Characterization of Complete Response to IL-2 Using Gene Expression Analysis and Tissue Array Validation in Metastatic RCCa

> Allan J. Pantuck, M.D. UCLA Department of Urology Society of Biologic Therapy San Francisco, CA November 5, 2004

 Identification of prognostic factors to select patients most likely to respond to IL-2 to maximize therapeutic efficacy and minimize toxicity

 To better understand mechanisms and pathways important for cytokine immune response

 To identify possible new therapeutic targets and design new treatment strategies

Predicting IL-2 Response: Ancient History

Phenotypic Analysis of PBL in Responders and Non Responders

Pt.#	ane	Type of	Type of	CD56 ⁺ CD3 ⁻		CD56 ⁻ CD3 ⁺		CD56 ⁺ CD3 ⁻ /CD56 ⁻ CD3 ⁺	
	uge	Response	TIL	Α	В	Α	В	Α	В
57	66	CR	(IFN-α/pTIL)	51	1	18	60	2.83	0.02
65	73	CR	(IFN-γ/pTIL)	46	8	17	59	2.71	0.14
87	42	CR	(TNF-α/pTIL)	73	28	10	45	7.30	0.62
63	61	CR	(- /CD8+)	28	9	31	52	0.90	0.17
82	71	CR	(- /CD8+)	41	18	33	58	1.24	0.31
78	58	PR	(TNF-α/pTIL)	15	12	36	39	0.42	0.30
80	45	PR	(- /CD8+)	28	24	48	50	0.58	0.48
90	53	PR	(IFN-α/pTIL)	65	15	25	70	2.60	0.21
	Mean			43*	14	27**	54	2.60***	0.28
	<u>+</u> S.D.			20	9	12	9	2.24	0.19
64	79	NR	(IFN-α/pTIL)	3	29	48	29	0.06	1.00
67	47	NR	(TNF-α/pTIL)	7	9	68	66	0.10	0.14
86	70	NR	(TNF-a/pTIL)	14	18	67	59	0.21	0.31
89	61	NR	(IFN-γ/pTIL)	16	13	58	52	0.28	0.25
96	55	NR	(IL-2/pTIL)	52	20	34	66	1.53	0.30
74	61	NR	(- /CD8+)	33	24	27	34	1.22	0.71
75	57	NR	(- /CD8+)	14	26	58	34	0.24	0.76
81	55	NR	(- /CD8+)	6	10	69	59	0.09	0.17
88	70	NR	(- /CD8+)	13	9	54	58	0.24	0.16
	Mean			18	18	54	51	0.44	0.42
	± S.D.			16	8	15	15	0.54	0.36
Norma	l value (n=	=3)		11	± 3	64 [±]	16	0.18	[±] 0.2

* p < 0.01 (R vs. NR) and p < 0.005 (A vs. B), ** P < 0.005 (R vs. NR) and p < 0.005 (A vs. B)

*** P < 0.05 (R vs. NR) and P < 0.05 (A vs. B), R = responder; NR = non-responder;

PR = partial responder

Belldegrun et al JOI, 1996

Predicting IL-2 Response The Middle Ages Clinical Algorithms

Characteristic Ha	azard Ratio	p value
Constitutional Sx's	1.9	0.005
N Stage	1.4	0.002
Metastasis location	2.0	<0.001
Sarcomatoid Hist	2.3	0.003
TSH level	1.4	0.038

Leibovich et al Cancer, 2002

Predicting IL-2 Response The Modern Era

TISSUE ARRAY CONSTRUCTION

396 Kidney Tumors 4 Cores per Tumor 1584 spots total

Affymetrix U133A Gene Chip

Array

22,215 genes 500,000 oligonucleotide features

cDNA Microarray Data Anaysis

CEL files were imported into dChip to compute the model based expression index for each gene

To reveal the global pattern of the arrays, we used unsupervised learning analysis, (hierarchical clustering and multi-dimensional scaling plots)

To filter out significant genes, we used the standard two sample t-test in pair-wise comparisons involving different treatment groups. The selection criterion are as follows:

- 1. the fold change >1.2;
- 2. |difference|>100; and
 - 3. p-value < 0.05

Molecular Analysis of IL-2 Response Top 566 genes: PD vs CR

ato ein 2

probe set
guanine nucleotide binding protein (G protein), alpha 11 (Gq class)
solute carrier family 25 (mitochondrial carrier; adenine nucleotide translo
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation pro
KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention recepto
phosphoglycerate kinase 1
RAN, member RAS oncogene family
heat shock 60kD protein 1 (chaperonin)
H2A histone family, member Z
high-mobility group (nonhistone chromosomal) protein 14
ADP-ribosylation factor 4
heterogeneous nuclear ribonucleoprotein F
bone marrow stromal cell antigen 2
myristoylated alanine-rich protein kinase C substrate
Lysosomal-associated multispanning membrane protein-5
chaperonin containing TCP1, subunit 2 (beta)
ubiquinol-cytochrome c reductase hinge protein
v-myc myelocytomatosis viral oncogene homolog (avian)
phospholipid scramblase 1
glutathione peroxidase 2 (gastrointestinal)
splicing factor, arginine/serine-rich 3
actinin, alpha 2
N-myc (and STAT) interactor
low density lipoprotein receptor-related protein 6
solute carrier family 3 (cystine, dibasic and neutral amino acid transporte
regulator of G-protein signalling 12
DKFZP566F0546 protein
transition protein 2 (during histone to protamine replacement)
RAB1, member RAS oncogene family
nuclease sensitive element binding protein 1
CD164 antigen, sialomucin
sorting nexin 3
DnaJ (Hsp40) homolog, subfamily B, member 6
catechol-O-methyltransferase
PTEN

