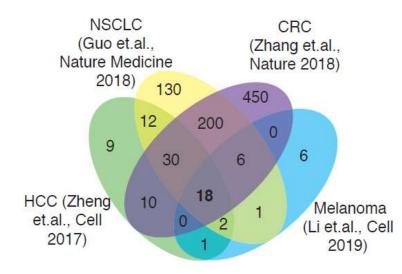

- 1. anti-mesothelin CAR T cells AsPC1 pancreatic cancer cell line
- 2. Stimulation : every 3-4 days
- 3. Keep in low E:T ratio
- 4. Use conditioned media (50% fresh media + 50% conditioned media)

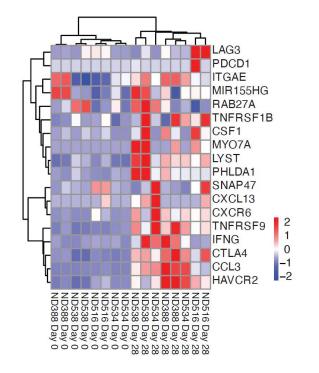


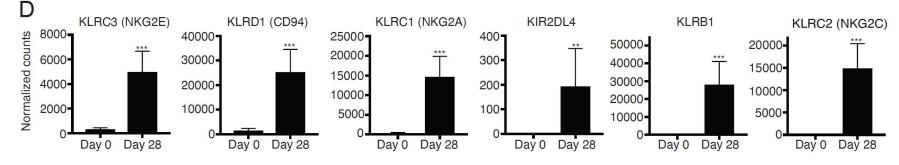
Reduced cytotoxicity

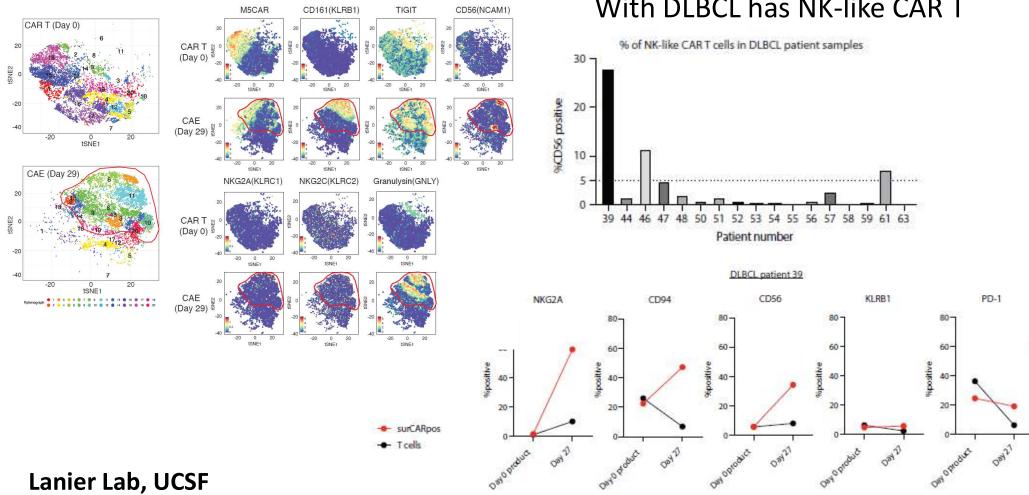

¹⁰⁰ Surface CAR Expression

Reduced cytokine production

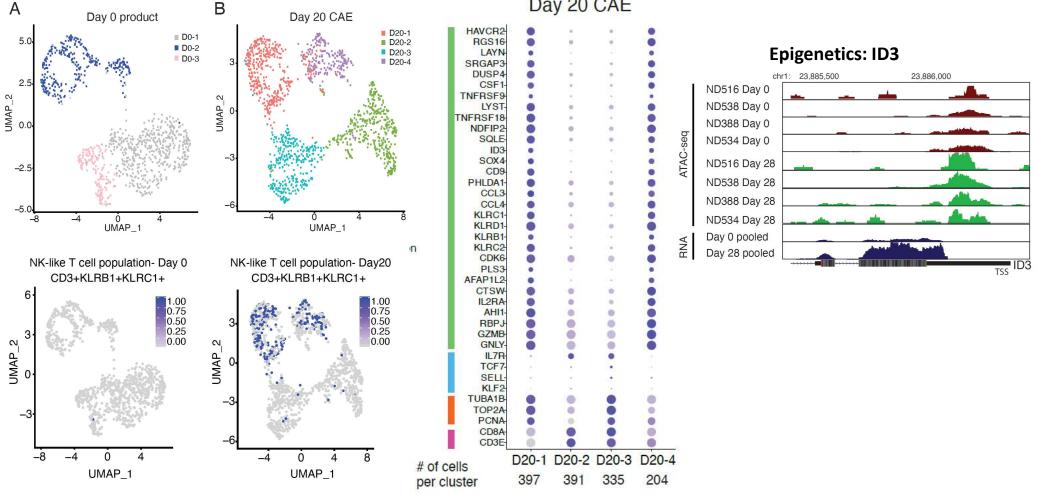

Exhaustion Genes and NK Receptors are Upregulated in Dysfunctional CAR T Cells


Ingenuity pathway analysis


Crosstalk b/t Dendritic Cells & Natural Killer Cells	N=18
Communication b/t Innate & Adaptive Immune Cells	N=18
Graft-versus-Host Disease Signaling	N=12
Natural Killer Cell Signaling	N=25
Th1 & Th2 Activation Pathway	N=23
Recognition of Bacteria and Viruses by PRR	N=21
Production of NOS & ROS in Macrophages	N=23
IL-17A Signaling in Gastric Cells	N=8
T Helper Cell Differentiation	N=13
Antigen Presentation Pathway	N=9
T Cell Exhaustion Signaling Pathway	N=20
Th1 Pathway	N=16
Th2 Pathway	N=17
HMGB1 Signaling	N=19
PD-1, PD-L1 cancer immunotherapy pathway	N=14
STAT3 Pathway	N=16
iCOS-iCOSL Signaling in T Helper Cells	N=14
CTLA4 Signaling in Cytotoxic T cells	N=11
CD28 Signaling in T Helper Cells	N=13
246	8
-log(pvalue)	

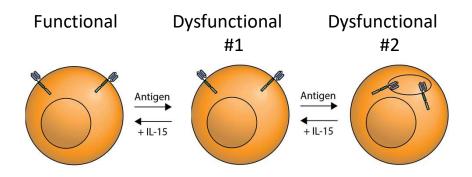

Exhaustion Genes and NK Receptors are Upregulated in Dysfunctional CAR T Cells

To obtain a more stringent data set we overlapped the data sets from the four cancer types and found a common group of 18 TIL marker genes



Mass Cytometry Day 0 and Day 29

Non-responding CD19 CAR T Patient With DLBCL has NK-like CAR T


Emergence of Two Dysfunctional CAR T Cell Clusters

