

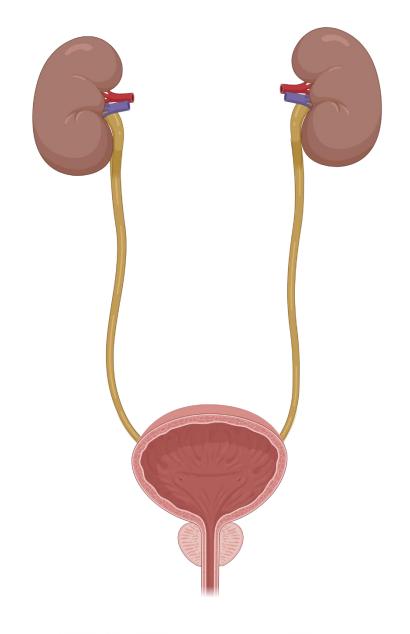
Immunotherapy for the Treatment of Genitourinary Malignancies

Roby A. Thomas MD

Clinical Assistant Professor of Medicine in the School of Medicine, Department of Medicine
Hematologist Oncologist, Department of Hematology/Oncology
UPMC eRecord Medical Director of Oncology
University of Pittsburgh Medical Center Hillman Cancer Center

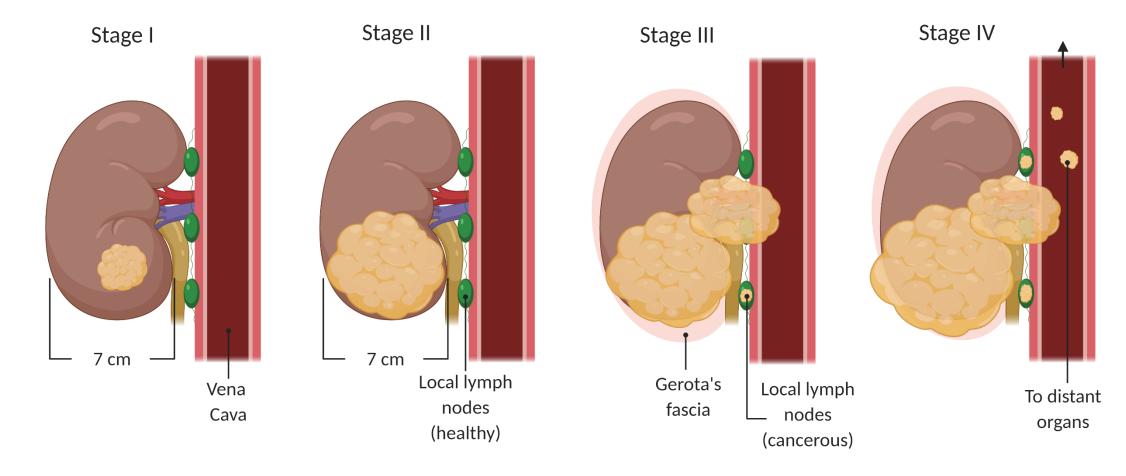
Disclosures

- Consulting Fees: Integra Connect
- I will be discussing non-FDA approved indications during my presentation.



Outline

- Renal cell carcinoma
 - Approved immunotherapies
 - Future directions
- Urothelial carcinoma
 - Approved immunotherapies
 - Future directions
- Prostate cancer
 - Approved immunotherapies
 - Future directions



Renal cell carcinoma (RCC)

