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molecular markers
morphology

spatial localization
physical properties

functions
developmental origins

transcription factor dependency
growth factor dependency

chromatin states
biochemical states

…

How do we define and classify cell types?



• Purity: Defined cell types may not be pure using the historically  defined 
markers

• Species: The more well-defined mouse cell types may not  directly 
translate to human

• Variations: An immune response induces new and unexpected states

 Do existing ‘standard’ set of surface markers truly define distinct   

immune cell types?

 Are there more cell subsets that are not currently appreciated?

Limitations of current cell type/state definitions



1 dimension
(1860s)

1 population defined through 
morphology H&E staining 

Lineage Negative

1-20 dimensions
(1953)

Embracing the revolution in single cell approaches 
to define immune cell identity

5 populations defined through 
flow cytometry analysis 

Over the years, the blood  myeloid cell population was defined from 1 to 10 cell populations

How can we revisit our classification of human cell types?



1 dimension
(1860s)

1 population defined through 
morphology H&E staining 

Lineage Negative

1-20 dimensions
(1953)

Embracing the revolution in single cell approaches 
to define immune cell identity

5 populations defined through 
flow cytometry analysis 

Over the years, the blood  myeloid cell population was defined from 1 to 10 cell populations

Solution: Generating detailed map through systematic 
single-cell profiling to enable data-driven molecular definition of cell types 



1 dimension
(1860s)

1 population defined through 
morphology H&E staining 

Lineage Negative

1-20 dimensions
(1953)

Embracing the revolution in single cell approaches 
to define immune cell identity

1000’s of dimensions
(2017) 

5 populations defined through 
flow cytometry analysis 

10 populations defined through 
single cell genomics analysis

Over the years, the blood  myeloid cell population was defined from 1 to 10 cell populations

Mono1
(CD14)Mono2

(CD16)

Mono3
Mono4

DC3
(CD14-like)

DC4 (CD1C– CD141–)

DC6
(pDC) DC1(CD141)

DC2

(CD1C)

DC5

Villani et al. Science 2017 Apr 21;356(6335).  



Revolution in genomics from 
bulk to single cell analyses

Fruit bowl 
Complex cellular composition

Fruit smoothie
Blending information from all cells and 

derive an average

Composition AnalysisComplex Mixture

Adapted from ‘The Art of Neat and Tidy’, Ursus Wehrli



Revolution in genomics from 
bulk to single cell analyses

Fruit bowl 
Complex cellular composition

Composition AnalysisComplex Mixture

Fruit bowl deconvolution
Identifying all cells present through single 

cell genomics analyses

Adapted from ‘The Art of Neat and Tidy’, Ursus Wehrli



Even specific families of cells 

have clear distinctions (e.g. T Cells vs B Cells)



Even specific families of cells 

have clear distinctions (e.g. T Cells vs B Cells)
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Strategies – working towards precision medicine

BULK

scRNAseq

Adapted from Shalek and Benson, Sci. Transl. Med. 9, eaan4730 (2017)

• Identify cells driving irAEs

• Biomarker discovery

scRNAseq

over multiple 

time points &

conditions



A single-cell genome image of polytene
chromosomes from insects 

from 1882 monograph by Flemming

Analysis at single cell level is an old concept

Blainey et al, 2014

But technology is now allowing us to do this at scale

Millions of single-cells can be analyzed by flow cytometry or 
mass cytometry, but the challenge remain that parameters to 

be measured have to be pre-determined
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Blainey et al, 2014
HCA White Paper. 2017

A single-cell genome image of polytene
chromosomes from insects 

from 1882 monograph by Flemming

Analysis at single cell level is an old concept
but it is scalable today!



