SITC 2017

Ő

November 8-12 NATIONAL HARBOR MARYLAND

Gaylord National Hotel & Convention Center

November 8-12 • NATIONAL HARBOR, MD

SITC

(017)

Monotherapy Dose Escalation Clinical and Translational Data from the First-in-Human Study in Advanced Solid Tumors of IPI-549, an Oral, Selective PI3K-γ Inhibitor Targeting Tumor Macrophages

David S. Hong, MD

Society for Immunotherapy of Cancer

#SITC2017

Presenter Disclosure Information

David S. Hong, MD

The following relationships exist related to this presentation:

- Scientific Advisory Boards: Adaptimmune, OncoResponse
- <u>Research/Grant Funding</u>: Adaptimmune, AbbVie, Astra-Zeneca, Bayer, BMS, Lilly, Genentech, Genmab, Kywoya, LOXO, Pfizer, Amgen, Mirati, Ignyta, Merck, Medimmune, Novartis, Infinity, Daiichi-Sankyo, Eisai, Takeda, Molecular Template, Kite
- *Travel, Accommodations, Expenses*: MiRNA, LOXO
- Consulting or Advisory Roles: Amgen, Bayer, Baxter, Guidepoint Global, Janssen
- **Other Ownership Interests**: OncoResponse (Founder), Molecular Match (Advisor)

#SITC2

Authors and Affiliations

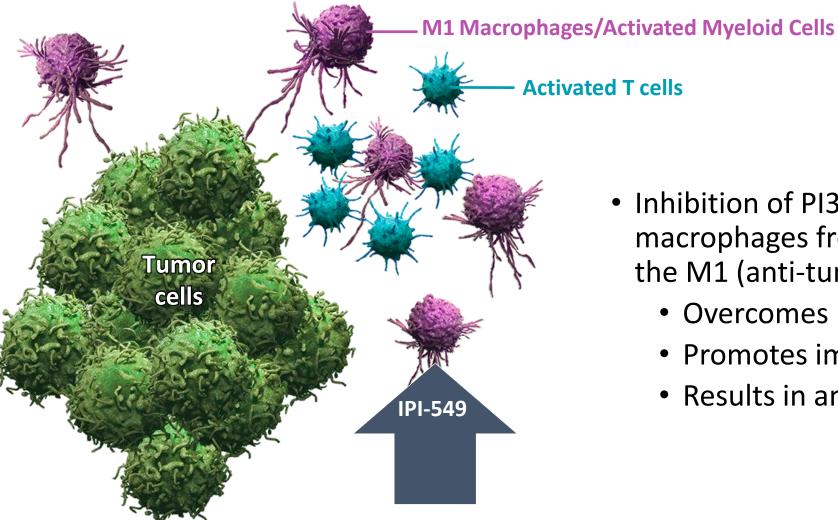
David Hong¹, Anthony Tolcher², Ryan Sullivan³, Geoffrey Shapiro⁴, Bartosz Chmielowski⁵, Antoni Ribas⁵, Les Brail⁶, Joseph Pearlberg⁶, Suresh Mahabhashyam⁶, Lucy Lee⁶, Claudio Dansky Ullmann⁶, Brenda O'Connell⁶, Jeffery Kutok⁶, Michael Postow⁷, Jedd D. Wolchok⁷

1. MD Anderson Cancer Center, Houston, Texas, USA

- 2. South Texas Accelerated Research Therapeutics, San Antonio, Texas, USA
- 3. Massachusetts General Hospital, Boston, Massachusetts, USA
- 4. Dana-Farber Cancer Center, Boston, Massachusetts, USA
- 5. Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
- 6. Infinity Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
- 7. Memorial Sloan Kettering Cancer Center, New York, New York, USA

