

Mechanisms of Immune-Related Adverse Events

Igor Puzanov, M.D., M.S.C.I., F.A.C.P. Director, Early Phase Clinical Trials Program Roswell Park Comprehensive Cancer Center

Society for Immunotherapy of Cancer

Disclosures

- Consultant: Amgen, Roche, Nektar
- I will be discussing non-FDA approved indications during my presentation.

Immune Related Adverse Events Mechanisms, Management, Mitigation

SITC SYMPOSIUM 2018

Marc S. Ernstoff, M.D. Igor Puzanov, M.D.

> Roswell Park Elm & Carlton Buffalo, NY 14263

Outline

- Basic principles of immunological tolerance and autoimmunity
- Differential roles of CTLA-4 and PD-1 in maintenance of tolerance
- Mechanisms of breakdown of tolerance by checkpoint blockade

 Table 1. Immune Checkpoint–Blocking Antibodies Approved by the Food

 and Drug Administration.*

Drug	Target	Indication
Ipilimumab	CTLA-4	Melanoma
Nivolumab	PD-1	Melanoma, non-small-cell lung cancer, renal-cell carcinoma, hepatocellular carcinoma, classic Hodgkin's lympho- ma, squamous-cell carcinoma of the head and neck, urothelial carcinoma, colorectal cancer with high micro- satellite instability or mismatch-repair deficiency
Pembrolizumab	PD-1	Melanoma, non-small-cell lung cancer, classic Hodgkin's lymphoma, squa- mous-cell carcinoma of the head and neck, urothelial carcinoma, gastric cancer, solid tumors with high micro- satellite instability or mismatch-repair deficiency
Atezolizumab	PD-L1	Non-small-cell lung cancer, urothelial carcinoma
Avelumab	PD-L1	Merkel-cell carcinoma, urothelial carcinoma
Durvalumab	PD-L1	Urothelial carcinoma

* CTLA-4 denotes cytotoxic T-lymphocyte antigen 4, PD-1 programmed cell death 1, and PD-L1 programmed cell death ligand 1.

For full T cell activation and differentiation, T cells need 3 signals

ADVANCE: Depending on cytokines from DCs, naïve CD4 T cells differentiate into effector subsets IMMUNOTHER

site

Major Effector Cells of the Immune System

Most Autoimmune Diseases are due to Failure of T cell Tolerance

Immunologic Tolerance: unresponsiveness of immune system to self antigens

Central Tolerance - For T cells it occurs in the thymus - Fate of high affinity, self-reactive T cells is death (deletion) and removal from T cell pool - Some survive as regulatory (suppressor) T cells while others escape to peripheral tissues

Peripheral Tolerance - Self-reactive T cells are suppressed by regulatory T cells - CTLA-4 and PD-1, among other molecules play a role in maintaining self-reactive T cells from becoming activated (anere ACCC Association of Community Cancer Cent

CTLA-4 inhibits co-stimulation by blocking interaction between CD28 and B7 molecules

Anti-CTLA-4 can lead to breakdown of peripheral tolerance by restoring co-stimulation

Breakdown of peripheral tolerance leading to activation © 2017 Society for Immunother of self-reactive T cells

ADVANCES IN

IMMUNOTHERAPY

Regulatory T cells (Tregs) use CTLA-4 to remove B7 molecules from surface of antigen presenting cells to prevent activation of self reactive T cells

Interaction of PD-1 with its ligands, PD-L1/PD-L2 inhibits CD28 signaling in T cells

- PD-1 is upregulated on T cells after activation
- PD-L1 is found on both immune and non-immune cells in peripheral tissues
- PD-L2 is mostly found on immune cells in response to inflammatory stimuli
- In contrast, CTLA-4 and its ligands are only found on immune cells
- Mice deficient in PD-1 have delayed development of autoimmune disease compared to CTLA-4 deficient ones

© 2017 Society fo

Blocking PD-1/PD-L1 Pathway Reactivates T cells

<u>PD-1</u> is the receptor on T cells – its ligand <u>PD-L1</u> is on immune cells or tumor cells

© 2017 Society for Immunotherapy of Cancer

- Development of autoimmunity:
 - Release of Auto-reactive T cells
 - Generation of pre-existing Auto-reactive Antibodies
 - On target attack of shared tumor antigens on normal tissue
- Target tissue expression of Immune Checkpoint (e.g. CTLA4 on normal Pituitary)
- Inflammatory Cytokine release (e.g. IL-17 and colitis)

IRAE MECHANISM: Immune Cycle Locations of Immune Checkpoint Control

IRAE MECHANISM: 3 E's of Immunology: Escape PD1 and CTLA4 Axes Role in Tumor Escape

Adopted from Dunn, Old & Schreiber Annual Review of Immunol 2004

NON-IMMUNOGENIC TUMOR

IRAE MECHANISM

Early and late irAEs may occur by distinct mechanisms

Summary

- CTLA-4 expression on effector and regulatory T cells prevents co-stimulation through CD28 and maintains T cell anergy and peripheral tolerance
- Activation of PD-1 on activated T cells by its ligands renders them non-functional
- CTLA-4 and PD-1 are important in maintenance of peripheral immune tolerance
- The irAEs can be divided into two general categories of "early and common" vs. "late and rare". Th17 cells might play a role in early and common type irAEs while B cells and/or CD8 T cells might play a role in late and rare type irAEs