Day 20 CAE

CAR T Cell Dysfunction: Summary

- Identified novel hallmarks of CD8+ CAR T dysfunction
 - Loss of surface CAR expression
 - Surface CAR T cells also acquire dysfunctional phenotype
 - Acquisition of a post-thymic NK-like T cell fate
 - CAR/ TCR dysfunctional gene signature
- Demonstration of loss of surface CAR and presence of NK-like
 T cells in patient samples from CAR T clinical trials.
- Identified transcription factors potentially regulating the exhaustion signature and NK-like T cell transition

Multiplex Human Genome Engineering to Extend the Reach of CAR T Cells

RESEARCH

RESEARCH ARTICLE SUMMARY

CRISPR-engineered T cells in patients with refractory cancer

Edward A. Stadtmauer*†, Joseph A. Fraietta*, Megan M. Davis, Adam D. Cohen, Kristy L. Weber, Eric Lancaster, Patricia A. Mangan, Irina Kulikovskaya, Minnal Gupta, Fang Chen, Lifeng Tian, Vanessa E. Gonzalez, Jun Xu, In-young Jung, J. Joseph Melenhorst, Gabriela Plesa, Joanne Shea, Tina Matlawski, Amanda Cervini, Avery L. Gaymon, Stephanie Desjardins, Anne Lamontagne, January Salas-Mckee, Andrew Fesnak, Donald L. Siegel, Bruce L. Levine, Julie K. Jadlowsky, Regina M. Young, Anne Chew, Wei-Ting Hwang, Elizabeth O. Hexner, Beatriz M. Carreno, Christopher L. Nobles, Frederic D. Bushman, Kevin R. Parker, Yanyan Qi, Ansuman T. Satpathy, Howard Y. Chang, Yangbing Zhao, Simon F. Lacey*, Carl H. June*†

PI: Edward Stadtmauer, MD IND 17297 and Clinicaltrials.gov NCT03399448 Sponsor: Tmunity and Parker Institute for Cancer Immunotherapy

35th Anniversary Annual Meeting & Pre-Conference Programs

Follow on CRISPR trial

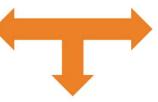
PACE CAR: Programmed Allogeneic CRISPR Edited