PI3K-*γ* **Inhibition by IPI-549 Activates an Anti-Tumor Immune Response**

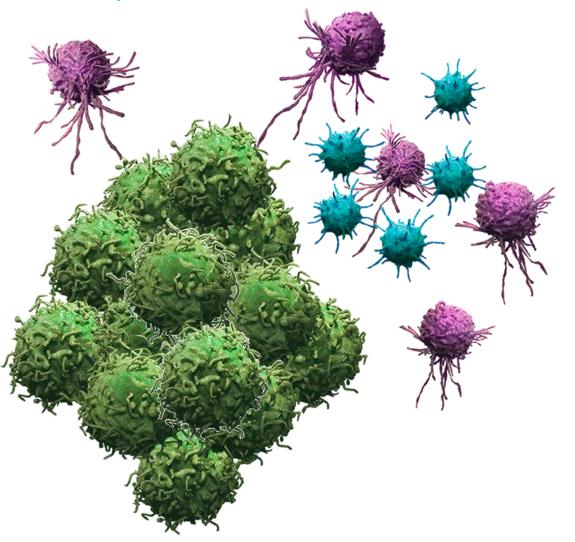
- Suppressed T cells


- Tumors maintain an immunosuppressive microenvironment through interactions with multiple cell types
- PI3K-γ signaling in macrophages/MDSCs plays a key role in maintaining this immunosuppressive tumor microenvironment
- Targeting macrophages/MDSCs may enhance T cell approaches and more fully restore antitumor immune response

Kaneda, et al. Nature. 2016 Nov;539:437-442; De Henau, et al. Nature. 2016 Nov;539:443-447.

Tumor

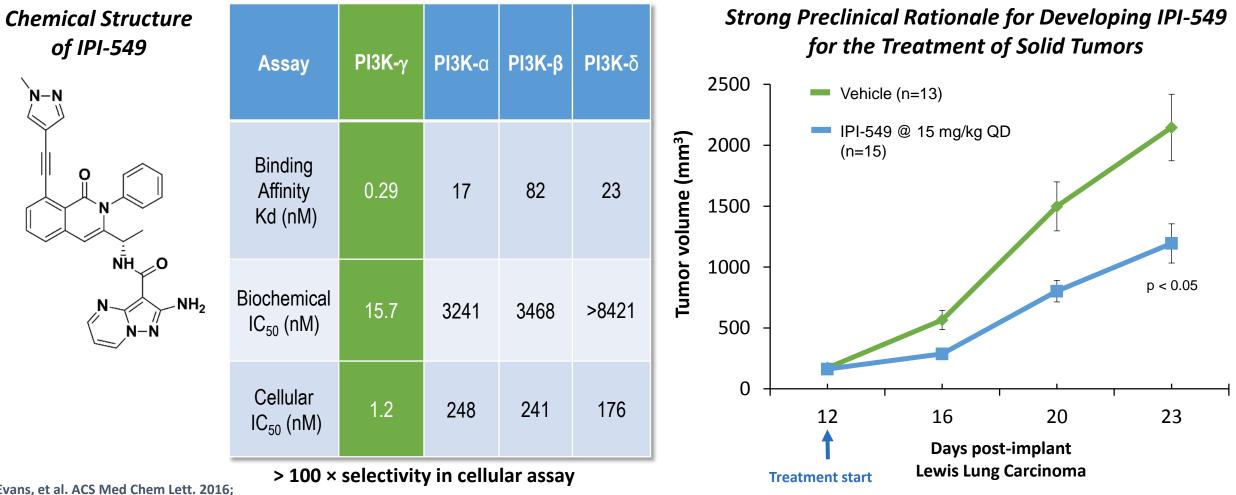
cells


PI3K-*γ* **Inhibition by IPI-549 Activates an Anti-Tumor Immune Response**

- Inhibition of PI3K-γ by IPI-549 reprograms macrophages from the M2 (pro-tumor) to the M1 (anti-tumor) type, which ultimately:
 - Overcomes immune suppression
 - Promotes immune stimulation
 - Results in anti-tumor immune response

Kaneda, et al. Nature. 2016 Nov;539:437-442; De Henau, et al. Nature. 2016 Nov;539:443-447.