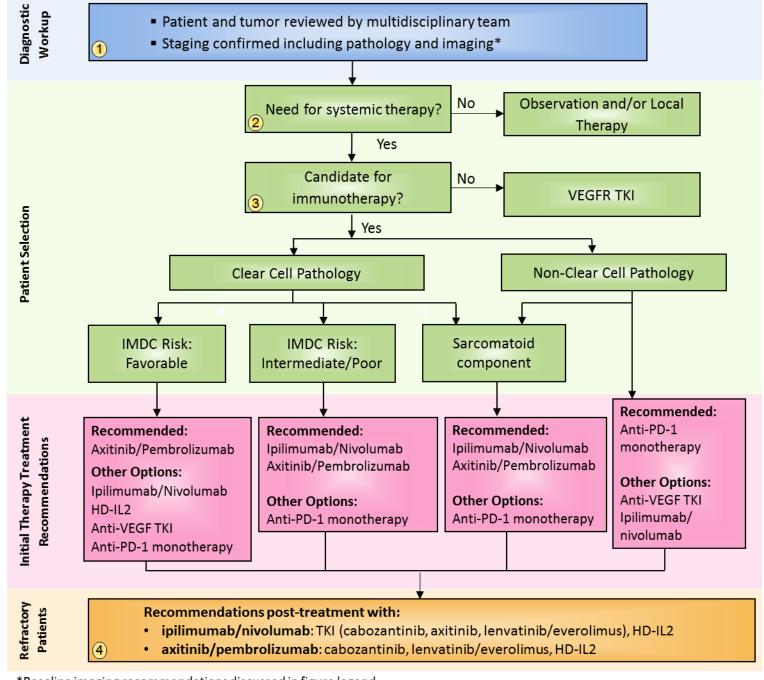
FDA-approved Immunotherapies for mRCC

Drug	Indication	Dose
High dose Interleukin-2	Metastatic RCC	600,000 International Units/kg (0.037 mg/kg) IV q8hr infused over 15 minutes for a maximum 14 doses, THEN 9 days of rest, followed by a maximum of 14 more doses (1 course)
Interferon-α + bevacizumab	Clear cell RCC	IFN 9 MIU s.c. three times a week + bevacizumab 10 mg/kg Q2W
Nivolumab	Clear cell RCC refractory to prior VEGF targeted therapy	240 mg Q2W or 480 mg Q4W
Nivolumab +ipilimumab	Clear cell RCC, treatment naïve	3 mg/kg nivo plus 1 mg/kg ipi Q3W x 4 doses then nivo maintenance at flat dosing
Pembrolizumab + axitinib	Advanced RCC, Treatment naïve	200 mg pembro Q3W or 400 mg Q6W + 5 mg axitinib twice daily
Avelumab + axitinib	Advanced RCC, Treatment naïve	800 mg avelumab Q2W + 5 mg axitinib twice daily

Comparing front-line immunotherapy treatments for RCC

Study	Treatment arm(s)	Patient selection criteria	N	ORR	Median PFS (months)	Median OS (months)
CheckMate 214	Nivolumab + ipilimumab*	Untreated, advanced clear cell RCC	550	42%	12.0	47.0
	Sunitinib	(poor/intermediate risk)	546	26%	8.3	26.6
KEYNOTE-426	Pembrolizumab + axitinb*	Untreated, advanced clear cell RCC	432	60%	15.4	NR
	Sunitinib		429	40%	11.1	35.7
JAVELIN Renal 101	Avelumab + axitinib*	Untreated, advanced clear cell RCC	442	52.5%	ITT: 13.3 PD-L1+: 13.8	ITT: NE PD-L1+: NE
	Sunitinib		444	27.3%	ITT: 8.0 PD-L1+: 7.0	ITT: NE PD-L1+: 25.6
IMmotion151	Atezolizumab + bevacizumab	Untreated, advanced clear cell or	454	ITT: 37% PD-L1+: 43%	ITT: 11.2 PD-L1+: 11.2	ITT: 33.6 PD-L1+: 34.0
	Sunitinib sarcomatoid RC	sarcomatoid RCC	461	ITT: 33% PD-L1+: 35%	ITT: 8.4 PD-L1+: 7.7	ITT: 34.9 PD-L1+: 32.7

*FDA-approved IO regimen



SITC Cancer **Immunotherapy** Guideline for advanced renal cell carcinoma

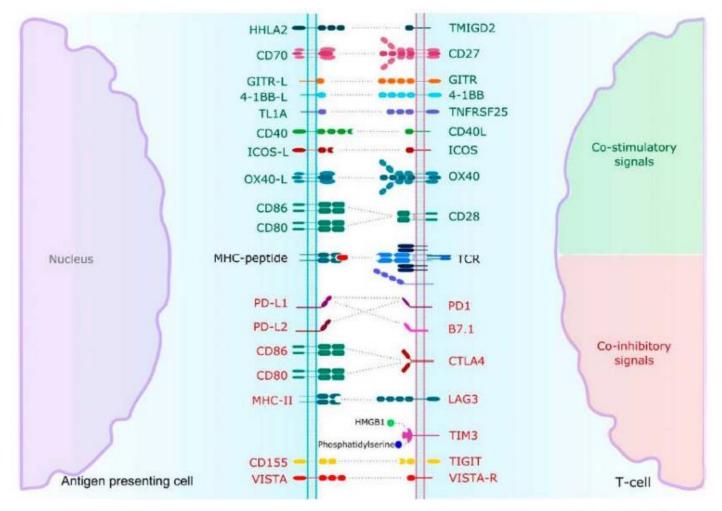
^{*}Baseline imaging recommendations discussed in figure legend.


Notes: 1) Clinical Trials are always an option for any patient, in any category. 2) This recommendation may change as data matures.