2020

1985

CD19 CAR T

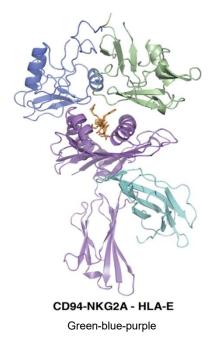
PACE CAR: Universal CAR T Project


- Goal: Develop universal CAR T cells for leukemia and lymphoma
- Approach: Human genome engineering to overcome xenogeneic rejection mechanisms
- Translational output: Use dogs as a model system to test candidate human universal CAR T cells

Approach: Next Gen uCAR T Cells

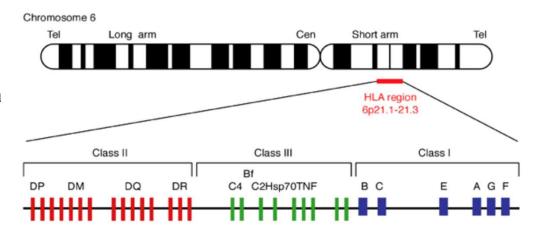
 Eliminate recognition by host <u>T cells</u> Eliminate Graft vs Host disease
 B2M, CIITA and TRAC knockouts

- 2. Eliminate recognition by host <u>NK cells</u> Eliminate "missing self" and "stressed self" => HLA-E SCT expression
- Test in large animal model
 Xeno infusions of hCART19 B2M-TRAC-CIITA-HLA-E
 => Dogs with lymphoma



4. Test in patients w lymphoma Allo infusions of hCART19 B2M-TRAC-CIITA-HLA-E => Humans with lymphoma

HLA-E as a decoy (inhibitory) ligand


Hypothesis: HLA-E*01:03 (over-)expression will enable donor TKO T cells to avoid recognition by host/recipient NK cells.

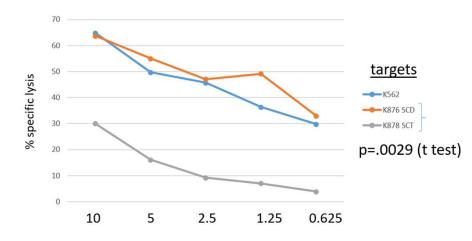
HLA-E

- 2 alleles
 - E*01:01 R107
 - E*01:03 G107
- leader peptides MHC 1a
 - pathogens
- widely expressed
- inhibitory for NKG2A
- activating for NKG2C

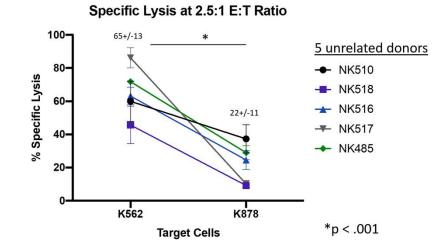
Braud et al. Nature 1998 Kaiser et al. PNAS 2008

Gene map of the human leukocyte antigen (HLA) region

#SITC2020


2020

1985

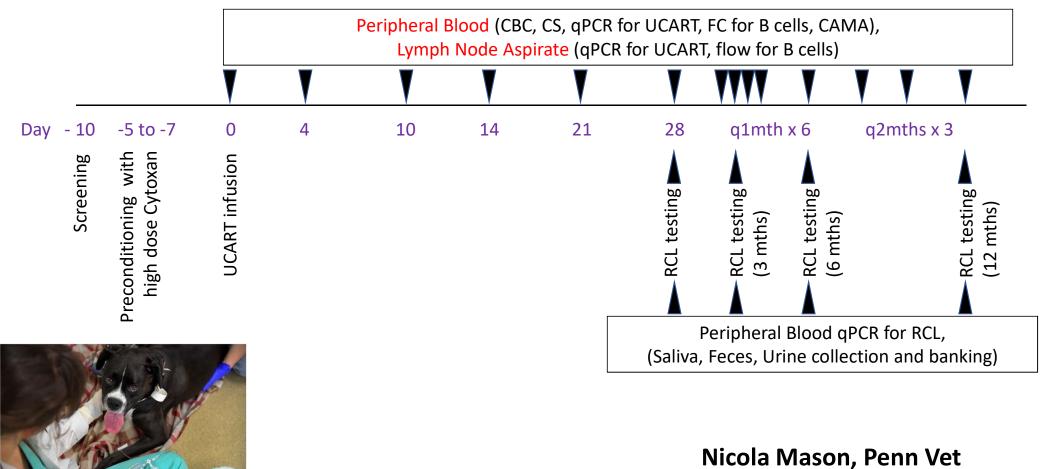

Triple-Edited T Cells with HLA E Decoy Avoid T and NK Cell Mediated Lysis

HLA-E SCT reduces NK mediated lysis

HLA-E*01:03 SCT reduces NK cell mediated lysis

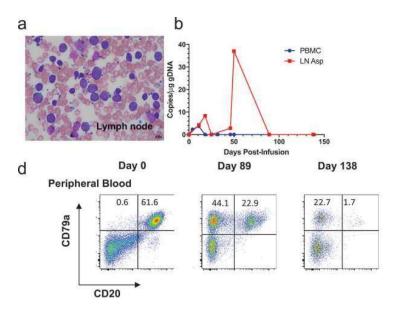
E:T Ratio

4h ⁵¹Cr release assay


Effectors: cytokine-activated donor NK518

Targets: K562 (wild type) K876 SCD (no peptide) K878 SCT (leader peptide)