Inference – from single-cell data to cancer biology



Redefining the human system at single cell resolution has 
tremendous potential for biology & medicine

HCA White Paper. 2017
https://www.humancellatlas.org/files/HCA_WhitePaper_18Oct2017.pdf



Vignette #1: Unraveling drug mechanisms of 
action in vivo at unprecedented resolution

Patricia McCoon Amy Yang Xu

Work in collaboration with AstraZeneca

Biological question: Can we improve the outcome of ICI 
inhibitor therapy by leveraging innate immunity?
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Danvatirsen, a STAT3-targeting therapeutic ASO drug, 

enhances responses to PDL1-targeting therapy

STAT3
• Ubiquitously expressed TF known to 

regulate immune suppression in TME

Danvatirsen
• Inhibits STAT3 levels in stromal and 

immune cells

• Safety and efficacy demonstrated as 
monotherapy & in combination with 
anti-PDL1 durvalumab in Phase 1/2 
clinical studies

• How does it work? Days after start of antibody treatment

Patricia McCoon



Working hypothesis:

 Preclinical and clinical immunophenotyping & “bulk” gene expression results
suggest that Danvatirsen reduces immunosuppression in the TME

Adapted from Mellman et al  (2011) Nature 480:480 Patricia McCoon



 Preclinical and clinical immunophenotyping & “bulk” gene expression results
suggest that Danvatirsen reduces immunosuppression in the TME

Adapted from Mellman et al  (2011) Nature 480:480

 Can we leverage single-cell approach to unravel at finer granularity 
cellular components and associated mechanisms involved 

Working hypothesis:



Experimental design 

Treatment groups
1. Vehicle
2. Control ASO
3. Anti-PDL1
4. STAT3 ASO
5. Anti-PDL1+STAT3 ASO 

(Combination)  

CT26 tumor cell  
implantation 

(subcutaneous)

d0 d9 d13

Anti-PD-L1

d6 d16d3

Measure
Tumor 
growth

Measure 
Tumor 
growth

d7 d8d5 d20 d21

Measure 
Tumor 
growth

d4

Control or muSTAT3 ASO

Measure 
Tumor 
growth

d14d10 d11 d12 d15 d17 d18 d19Day

Single-cell
Analysis

Single-cell
Analysis

Single-cell
Analysis

d2d1

Using scRNAseq analysis, can we define: 
1. cellular ecosystem
2. cell state spectrum
3. associated regulatory programs 

 Analyze ≈ 5,000 cells/treatment group
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Single-cell RNA sequencing predicts 19 cell populations in TME
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 Are there clusters enriched with cells from a particular treatment group?
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Granulocyte cluster is enriched with cells from 
STAT3 treatment group
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 Are there particular gene modules that could explain better immunity?
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Planning follow-up experiments

Treatment groups
1. Vehicle
2. Control ASO
3. Anti-PDL1
4. STAT3 ASO
5. Anti-PDL1+STAT3 ASO (Combination)  

CT266 tumor cell  
implantation 

(subcutaneous)

d0 d9 d13

Anti-PD-L1

d6 d16d3

Measure
Tumor 
growth

Measure 
Tumor 
growth

d7 d8d5 d20 d21

Measure 
Tumor 
growth

d4

Control or muSTAT3 ASO

Measure 
Tumor 
growth

d14d10 d11 d12 d15 d17 d18 d19Day

Single-cell
Analysis

Single-cell
Analysis

Single-cell
Analysis

d2d1

Single-cell temporal analyses of TME cellular ecosystem 
to dynamically map populations and mechanisms 

involved in promoting anti-tumor immunity 

Patricia.McCoon@astrazeneca.com



Vignette #2:
Empower future translational efforts through 

human cell atlas initiatives

Biological question: Do we know all the cells 
defining the ‘healthy’ human system?



The quest of finding the “guilty” cells driving diseases:

• ~ 30 trillion cells

• Text book  ~ 300 ‘major’ cell types?

• Science  ~ 100 subtypes of immune cells!

Do we really know cells defining the human system?



Single cell strategies identified NEW blood DC and monocyte populations

Villani et al. Science 2017 Apr 21;356(6335).  

Original Classification
(6 cell types)

Revised Classification
(11 types; 5 new)

Strategy

Building cell composition map

Dimension 1

D
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n
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Single cell strategies identified NEW blood DC and monocyte populations

Villani et al. Science 2017 Apr 21;356(6335).  