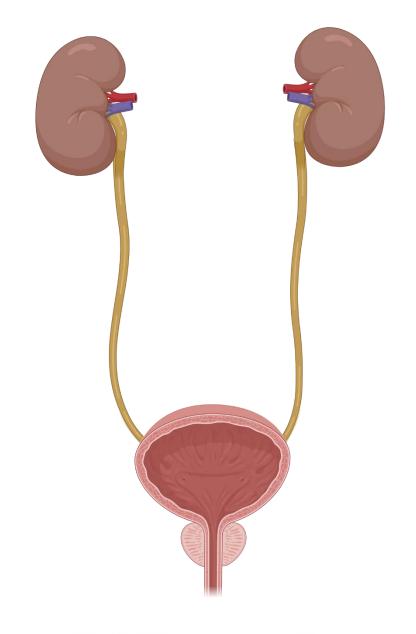
In development: A2AR antagonist +

anti-PD-L1

Treatment arm	N	ORR	6-month disease control
Ciforadenant	33	3%	Naïve: 0%
			Prior ICI: 25%
Ciforadenant +	35	11%	Naïve: 50%
atezolizumab			Prior ICI: 35%



In development: additional immunotherapy approaches



Outline

- Renal cell carcinoma
 - Approved immunotherapies
 - Future directions
- Urothelial carcinoma
 - Approved immunotherapies
 - Future directions
- Prostate cancer
 - Approved immunotherapies
 - Future directions



Urothelial carcinoma (UC)

Approved checkpoint inhibitor for non-muscle invasive bladder cancer

Drug	Indication	Dose
Pembrolizumab	BCG-unresponsive, high-risk NMIBC, with or without papillary tumors and ineligible for cystectomy	200 mg Q3W or 400 mg Q6W

Response, n (%)	KEYNOTE-057 cohort A (n=97)
Complete response	40 (41.2)
Non-complete response	56 (57.7)
Persistent	40 (41.2)
Recurrent	6 (6.2)
NMIBC stage progression	9 (9.3)
Progression to T2	0
Extravesical disease	1 (1.0)
Non-evaluable	1 (1.0)

Approved checkpoint inhibitors for mUC – *cisplatin refractory*

Drug	Indication	Dose
Atezolizumab	Advanced/metastatic UC	1200 mg Q3W
Avelumab	Advanced/metastatic UC	10 mg/kg Q2W
Durvalumab	Advanced/metastatic UC	10 mg/kg Q2W
Nivolumab	Advanced/metastatic UC	240 mg Q2W or 480 mg Q4W
Pembrolizumab	Advanced/metastatic UC	200 mg Q3W or 400 mg Q6W

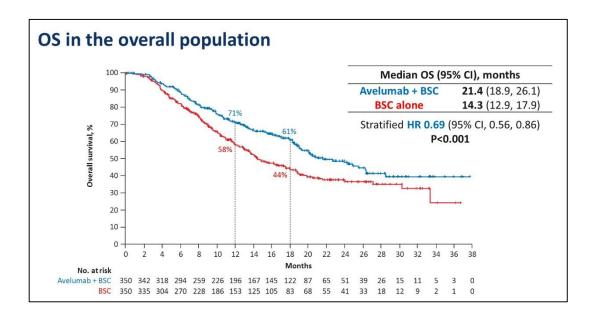
Approved checkpoint inhibitors for mUC – *cisplatin ineligible*

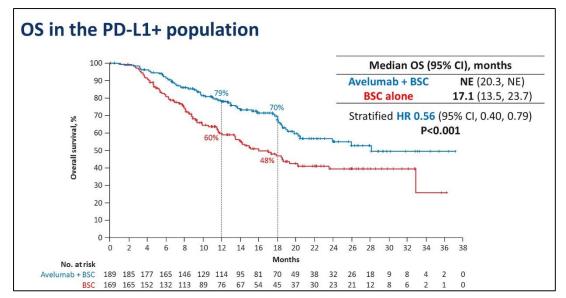
Drug	Indication	Dose
Atezolizumab	Advanced/metastatic UC (PD-L1 ≥5%)	1200 mg Q3W
Pembrolizumab	Advanced/metastatic UC (PD-L1 CPS ≥10)	200 mg Q3W or 400 mg Q6W

June 2018

FDA limits the use of atezolizumab and pembrolizumab for some urothelial cancer patients

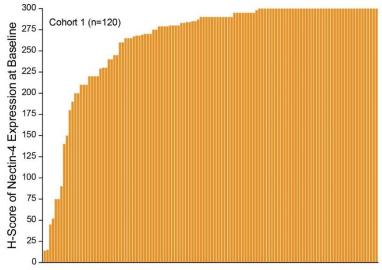
- Locally advanced or metastatic urothelial carcinoma and ineligible for cisplatin-based chemo and with detectable PD-L1 expression in tumor (CPS \geq 10, pembro; IC \geq 5% tumor area, atezo)
- Patients ineligible for any platinum-containing chemotherapy regardless of PD-L1 status





Approved checkpoint inhibitor for maintenance treatment

Drug	Indication	Dose
Avelumab	Maintenance of locally advanced/metastatic UC without progression on first-line Pt chemotherapy	800 mg Q2W



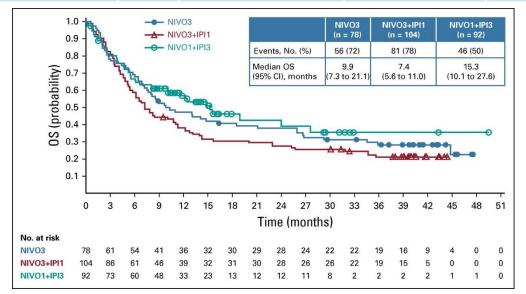
Approved antibody-drug conjugate for mUC