Linette lab, unpublished


Ongoing Trial: Test Human uCART TRAC-CIITA-B2M-HLA-E SCT in Canine Trial

Anti-dog CD19 and CD20 CARs constructed

Example: Treatment of Dogs with Autologous CD20 CAR T Induces Target Loss Similar to Human Patients

Anti-dog C20 CARs constructed

CD20 reference	MKSPTAMY PVQKI I PKRMPSVVGPTQNFFMRESKTLGAVQIMNGLFHIALGSLLMIHTDV
Pre-treatment	MKSPTAMYPVOKIIPKRMPSVVGPTONFFMRESKTLGAVOIMNGLFHIALGSLLMIHTDV
Post-treatment	MKSPTAMY PVOKI I PKRMPSVVGPTON FFMRESKTLGAVO IMNGLFH I ALGSLLMI HTDV
Exon	11111111111111111111111111111111111112222
CD20 reference	YAPICITMWYPLWGGIMFIISGSLLAAADKNPRKSLVKGKMIMNSLSLFAAISGIIFLIM
Pre-treatment	YAPICITMWYPLWGGIMFIISGSLLAAADKNPRKSLVKGKMIMNSLSLFAAISGIIFLIM
Post-treatment	YAPICITMWYPLWGGIMFIISGSLLAAADKNPRKSL
Exon	22222222222222223333333333333333333444444
CD20 reference	DIFNITISHFFKMENINLIKAPMPYVDIHNCDPANPSEKNSLSIOYCGSIRSVFLGVFAV
Pre-treatment	DIFNITISHFFKMENLNLIKAPMPYVDIHNCDPANPSEKNSLSIQYCGSIRSVFLGVFAV
Post-treatment	
Exon	444444444444444444444444444444444444444
CD20 reference	MVIFTFFQKLVTAGIVENEWKKLCSKPKSDVVVLLAAEEKKEQPIETTEEMVELTEIASQ
Pre-treatment	MVIFTFFQKLVTAGIVENEWKKLCSKPKSDVVVLLAAEEKKEQPIETTEEMVELTEIASQ
Post-treatment	DVVVLLAAEEKKEQPIETTEEMVELTEIASQ
Exon	555555555555555555555555555555666666666
CD20 reference	PKKEEDIEIIPVQEEEEELEINFAEPPQE
Pre-treatment	PKKEEDIEIIPVQEEEEELEINFAEPPQE
Post-treatment	PKKEEDIEIIPVQEEEEELEINFAEPPQE
Exon	666666666666666666666666666666666666666

Panjwani MK, et al. Establishing a model system for evaluating CAR T cell therapy using dogs with spontaneous diffuse large B cell lymphoma.

Oncoimmunology. 2019 Oct 23;9(1):1676615. doi:

Summary

- Cell therapies during COVID
- CAR T cell dysfunction and NK T transition occurs in vitro and in vivo
- Allogeneic "off the shelf" CAR T cells in dogs ongoing

Colleagues and Patients: Thank you!

Center for Cellular Immunotherapies

Anne Chew Regina Young Avery Posey Sangya Agarwal Lexus Johnson Tatiana Blanchard Mauro Castellarin Lexus Johnson Shunichiro Kuramitsu Philipp Rommel John Scholler

<u>T Cell Engineering</u> Yangbing Zhao Jiangtao Ren Chongyun Fang Xiaojun Liu Shuguang Jiang <u>CVPF</u> **Bruce Levine Don Siegel** Theresa Colligon Clare Taylor Anne Lamontagne Alex Malykhin

<u>PDCS</u> Simon Lacey Joseph Fraietta Lymphoma Team Steve Schuster Marco Ruella Elise Chong Dan Landsburg Anthony Mato Andy Minn Lab Joseph Benci Barzin Nabet Lexus Johnson

<u>Penn Vet</u> **Nicky Mason** Kazim Panjwani

Institute for Immunology John Wherry

Penn Epigenetics Institute Shelley Berger Charly Good

PARKER

for CANCER IMMUNOTHERAPY

Patients and

Families

STAND

TMUNITY

The Children's Hospital of Philadelphia®

<u>CHOP</u> Stephan Grupp David Barrett Shannon Maude

U NOVARTIS