Top 73 Genes PD vs. CR Hierarchical Clustering Dendrogram

Top 73 Genes PD vs. CR Multi-Dimensional Scaling Plots

VHL, Hypoxia, and RCC Tumorigenesis

Pantuck et al, Clin Ca Res, 2003

Differentially Expressed Genes of Interest

CR:

Integrin Associated Proteins (CD47, Fibronectin) Tumor Suppressors (PTEN) Heat Shock Proteins 60, 70, 90 MCH Class II Pro-Apoptotic (Caspase I) MAP kinase Thyroid Autoantigen Carbonic Anhydrase IX

PD:

Chemokines (CXCR4) Regulators of G protein Signaling Trefoil Factors Actin Associated Proteins (actinin) IGF binding proteins

Differentially Expressed Genes of Interest

CR:

Integrin Associated Proteins (CD47, Fibronectin) Tumor Suppressors (PTEN) Heat Shock Proteins 60, 70, 90 MCH Class II Pro-Apoptotic (Caspase I) MAP kinase Thyroid Autoantigen Carbonic Anhydrase IX

PD:

Chemokines (CXCR4) Regulators of G protein Signaling Trefoil Factors Actin Associated Proteins (actinin) IGF binding proteins

Chemokines Orchestrate Both the Innate and Adaptive Immune Response

Increased CXCR4: A Marker of IL-2 Non-Responsiveness?

- Receptor for CXCL12/SDF-1
- Regulation of: metastasis proliferation survival

Angiogenesis

Net neovascularization is determined by the balance of angiogenic and angiostatic factors within the local microenvironment

Angiogenic Factors and Immunotherapy Response

PD

CXCL1 CXCR4 CXCL2 **VEGF B** CXCL3 **VEGF**

Carbonic Anhydrase IX

Clinically, high levels (>85%) associated with improved immunotherapy response (UCLA, CWG)

CAIX Gene Expression

CR: 1669

PD: 941

PD+ Lymph Nodes: 611

Tissue Array Validation: Analysis of Genes and IL-2 Response

Carbonic Anhydrases IX and XII EpCAM Gelsolin p53 Ki67 PTEN Vimentin

CAIX by Ordinal IMT Response

Tissue Array Analysis of Genes and IL-2 Response

Univariate PredictorsCAIX > 85%p = 0.027EpCAM > 5%p = 0.037P53p = 0.623PTENp = 0.012Vimentinp = 0.301Gelsolinp = 0.794

Multivariate Predictors

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.0544731	0.2146256	0.254	0.8002
CA9MemPos.mn	0.0037908	0.0015443	2.455	0.0158
EpDctPos.md	-0.0021168	0.0020954	-1.010	0.3149
p53Pos.md	-0.0009112	0.0049747	-0.183	0.8550
pTENMax.md	0.1316415	0.0680478	1.935	0.0519
VimMax.max	-0.0963226	0.0626230	-1.538	0.1272
GeMax.mn	0.0045761	0.0742013	0.062	0.9509

Tissue Array Analysis of Genes, Clinical Variables, and IL-2 Response

Multivariable Analysis

	Estimate	Std. Error	t value	Pr(> t)
CA9MemPos.mn	0.005649	0.001695	3.333	0.00146 **
EpDctPos.md	-0.003337	0.002053	-1.625	0.10931
p53Pos.md	-0.002777	0.004600	-0.604	0.54833
pTENMax.md	0.140579	0.074246	1.893	0.06305
VimMax.max	-0.119671	0.066276	-1.806	0.07591
GeMax.mn	0.034811	0.083754	0.416	0.67914
Male	0.301309	0.115154	2.617	0.01118 *
ECOG	-0.244610	0.099794	-2.451	0.01712 *
nstage	-0.061457	0.067538	-0.910	0.36642

Receiver Operating Curve: Clinical + Molecular Prediction Model

CAIX Expression and Survival in mRCC Treated by IL-2

p= 2.4e-05

Gender and Survival in mRCC Treated by IL-2

p= 0.00159

CAIX, PTEN, Gender and Survival in mRCC Treated by IL-2

p= 0.000245

- Archived tumor tissue combined with a strong clinical data base: a powerful combination
- Proof of principle: gene expression analysis can identify relevant gene differences that translate into meaningful variables in an independent tissue array validation
- CAIX, PTEN, CXCR4, and other genes may play important roles in dictating IL-2 treatment response in RCC

Acknowledgements

Arie Belldegrun, MD **David Seligson, MD Robert Strieter, MD** Karen Riedl, MD **Robert Figlin, MD UCLA Biomathematics Robert Elashoff, PhD Zixing Fang, PhD** Steven Horvath, PhD Xueli Liu, PhD

Funding: NIH K23CA095151-01