PI3K-*γ* **Inhibition by IPI-549 Activates an Anti-Tumor Immune Response**



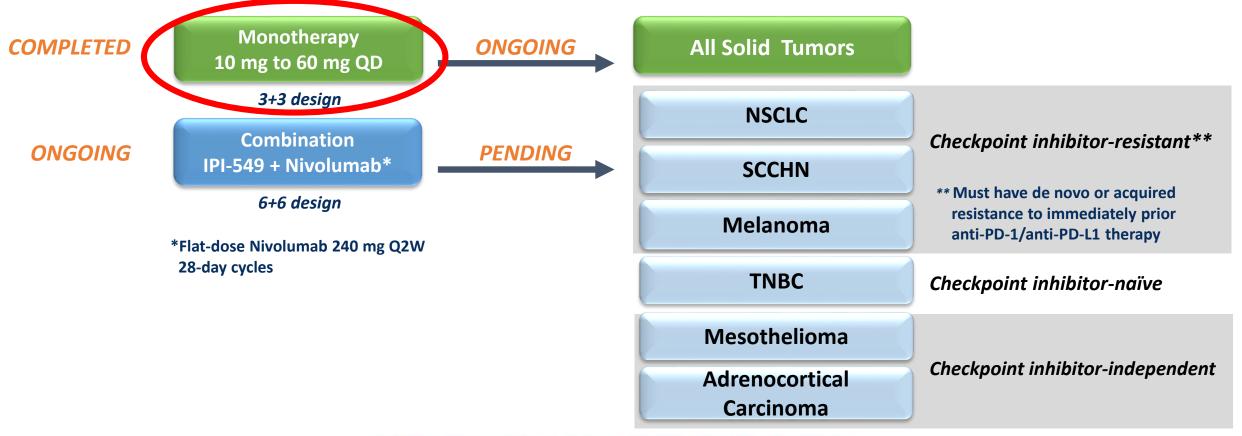
- Inhibition of PI3K-γ by IPI-549 reprograms macrophages from the M2 (pro-tumor) to the M1 (anti-tumor) type, which ultimately:
 - Overcomes immune suppression
 - Promotes immune stimulation
 - Results in anti-tumor immune response

Kaneda, et al. Nature. 2016 Nov;539:437-442; De Henau, et al. Nature. 2016 Nov;539:443-447.

IPI-549: A Potent, First-in-Class, Oral, Selective PI3K-γ Inhibitor

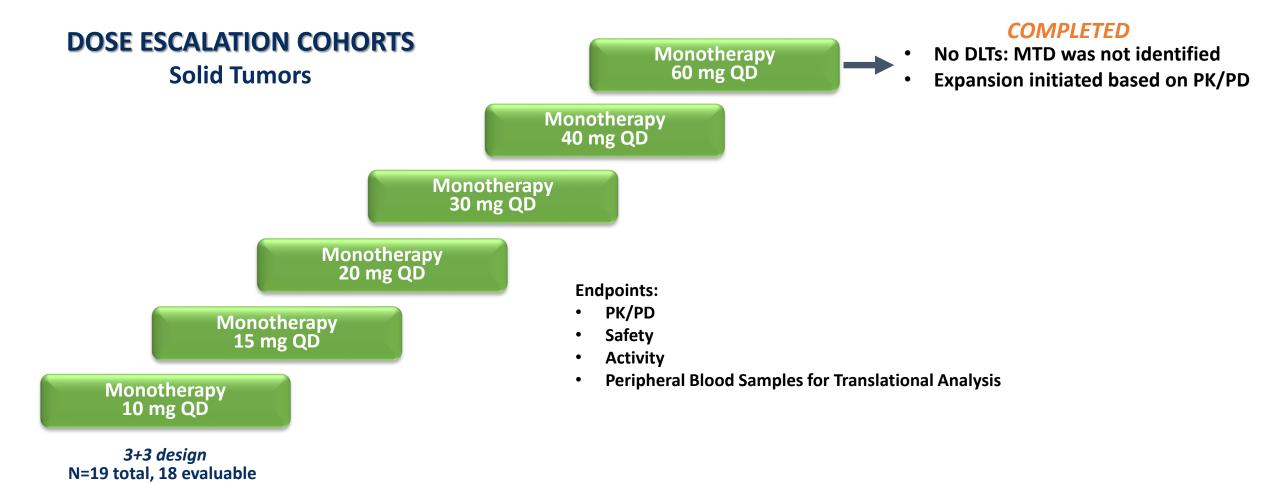
Evans, et al. ACS Med Chem Lett. 2016; Kutok, et al. immune Microenvironment: Transforming the Future of Cancer Therapies Meeting, 2015.

