SITC 2015

BIOMARKERS IN CANCER IMMUNOTHERAPY: OASIS OR MIRAGE?

Sunday November 8

Biomarkers in Cancer Immunotherapy: Overview

SITC 2015

9:30 a.m. - 9:45 a.m.

Welcome and The Science of Biomarkers

9:45 a.m. - 10:15 a.m.

Biomarkers for Cancer Immunotherapy Debate

10:15 a.m. - 11:05 a.m.

Panel Discussion with Open Audience Questions

11:05 a.m. – 11:35 a.m. Other Topics in Biomarkers Discussion:

Blood-Based Markers

Tissue Markers

11:35 a.m. - 11:55 a.m.

Future Biomarkers Panel Discussion

Daniel S. Chen, MD, PhD – Genentech

Moderator: Maria Karasarides, PhD - AstraZeneca

Pro: Daniel S. Chen, MD, PhD – Genentech

Con: Steve Averbuch, MD - Bristol-Myers Squibb

Moderator: Maria Karasarides, PhD – AstraZeneca

Steve Averbuch, MD – Bristol-Myers Squibb

Daniel S. Chen, MD, PhD – Genentech

Marc Theoret, MD – US Food and Drug Administration Thomas Gajewski, MD, PhD – University of Chicago

Jeffrey Weber, MD, PhD - New York University

Moderator: Adrian Bot, MD, PhD – Kite Pharma, Inc.

Michael D. Kalos, PhD – Eli Lilly and Company

Naiyer Rizvi, MD – Columbia University Medical Center

Moderator: Adrian Bot, MD, PhD – Kite Pharma, Inc.

Lisa H. Butterfield, PhD – University of Pittsburgh

Suzanne L. Topalian, MD – Johns Hopkins University

Michael D. Kalos, PhD - Eli Lilly and Company

Naiyer Rizvi, MD - Columbia University Medical Center

11:55 a.m. - Noon

Closing Remarks
Celebrating Cancer Immunotherapy Vondwice Squibb

Biomarkers for Cancer Immunotherapy in 10 minutes.

SITC Annual Meeting 2015

Daniel S. Chen MD PhD

Cancer Immunotherapy Franchise Head, Product Development, Genentech/Roche Adjunct Clinical Faculty, Stanford University

CancerImmunology

Objectives

Cancer Immunotherapy Biomarker Efforts

• **Predictive**- *Identifying subsets of patients for whom a cancer immunotherapy is most likely to be effective*

 Prognostic- Identifying markers that are associated with a favorable or poor disease-related outcome

• **Pharmcodynamic**- mechanism related biomarkers modulated by a therapeutic intervention

• On-treatment marker of efficacybiomarkers that are measured during or after a therapeutic intervention that are associated with biologic activity and clinical efficacy

Chen, DS SITC 2015

Start with the Biology: The Cancer-Immunity Cycle

PD-L1 is a Critical Source of Immune Suppression in Cancer

Immune cells only – (IC)

Tumor cells only – (TC)

Both tumor & immune cells – (TC & IC)

Predictive penefit in bladder cancer (ORR/OS)¹

Predictive of benefit in lung cancer (ORR/PFS/OS)²

WCLC 2015

¹IMvigor 210 ECC 2015, ²POPLAR ECC 2015

Interpreting PD-L1 IHC Biomarker Data: a Checklist

- What IHC antibody is being used? In what disease?
- Does this IHC antibody reliably stain human FFPE tumor tissue?
- Can appropriately trained pathologists provide concordant scoring of stained tissue?
- What tissue is being used to assess PD-L1 by IHC?
- What is the definition of PD-L1+ with this assay?
 - Cutoffs?
 - PD-L1 on immune cells or tumor cells or both or neither?

What is treatment effect on PD-L1+ vs PD-L1- from randomized studies on PFS and OS? Activity can be seen by ORR, but to define benefit generally requires PFS, OS (unless ORR is very high)

Atezolizumab: PDL1 biomarker and QS

POPLAR: 2L+ NSCLC

Atezolizumab: Doubled likelihood of survival in PD-L1-high tumors (IC2/3 or TC2/3)

Vansteenkiste et. al. ECC 2015

Nivolumab and Pembrolizumab: PDL1 biomarker and OS

Checkmate-057 and Checkmate-017: 2L+ NSq and 2L Sq NSCLC

Nivolumab efficacy (at 3mg/kg Q2W) in 2L+ NSq1 and Sq2 NSCLC

	ORR (%)*		mPFS (mos)		mOS (mos)		
	NSq	Sq	NSq	Sq	NSq	Sq	
All patients	19	20	2.3	3.5	12.2	9.2	All Patients
≥1%	31	18	n/a	n/a	17.7	9.3	racients
≥5%	36	21	n/a	n/a	19.4	10	5514
≥10%	37	19	n/a	n/a	19.9	11	PDL1 High

Keynote-001: 2L+ NSq and Sq NSCLC

Pembrolizumab efficacy (at 10mg/kg Q2W or Q3W) in 2L+ NSCLC (both histology)³

	ORR (%)⁴	mPFS (mos)	mOS (mos)	A11
All patients	18	3.0	11.3	← All Patients
TPS ≥1%	9	2.1	8.6	
TPS 1-49%	15	2.3	7.8	
TPS ≥50%	41	5.8	15.5	PDL1 High

¹ Paz-Ares et al., ASCO 2015; ² Spigel et al., ASCO 2015; ³ Soria et al., ECC 2015; ⁴ Rivzi et al., NEJM 2015

Immune Biology and Biomarker Associations are Strong

PD-L1 expression
IFN-γ producing CD8+ T cells
Genomic instability
Pre-existing immunity

CD8+ T cell density associated with response to pembrolizumab in melanoma¹

Tumor T_{eff} gene signature associated with OS with atezolizumab in NSCLC²

- 1. Tumeh, et al. Nature 2014
- 2. Schmid, et al. ECC 2015

Diversity in the tumor immunome

So What's the Problem?

A Complex System

So What's the Problem?

Some Biomarker Negative Patients will Benefit with Durable Responses

Unselected Patients

Biomarker+ Patients

Biomarker-Patients