Drug	Indication	Dose
Enfortumab vedotin	Locally advanced/metatstatic UC with previous \alpha PD-1/PD-L1 and Pt-based chemotherapy	1.25 mg/kg IV on days 1, 8, and 15 of each 28-day cycle

EV-201: Cohort 1 Nectin-4 Expression

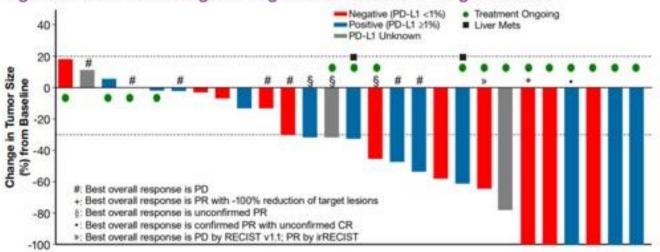
¹ Five patients did not have adequate tissue for Nectin-4 testing

EV-201: Cohort 1 Change in Tumor Measurements per BICR



In development: Ipilimumab + Nivolumab CheckMate 032

Treatment arm	n	ORR	Median PFS	Median OS	Grade 3-4 TRAEs
Nivolumab 3 mg/kg Q3W	78	ITT: 25.6% PD-L1+: 26.9%	2.8 months	9.9 months	26.9%
Nivolumab 3 mg/kg + ipilimumab 1 mg/kg	104	ITT: 26.9% PD-L1+: 35.5%	2.6 months	7.4 months	30.8%
Nivolumab 1 mg/kg + ipilimumb 3 mg/kg	92	ITT: 38.0% PD-L1+: 58.1%	4.9 months	15.3 months	39.1%

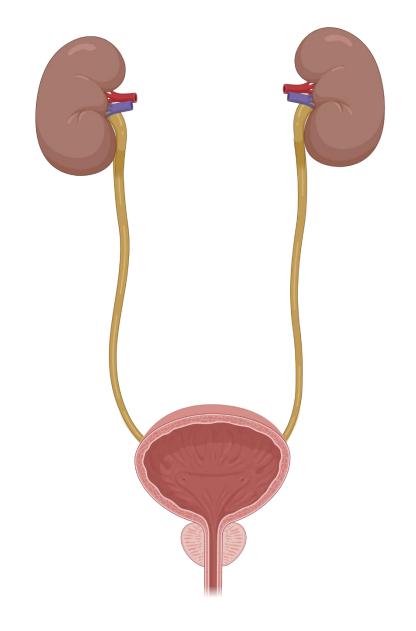


In development: NKTR-214 + nivolumab

Treatment	n	ORR
NKTR-214 + nivolumab	27	48%

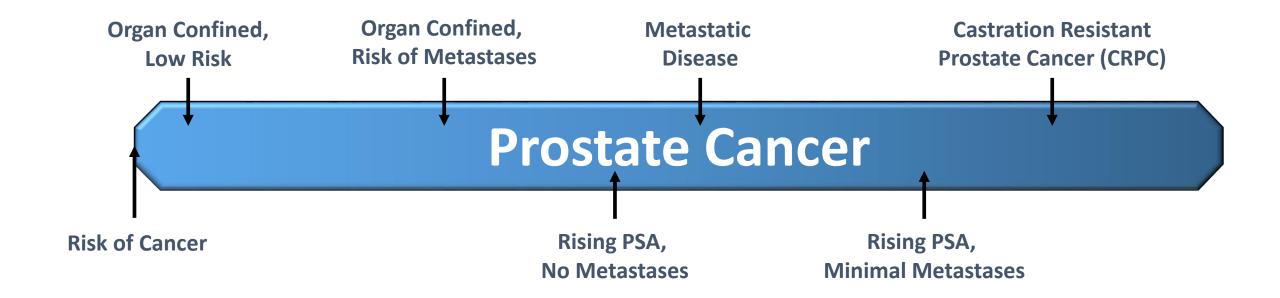
After treatment, 70% of patients with PD-L1-negative tumors converted to PD-L1-positive.