IPI-549-01: Trial Design (N~200)


DOSE ESCALATION COHORTS

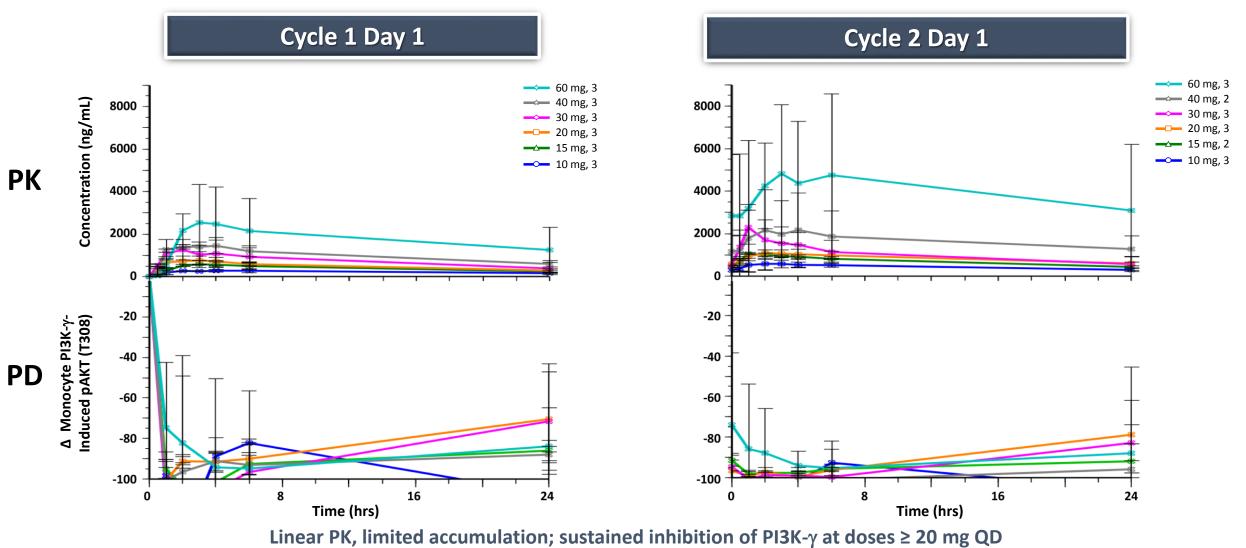
Solid Tumors Peripheral Blood Samples

EXPANSION COHORTS


Peripheral Blood Samples

Mandatory Pre-Treatment and On-Treatment Biopsies

IPI-549-01: Monotherapy Dose Escalation



Patient Demographics

Baseline Characteristics	All Patients N=19		
Age (years), median (range)	63 (42-83)		
Male, n (%)	7 (37)		
Female, n (%)	12 (63)		
ECOG Performance Status, n (%)			
0	7 (37)		
1	11 (58)		
# of Prior Lines of Therapy, median (range)	4 (0-11)		
Prior PD-1/PD-L1 Therapy, n (%)	2 (11)		

PK/PD Time Profile

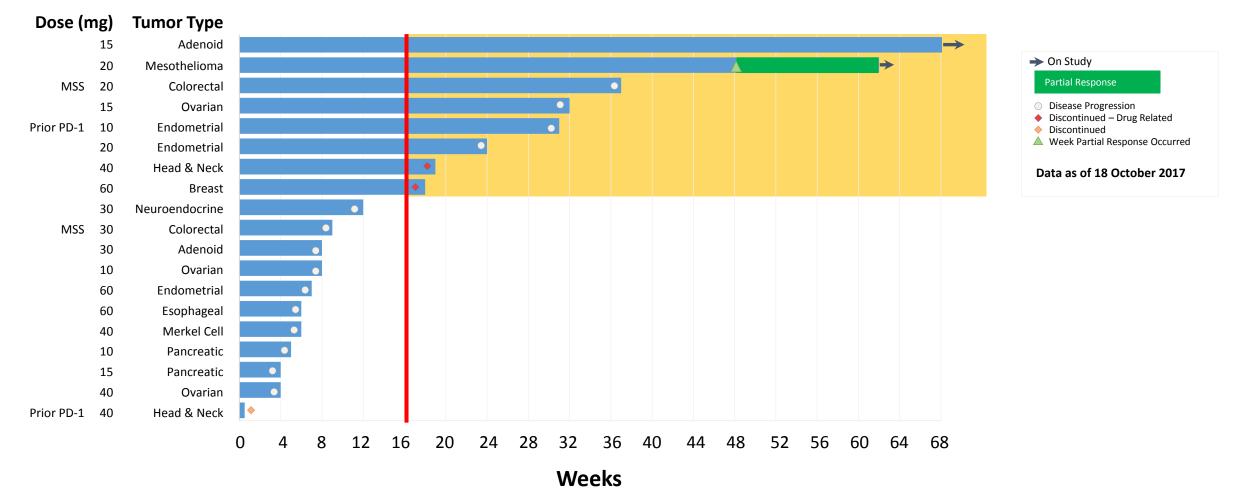
ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

