Society for Immunotherapy of Cancer (SITC)

Immunology 101 for the Non-Immunologist

Jeffrey A. Sosman Vanderbilt-Ingram Cancer Center

Advances in Cancer Immunotherapy[™] - Nashville October 2, 2015

Avoiding Immunity is a Hallmark of Cancer

Hanahan and Weinberg Cell 2011

What is the immune system

- A network of organs, tissues, cells and proteins all coordinated to defend the host from outside organisms/invaders
- In an infinitely adaptable system to combat the complex and endless variety of pathogens that it comes into contact with

Organs of the Immune System

Image courtesy of the National Cancer Institute

Kenneth Todar, Ph.D www.textbookofbacteriology.net

Innate and Adaptive Immunity

• Innate Immunity- first line of defense

- Neutrophils, macrophages, natural killer cells, dendritic cells
- Recognizes conserved molecular patterns- low specificity
- Rapid Response minutes to hours
 - Uses products of germline genes (no receptor rearrangements)
- Kills pathogens and processes antigen to initiate adaptive immunity
- A primitive system conserved through evolution
- Not specifically directed against the invading microorganism
- NO IMMUNOLOGICAL MEMORY
- Adaptive Immunity
 - specialized/memory
 - T cells (cellular) and B cells (humoral/antibody)
 - T-cell receptor and B-cell receptor for specificity
 - MEMORY CAN LAST A LIFETIME
- Cytokines and chemokines regulate both types of immunity

Innate Immunity 1. Pathogen Recognition Dendritic cell 2. Transmission and Initial Attack (Antigen presenting cell) of Pathogen Pathogens Information to ۲ **Adaptive Immune** System Neutrophil Natural killer cell Macrophage Antigen Moving to peptide lymph nodes **Innate Immunity 3. Specific Attack** on Pathogens T cell T cell Immunological **T-B** interaction Memory **B** cell Plasma cell Antibody **Adaptive Immunity**

Shizuo Akira Philos Trans R Soc Lond B Biol Sci 2011

Macrophages- M1 and M2

Anti tumor

Cytotoxic Capacity

Key regulators of wound repair and resolves an immune response

Schmid, Journal of Oncology, 2010

Regulation of Macrophage Differentation by Cytokines

IL-4, IL-13

IFN-y

M1 Classical activated macrophage M2 Alternative activated macrophage dM Deactivated macrophage

IL-10

Pro-inflammatory cytokines IL-1, IL-6, TNFα Antigen endocytosis & tissue repair Immune suppression IL-10, TGFβ

Abbas, Viruses, 2015

FcR on surface of monocytes/macrophages

FcR can act to activate or inhibit macrophage/NK cell function- such as ADCC and ADCP

Dendritic Cell: Bridge between Innate Immunity and Adaptive Immunity

Antigen Presenting Cells (APCs)

- The ability to process and present Ags on MHC class I molecules is a property of virtually all mammalian cells
- Professional APCs are highly specialized cells that can
 - Process and present an Ag associated with MHC class II
 - Provide a 2nd, co-stimulatory signal to T cells

Natural Killer Cells- sensor of altered self - loss of MHC class I or upregulation of stress molecules

French and Yokoyama Arthritis Res Ther 2004 6:8-14

B lymphocyte- Antigen Binding Receptor- Ig receptor

Antigen Receptors Underlie Specificity

T Cell Receptor

A protein produced by activated B lymphocytes that binds specifically to a particular substance – its antigen T cells bind to processed A antigens via T cell receptor r (TCR) recognition of re peptides derived from proteins that were processed and presented by APC in the context of self-MHC

Antibodies bind to native antigens by recognizing protein conformations

Portions of antigens = epitopes

Figure 5.7 The Immune System, 3ed. (© Garland Science 2009)

Antigen Receptors Underlie Specificity

T Cell Receptor

A protein produced by activated B lymphocytes that binds specifically to a particular substance – its antigen T cells bind to processed A antigens via T cell receptor r (TCR) recognition of re peptides derived from proteins that were processed and presented by APC in the context of self-MHC

Antibodies bind to native antigens by recognizing protein conformations

Portions of antigens = epitopes

What does the T cell receptor see?

Top and side views of an MHC class II molecule (1dhl)

Adapted from Rudolph, MG et al. Annu Rev Immunol 2006

Antigen Processing and Presentation

Kloetzel, Nature Reviews Molecular Cell Biology 2001

TCR Signaling Complex

Chandy, Trends in Pharmacological Sciences, 2004

Activation of naïve T cells requires two independent signals delivered by same APC

Figure 8-10 Immunobiology, 6/e. (© Garland Science 2005)

Only one signal - no activation or anergy

Figure 8-21 Immunobiology, 6/e. (© Garland Science 2005)

Postow MA, et al. J Clin Oncol. 2015 Jan 20. [Epub ahead of print]^[4]

T cell activation through the TCR and CD28 leads to the increased expression of CTLA4

CTLA4 is an inhibitory receptor for B7 Molecules that shuts down Signal 2

Figure 8-12 Immunobiology, 6/e. (© Garland Science 2005)

Structures of PD-1 with its ligands

Freeman, G etal, PNAS, 2008

Reinvigorating exhausted T cells. Memory T cell **CD122** С Resolved Α Naive T cell Infection CD127 В Activated Effector IFN-y T cell TNF **CD28** TCR IL-2 CD80/86 MHC Cytotoxicity Activated APC

Gordon J. Freeman et al. J Exp Med 2006;203:2223-2227

Control of the T Cell

T-cell activating receptors

- CD28
- OX40
- GITR
- CD137
- CD27
- HVEM
- Agonistic antibodies to T-cell activating receptors stimulate the immune system by turning up the activation

T-cell inhibitory receptors

- CTLA4
- PD-1
- TIM-3
- BTLA
- VISTA
- LAG3
- Antibodies that block T-cell inhibitory receptors stimulate the immune system by blocking this inhibition

Mellman I, et al. Nature. 2011;21:480-489.^[9]

T Cell Regulation

Mellman et al. Nature 2011

T Cell Regulation

Mellman et al. Nature 2011

T Cell Regulation

Mellman et al. Nature 2011

Dendritic Cells regulate T cell differentiation to functional subsets

Armed effector T cells

Figure 8-31 Immunobiology, 6/e. (© Garland Science 2005)

The immune system's interactions with cancer

Dunn GP, et al. *Nat Immuno* 2002 Schreiber R, et al. *Science* 2011

Immunoediting of Tumors by Immune System