Original Classification
(6 cell types)

Revised Classification
(11 types; 5 new)

Strategy

Building cell composition map

Dimension 1

D
im

e
n

si
o

n
 2

POTENTIALLY MUCH MORE TO DISCOVER

32



Mission: To create comprehensive

reference maps of all human cells—

the fundamental units of life—as a

basis for both understanding human

health and diagnosing, monitoring,

and treating disease

https://www.humancellatlas.org

Scaling-up the effort: working towards Immune Cell Atlas

AS DCs



Human Immune Cell Atlas Project at the Broad

Sisi
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Supported by Manton Foundation



The blood as a window for global immune system analysis:
most commonly accessible sample in the clinic 

Modified from Brondin P and Davis M. Nat Rev Immunol 2017



Objectives of the human immune cell atlas

• Define & benchmark experimental procedures and computational 
algorithms to empower other atlas efforts

• Identifying unknown rare cells and better define cell state spectrum   
Mapping all existing cell types at frequency  of at least ~0.1%

• Developing better tools for Immunology Community: 

Defining minimal set of discriminatory markers for each populations

Establish “healthy” reference set to study disease

• Developing better tools for Clinical Community: 

Apply new knowledge to revisit clinical tools (e.g. CBC 2.0)

36



How to build a cell atlas?

 Developing and benchmarking experimental & 
analytical frameworks that will empower the 

Community to undertake translational studies across 
a wide-range of diseases



Key considerations in cell atlas design



Summary of considerations for human blood profiling

1. No differences across anticoagulants

2. No difference across cell isolation procedures (e.g Ficoll, 
lymphoprep, RBC lysis)  

3. No difference between sorting and bead enrichment*                   
(* given specific sorting parameters that will be shared)

4. No major differences between fresh and frozen*, important 
consideration given biobanking efforts (*excluding PMNs)

5. Enrichment strategy (by FACS or bead) can empower more 
cost-effective single cell analyses of rarer cell population

https://www.protocols.io/groups/hca
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B- For 9 donors:
1. Whole blood (only depleting RBCs): 1 channel (~4K cells)
2. PBMCs (depleting RBCs + depleting granulocytes): 1 channel (~4K cells)
3. 8-bucket approach to enrich for rarer cells: 8 channels

Sampling strategy of human blood

A- For 8 donors: loaded 8 channels of 10X of frozen PBMCs (~32K/indiv.)



Droplet-based approach (10X Genomics) overview

http://mccarrolllab.com/drop-seq-troubleshootingtutorial-with-pictures-videos/

Functionalized Gel Bead



Emulsion-based 10X genomics Approaches

Library & Sequencing



AMI = 0.0582

Colored by individual donor

0 1
Mix Separated

AMI

906,536 single cells from 17 individuals



• Sub-clustering analyses

• Defining markers

• Defining cell spectrum

Ongoing analyses

Sisi
Sarkizova

Bo 
Li

Orr 
Ashenberg



https://preview.data.humancellatlas.org

open access, pre-publication; 1st pre-release: 4/4/18

Empowering downstream analyses:

• Query genes

• Cell type

• Trajectory



Vignette #3: Bench-to-bedside translation effort example
Improving ICI efficacy through better management of irAEs

Translational question: Can we map comprehensively 
the underpinnings of ICI-related irAEs



Tumor cell

T-cell

Background: Immune checkpoint inhibitor
therapy and associated complications 

immune related adverse events (irAEs)

MGH experience: # of ICI treated
patients and distribution of irAEs, 

Reynolds KL, ASCO-SITC Meeting, 2018

Lifesaving potential ICI therapy is severely limited by irAEs



1. Develop expertise in the clinical recognition of these 

atypical presentations and the management of toxicity

2. Coordinate oncology and interdisciplinary care

3. Develop multi-disciplinary and cross-cutting translational 

research program

MGH Vision: Becoming Center of Excellence in this Novel Arena
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Severe Immunotherapy Complications (SIC) Service



Immunotherapy Toxicity Service 
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Overview of SIC Service Translational Effort

Leveraging MGH unique multi-disciplinary environment to empower our 
bedside-bench-bedside SIC translational research program

SIC Service Team 

& Oncology

Translational

Team

Clinician

Specialist



Leveraging MGH unique multi-disciplinary environment to empower our 
bedside-bench-bedside SIC translational research program