Figure 2. Best Percentage Change from Baseline in Target Lesions

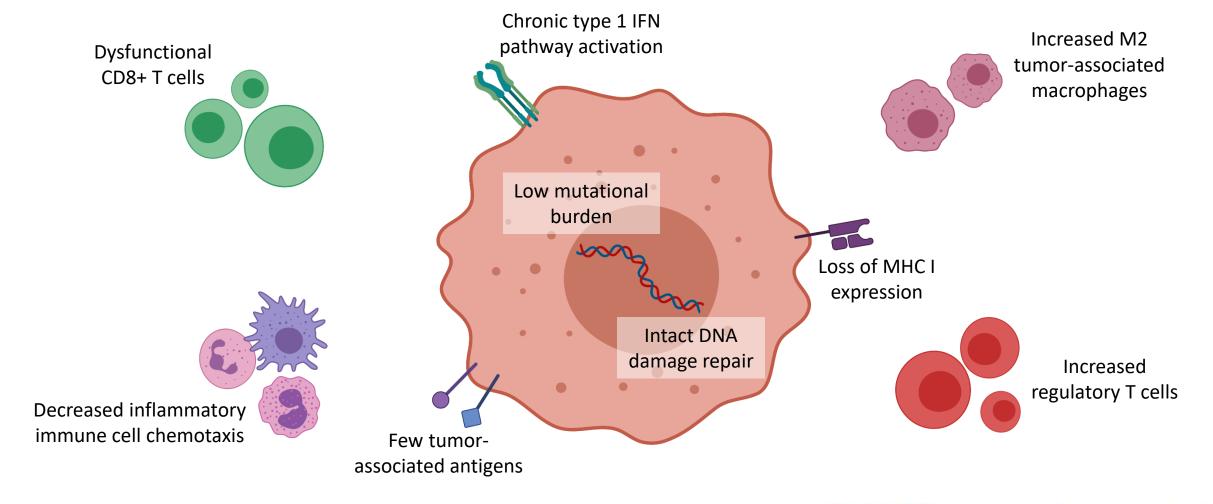


Outline

- Renal cell carcinoma
 - Approved immunotherapies
 - Future directions
- Urothelial carcinoma
 - Approved immunotherapies
 - Future directions
- Prostate cancer
 - Approved immunotherapies
 - Future directions



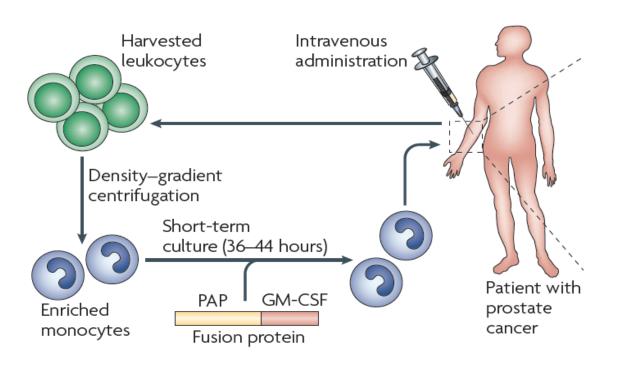
The Spectrum of Prostate Cancer

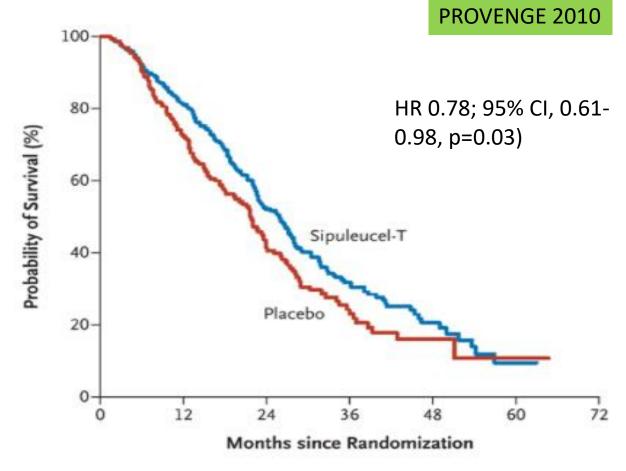


Immunology of prostate cancer

Immunotherapy landscape in prostate cancer

Trial	Treatment	Population	Key results
KEYNOTE-199	Pembrolizumab	RECIST-measurable PD-L1+ mCRPC	ORR: 5%
		RECIST-measurable PD-L1- mCRPC	ORR: 3%
		RECIST nonmeasurable mCRPC	DCR: 37%
KEYNOTE-365	Pembrolizumab + enzalutamide	Progression on previous hormonal and chemotherapies	PSA response rate: 21.8% Median OS: 20.4 months
	Pembrolizumab + olaparib		PSA response rate: 13% Median OS: 14 months
IMbassador250	Atezolizumab + enzalutamide	Progression on previous hormonal and chemotherapies	Median OS: 15.2 vs 16.6 months
	Enzalutamide		





Sipuleucel-T in mCRPC

First anti-cancer therapeutic vaccine

Future directions for prostate cancer immunotherapy

Nivolumab + ipilimumab

Immune checkpoint inhibitor

Immune checkpoint inhibitor

Immune checkpoint inhibitor

Targeted therapies

Anti-PD-1 + antiandrogen therapy

PSA, PSMA, PAP, EpCAM CAR T cells Adoptive cellular therapies

Bispecific T cell engagers

PSMA/CD3 antibody conjugates

In development: nivolumab + ipilimumab in mCRPC

Trial	Treatment	Population	ORR	Median OS
CheckMate 650	Nivolumab + ipilimumab,	Progression on hormonal therapy, no chemotherapy	25%	19 months
	then nivolumab maintenance	Progression on chemotherapy	10%	15.2 months