Safety Summary (N=19)

- IPI-549 monotherapy has been well tolerated (doses up to 60 mg QD)
- No DLTs MTD was not identified
- Majority of reported AEs have been Grade 1-2 per NCI CTCAE
- No treatment-related SAEs or treatment-related deaths
- 2 patients discontinued study drug due to treatment-related AEs:
 - Grade 2 rash and Grade 2 ALT/AST increase
 - Grade 3 ALT/AST increase

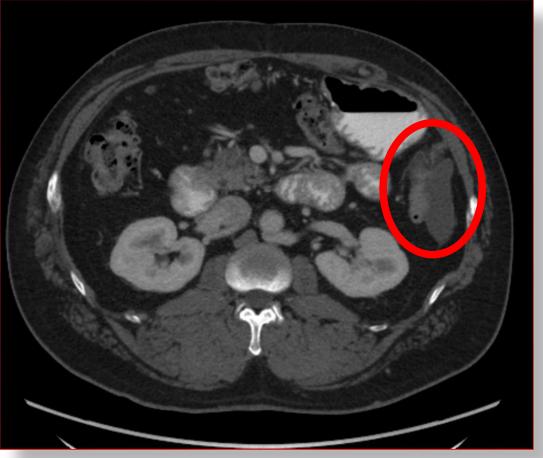
TEAEs >15% of Patients (All Causality; All Grades and Grade >3)

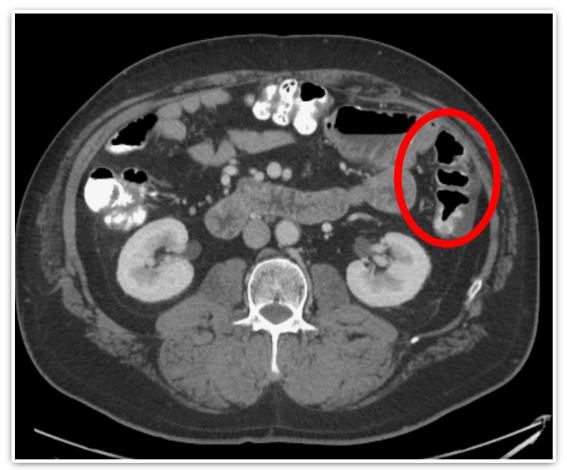
TEAE	All Grades n (%)	Grades <u>></u> 3 n (%)
Alanine aminotransferase increased	5 (26)	1 (5)
Aspartate aminotransferase increased	5 (26)	1 (5)
Anaemia	5 (26)	2 (11)
Fatigue	4 (21)	0
Diarrhoea	4 (21)	0
Cough	4 (21)	0
White blood cell count decreased	3 (16)	1 (5)
Rash maculo-papular	3 (16)	0
Nausea	3 (16)	0
Headache	3 (16)	0
Hypomagnesaemia	3 (16)	0
Pyrexia	3 (16)	0


Treatment-Related* TEAEs (All Grades and Grades >3)

Treatment-Related* TEAE	All Grades n (%)	Grades <u>></u> 3 n (%)	
Alanine aminotransferase increased	3 (16)	1 (5)	
White blood cell count decreased	2 (11)	0	
Rash maculo-papular	2 (11)	0	
Aspartate aminotransferase increased	2 (11)	1 (5)	
Headache	2 (11)	0	
Dysaesthesia	1 (5)	0	
Gamma-glutamyltransferase increased	1 (5)	0	
Hypomagnesaemia	1 (5)	0	
Paraesthesia oral	1 (5)	0	
Nausea	1 (5)	0	
Blepharospasm	1 (5)	0	
Dizziness	1 (5)	0	
Neuropathy peripheral	1 (5)	0	
Eye swelling	1 (5)	0	
Hypoalbuminaemia	1 (5)	0	
Diarrhoea	1 (5)	0	
Blood cholesterol increased	1 (5)	0	
Hyponatraemia	1 (5)	0	
Ocular hyperaemia	1 (5)	0	
Anaemia	1 (5)	0	
Fatigue	1 (5)	0	
Pruritus	1 (5)	0	
Hypercalcaemia	1 (5)	0	