SIC Service Team 

& Oncology

Translational

Team

Clinician

Specialist

Surgery team

IR team

Nursing team

Clinical research 

coordinators

Administrative support

Melanoma 

Biobank Group

Rapid Autopsy

Overview of SIC Service Translational Effort



How Can We Generate a “Full Picture”? 

https://pcidss.wordpress.com/2015/04/20/



Translational effort: exploration of scale, time, and modalities

At Diagnosis (pre-steroid)

- Blood, serum, plasma, stools

- Relevant body fluids 

- Biopsy affected tissue(s)

Post-Steroids; collection until recovery

- Blood, serum, plasma, stools

- Body fluids (e.g., urine, CSF, SF)

Collect if patient relapse or develop other irAEs



Developing irAEs Prediction Models

Prediction model
- Culprit cell types

- Activated molecular 

circuitry

- Disease diagnosis 

and prognosis

- Treatment response

Single cell RNA 

analysis



• 61 yo with metastatic 
melanoma who 
developed grade 3 
diarrhea after 12 cycles 
of nivolimuab

• Colonoscopy showed 
edematous colon

• Path: Architecturally 
preserved active colitis 
with increased 
intraepithelial
lymphocytes and 
surface epithelial 
damage

• 75 yo with 
metastatic 
melanoma who 
developed grade 1 
diarrhea after 3 
cycles of nivolumab

• Colonoscopy 
showed diverticulae 
and was otherwise 
normal

• Path: normal colon

Preliminary single cell data: colitis

Michael Dougan Molly Thomas

Control Case: Irritable 
Bowel

Microscopic 
Colitis



Control Case: Irritable 
Bowel

Microscopic 
Colitis

Preliminary single cell data: colitis



Myeloid
Cells

B Cells

Epithelial
Cells

T Cells

Stromal/
epithelial

Lymphocyte

Preliminary single cell data: colitis

Control Case: Irritable 
Bowel

Microscopic 
Colitis



More comprehensive picture we added dimensionalities
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Cellular composition of irAE arthritis synovial fluid 
is more complex than clinical differential

Clinical Readout Patient 1 Patient 2 Patient 3

Total cell counts 
(cells/ul)

26 14940 11006

Neutrophil 2% 99% 6%

Lymphocyte 33% 1% 48%

Monocyte 17% 0% 6%

Eosinophil 1% 0%

Macrophage/Lining Cell 47% 0% 40%

Mazen NasrallahMinna Kohler Sara Schoenfeld



Developing irAEs Prediction Models

Prediction model
- Culprit cell types

- Activated molecular 

circuitry

- Disease diagnosis 

and prognosis

- Treatment response

Single cell RNA 

analysis

Epigenomics of 

infiltrating cells

Secreted factors

Ligand-receptor

Tissue organization 

& cell-cell comm.

Comparison 

between tissues 

from same indiv.
Function and 

mechanisms

DNA mutations 

and modification

(TCR repertoire)

Mapping cell 

activation states



Envisioned outcomes of SIC Translational Research Program

1. Identify set of biomarkers to be implemented in clinic

2. Development of better therapy strategies to treat 
autoimmune-toxicities while maintaining anti-tumor 
immunity

3. Identifying novel druggable targets with 
immunosuppressive potential 



Final thoughts …



The future: integration of many single cell modalities

Spatial ‘Omics”  integrating readout directly in situ
• Multiplex FISH (SeqFISH, MERFISH)

• In situ RNA-seq (e.g. FISSEQ)

Multi-omics
• DNA + RNA (G +T)

• RNA + protein (T + P)
• Epigenome + RNA

Modified from Kelsey et al. Science 06 Oct 2017



http://www.genomicglossaries.com/presentation/SLAgenomics.asp

 Billions of data points/experiment

 Need to innovate  & develop new  
analytical frameworks!

Tackling Big Data Challenge

 Interpretation: empowering 
bench-to-bedside translation of 
findings
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Human Immune Cell Atlas – a team effort

Nir Hacohen Aviv Regev
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Villani Lab & MGH SIC Translational Team
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