• Higher ORR in:

- PD-L1 > 1%
- DNA damage repair deficient
- homologous recombination deficiency
- high tumor mutational burden

Conclusions

- The role of immunotherapy in GU malignancies is increasing
- In RCC, many front-line checkpoint inhibitor options are approved
- Multiple checkpoint inhibitors approved for advanced/metastatic urothelial carcinoma, as well as other settings in UC
- Low immune engagement in prostate cancer has limited the application of immunotherapy in this disease

Additional Resources

Rini et al. Journal for ImmunoTherapy of Cancer https://doi.org/10.1186/s40425-019-0813-8 (2019) 7:354

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of advanced renal cell carcinoma (RCC)

Brian I. Rini¹, Dena Battle², Robert A. Figlin³, Daniel J. George⁴, Hans Hammers⁵, Tom Hutson⁶, Eric Jonasch⁷, Richard W. Joseph⁸, David F. McDermott⁹, Robert J. Motzer¹⁰, Sumanta K. Pal¹¹, Allan J. Pantuck¹², David I. Quinn¹³, Virginia Seery⁹, Martin H. Voss¹⁰, Christopher G. Wood⁷, Laura S. Wood¹ and Michael B. Atkins^{14*}

McNeel et al. Journal for ImmunoTherapy of Cancer (2016) 4:92 DOI 10.1186/s40425-016-0198-x

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma

Douglas G. McNeel¹, Neil H. Bander², Tomasz M. Beer³, Charles G. Drake⁴, Lawrence Fong⁵, Stacey Harrelson⁶, Philip W. Kantoff⁷, Ravi A. Madan⁸, William K. Oh⁹, David J. Peace¹⁰, Daniel P. Petrylak¹¹, Hank Porterfield¹², Oliver Sartor¹³, Neal D. Shore⁶, Susan F. Slovin⁷, Mark N. Stein¹⁴, Johannes Vieweg¹⁵ and James L. Gulley^{16*}

Kamat et al. Journal for ImmunoTherapy of Cancer (2017) 5:68 DOI 10.1186/s40425-017-0271-0

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of bladder carcinoma

Ashish M. Kamat^{1*}, Joaquim Bellmunt², Matthew D. Galsky³, Badrinath R. Konety⁴, Donald L. Lamm⁵, David Langham⁶, Cheryl T. Lee⁷, Matthew I. Milowsky⁸, Michael A. O'Donnell⁹, Peter H. O'Donnell¹⁰, Daniel P. Petrylak¹¹, Padmanee Sharma¹², Eila C. Skinner¹³, Guru Sonpavde¹⁴, John A. Taylor Ill¹⁵, Prasanth Abraham¹⁶ and Jonathan E. Rosenberg¹⁷

Acknowledgements

• Some figures created using biorender.com

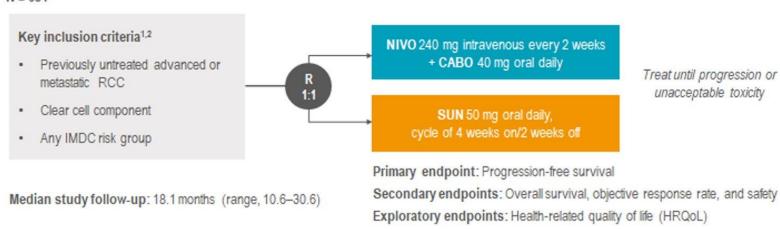
Case Studies

Case Study

75 year old male with newly diagnosed metastatic renal cell carcinoma, metastases in the lung as well as bone with a large right renal mass with hematuria and right flank pain. Past medical history includes history of CAD s/p CABG, Hypertension and atrial fibrillation. He comes with his son for discussion of next steps.

What is the next option for the patient?

- A. Proceed with cytoreductive nephrectomy
- B. Initiation of systemic chemotherapy
- C. Initiation of VEGF TKI
- D. Initiation of VEGF TKI + IO
- F. Initiation of IO + IO therapy



Checkmate 9ER

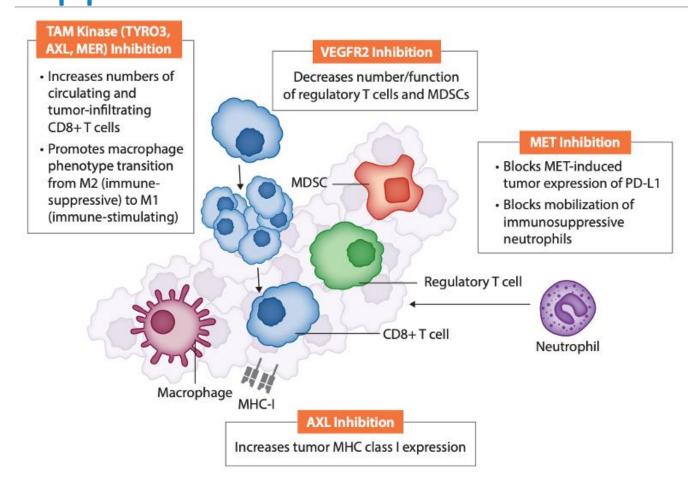
CheckMate 9ER: study design and endpoints