Data as of 18 October 2017 *As assessed by Investigator

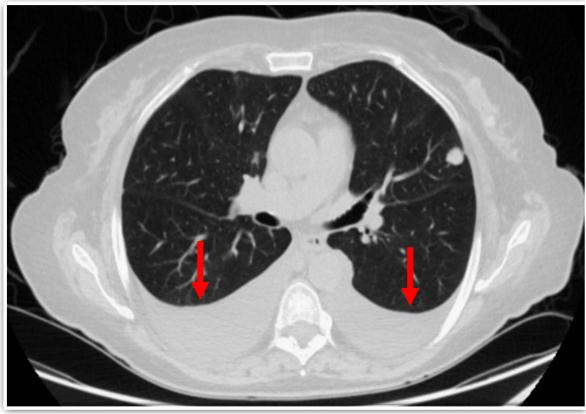

Time on Study (N=19)

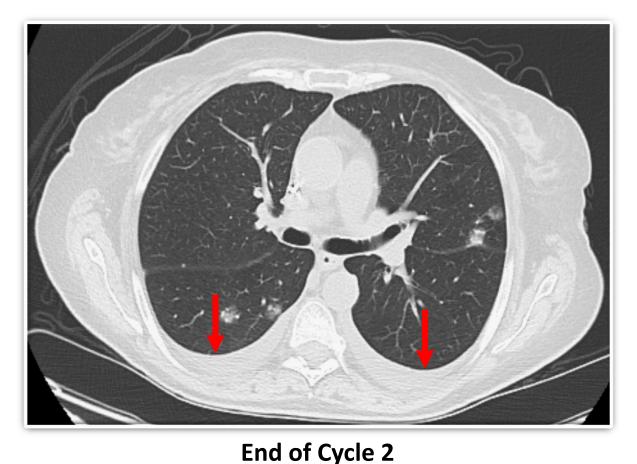


Clinical benefit defined as patients who have not progressed at 16 weeks (8/18 evaluable patients) ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

Partial Response in a Patient with Advanced Peritoneal Mesothelioma

- Original dx: October 2013
- 4 prior regimens, last regimen pemetrexed/carboplatin (DOT 2.5 mo)
- Patient remains on treatment >1 year


sito


Baseline End of Cycle 15
ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

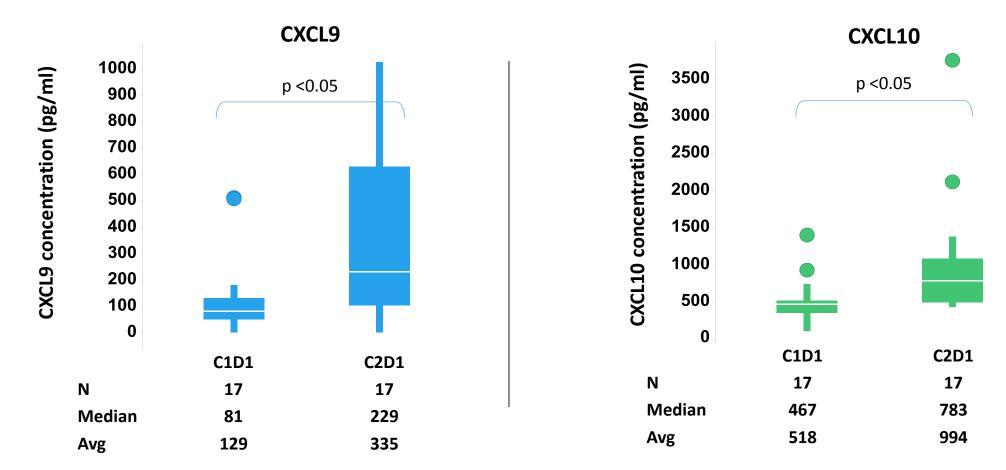
Improvement of Malignant Pleural Effusions in Heavily Pre-Treated Patient with KRAS+ MSS CRC

- Stage IV dx: July 2012 with 8 prior regimens (duration of last prior therapy: ~2 mos.)
- Extensive peritoneal carcinoma with ascites; bilateral pleural effusion, as well as liver and lung lesions
- On Monotherapy Tx for 36 weeks

Baseline

Translational Data in Peripheral Blood

- Monotherapy treatment enables demonstration of IPI-549-specific immunemodulatory activity
- Monotherapy dose escalation translational studies using peripheral blood include:
 - Serum cytokine/chemokine analysis (Milliplex luminex 61 analyte panel)
 - Immune subset analysis (Flow cytometry)
 - Gene Expression Profiling (RNA seq)



Initial Translational Data in Peripheral Blood Support IPI-549 On-Mechanism Immune Stimulation

- Evidence of immune stimulation
 - Up-regulation of interferon gamma (1) responsive factors
 - Reinvigoration (proliferation) of exhausted CD8+ T-cells
- Clinical benefit associated with markers of increased monocyte/ myeloid cell activation

Increase in Interferon-γ-Responsive Serum M1 Chemokines¹, Consistent with IPI-549-Induced Immuno-Stimulatory State

Similar increases in CXCL9 and CXCL10 were reported in patients receiving anti-PD-1 therapy ²

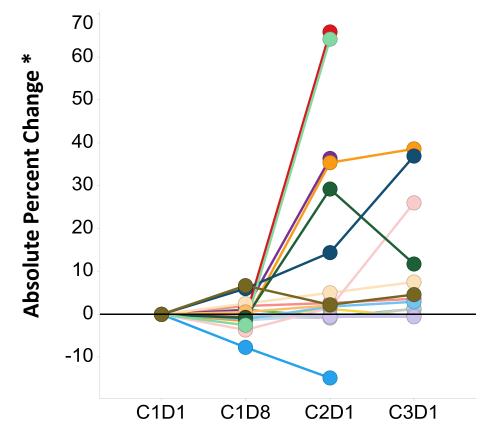
Goswami, et al. Cellular Immunology. 2017
 Choueiri, et al. Clin Cancer Res. 2016

Up-Regulation of Interferon-γ**-Responsive Gene Expression, Consistent with IPI-549-Induced Immuno-Stimulatory State**

responsive jenes	Fold increase at C2D1	P value	C1D1-monotherapy C2D1-monotherapy CD274 (PDL1)
CD274 (PDL1)	2.4	3.5 x 10⁻⁵	FCGR1B
FCGR1B	1.8	1.5 x 10 ⁻³	GBP2
GBP2	1.5	5.6 x 10 ⁻⁴	GBP5
GBP5	2.3	1.3 x 10 ⁻⁴	GBP1
GBP1	2.0	1.9 x 10 ⁻⁴	GBP4
GBP4	1.7	9.4 x 10 ⁻⁴	

RNA Seq peripheral blood across all dose levels

The above interferon- γ -responsive genes were among the top 30 most significantly differentially expressed genes

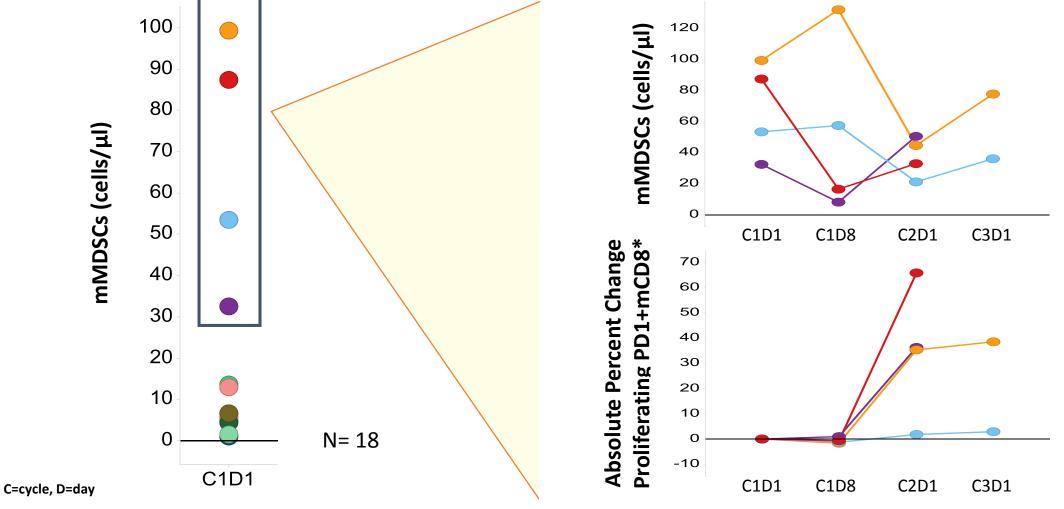

Initial Translational Data in Peripheral Blood Support IPI-549 On-Mechanism Immune Stimulation