Randomized, multinational, phase 3 study of first-line NIVO+CABO versus SUN in patients with advanced RCC (NCT03141177)

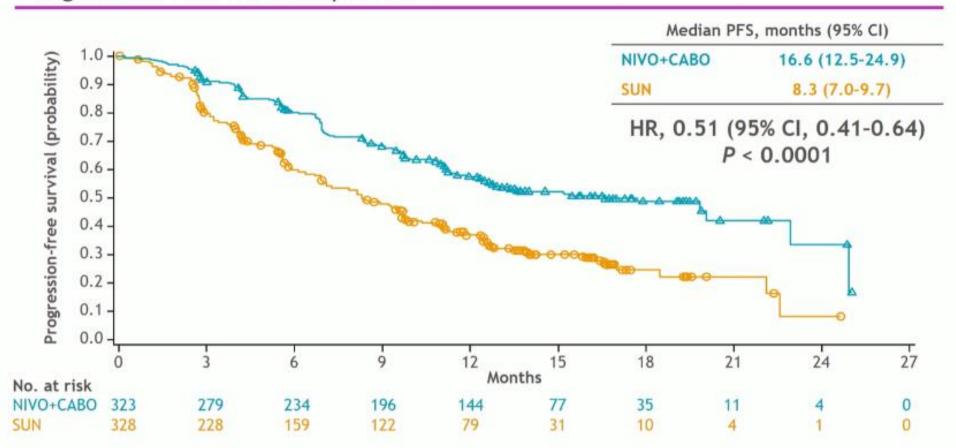
N = 651

IMDC, International Metastatic Renal Cell Carcinoma Database Consortium.

Clinicaltrials.gov/ct2/show/NCT03141177. Accessed June 8, 2020; 2. Choueiri TK, et al. Poster presented at the American Society of Clinical Oncobgy Annual Meeting 2018. TPS4598.



Cabozantinib Targets Pathways Associated with Tumor immune Suppression



IMMUNOTHERAPY"

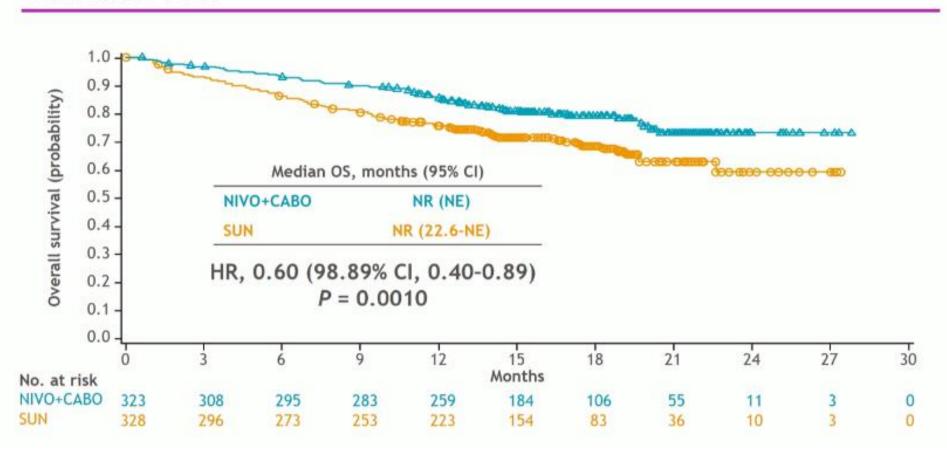
CheckMate 9ER

Progression-free survival per BICR

CheckMate 9ER

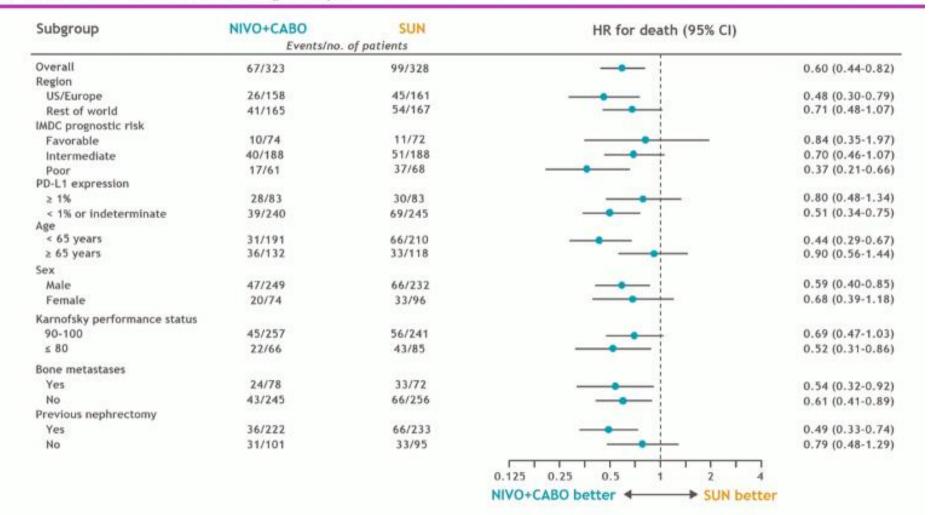
Progression-free survival per BICR in subgroups