- Evidence of immune stimulation
 - Up-regulation of interferon- γ -responsive factors
 - Reinvigoration (proliferation) of exhausted 008 + Teeks
- Clinical benefit associated with markers of increased monocyte/myeloid activation

Reinvigoration of Exhausted CD8+ Memory T cells

Proliferating PD1+ memory CD8+ T cells

- Increases in proliferating CD8+ T cells appear specific to PD1+ memory subset.
- Similar increases in proliferating PD1+ CD8+ memory T cells reported in melanoma patients receiving anti-PD-1 therapy. (Huang et al. Nature. 2017;545:60-65)

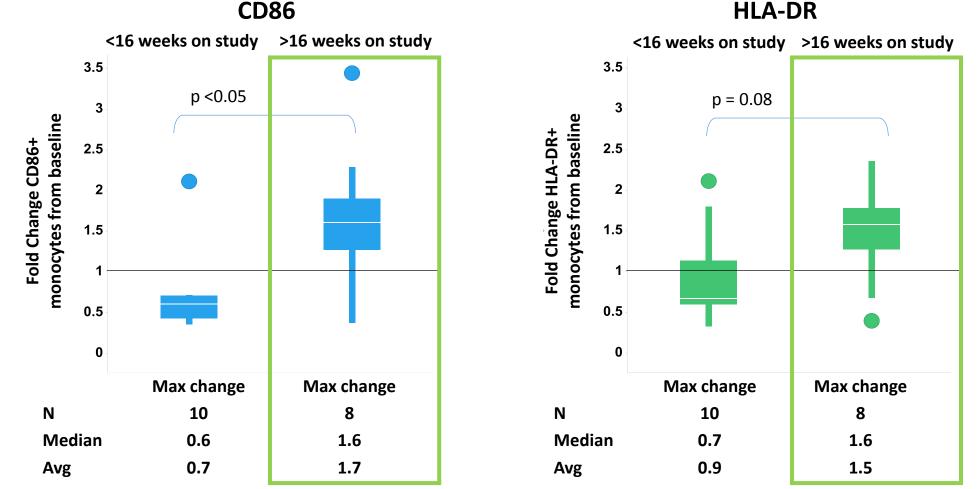

C=cycle, D=day

*Difference in % from C1D1 of Ki-67+ PD1+CD8+ memory T cells

of total PD1+ CD8+ memory T cells (CD3+ CD8+ CD45RA-)

Decrease in High Basal Monocytic MDSCs with IPI-549 Treatment is Associated with Reinvigoration of Exhausted Memory CD8+ T cells

*Difference in % from C1D1 of Ki-67+ PD1+CD8+ memory T cells of total PD1+ CD8+ memory T cells (CD3+ CD8+ CD45RA-) ADVANCING CANCER IMMUNOTHE



Initial Translational Data in Peripheral Blood Support IPI-549 On-Mechanism Immune Stimulation

- Evidence of immune stimulation
 - Up-regulation of interferon-γ-responsive factors
 - Reinvigoration (proliferation) of exhausted CD8+ T cells
- Clinical benefit associated with increased numbers of a titizated monocytes

Patients with Clinical Benefit Show Increased Numbers of Activated Monocytes (>16 Weeks on Study)

Max change = Maximum change observed among C1D8, C2D1, C3D1.

Conclusions

- IPI-549 has been well tolerated at all doses studied (10 mg to 60 mg QD); expansion at 60 mg QD is ongoing
 - No DLTs, treatment-related SAEs, or treatment-related deaths
- IPI-549 as monotherapy demonstrates evidence of clinical activity
 - 44% of patients on treatment over 16 weeks
 - Partial response in mesothelioma; expansion cohort in combination with nivolumab being initiated
- Encouraging evidence of IPI-549-induced immune activation in peripheral blood across multiple tumor types and dose levels, including evidence of biomarkers that correlate with clinical benefit (>16 weeks on study)
 - Pre- and on-study biopsies in currently enrolling monotherapy expansion patients will enable further characterization of intra-tumoral, immune-activating effects

Acknowledgments

- The authors would like to thank the patients who have participated in Study IPI-549-01, as well as the families of these patients.
- We would also like to acknowledge the time and effort put forth by the clinical staff at each of the study sites and by the employees of Infinity Pharmaceuticals.

THANK YOU