Subgroup NIVO+CABO SUN		HR for progression or death (95% CI)		
(200)	Events/no. of patients		23 1978 1982 1983	
Overall	144/323	191/328		0.51 (0.41-0.64
Region			1	
US/Europe	61/158	85/161		0.46 (0.33-0.64
Rest of world	83/165	106/167		0.57 (0.42-0.76
IMDC prognostic risk				
Favorable	30/74	35/72	-	0.62 (0.38-1.01
Intermediate	82/188	108/188		0.54 (0.40-0.72
Poor	31/61	48/68		0.37 (0.23-0.58
PD-L1 expression				
≥ 1%	42/83	54/83		0.49 (0.32-0.73
< 1% or indeterminate	102/240	137/245		0.52 (0.40-0.67
Age				
< 65 years	84/191	131/210		0.44 (0.33-0.58
≥ 65 years	60/132	60/118		0.68 (0.48-0.98
Sex				
Male	108/249	136/232		0.48 (0.37-0.62
Female	36/74	55/96		0.61 (0.40-0.94
Karnofsky performance status	ř.			
90-100	109/257	129/241		0.55 (0.43-0.71
≤ 80	35/66	62/85		0.44 (0.29-0.68
Bone metastases				
Yes	33/78	45/72		0.34 (0.22-0.55
No	111/245	146/256		0.57 (0.44-0.73
Previous nephrectomy			100	
Yes	90/222	136/233		0.46 (0.35-0.60
No	54/101	55/95		0.63 (0.43-0.92
			0.125 0.25 0.5 1 2	1
				N better



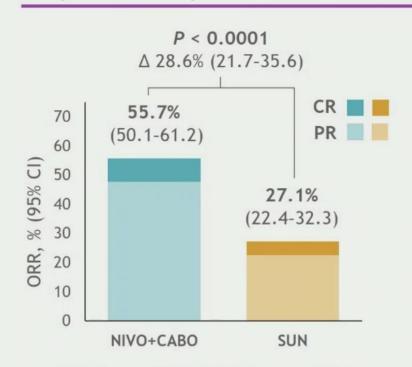
CheckMate 9ER

Overall survival



CheckMate 9ER

Overall survival in subgroups



CheckMate 9ER

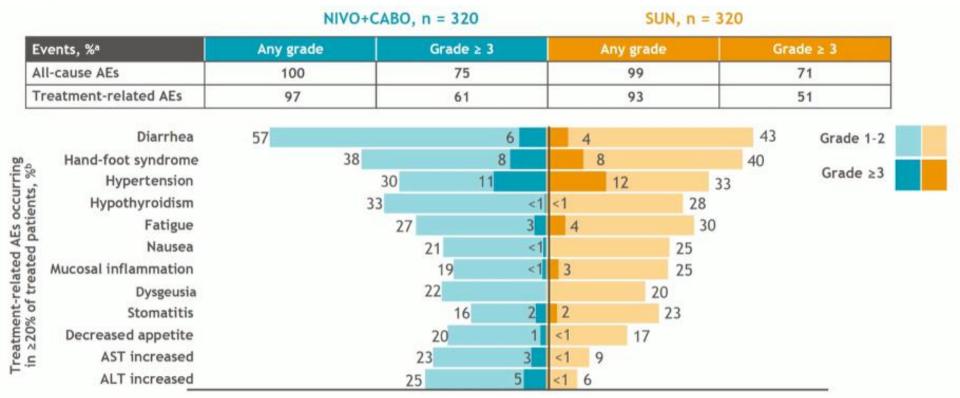
Objective response and best overall response per BICR

Outcome, %	NIVO+CABO (n = 323)	SUN (n = 328)
Complete response Partial response Stable disease Progressive disease Not evaluable/not assesseda	8.0 47.7 32.2 5.6 6.5	4.6 22.6 42.1 13.7 17.1
Median time to response (range), months ^b	2.8 (1.0-19.4)	4.2 (1.7-12.3)
Median duration of response (95% CI), months ^b	20.2 (17.3-NE)	11.5 (8.3-18.4)

ORR favored NIVO+CABO over SUN across subgroups including by IMDC risk status, tumor PD-L1 expression (≥ 1% vs < 1%), and bone metastases

BICR-assessed ORR and BOR by RECIST v1.1.

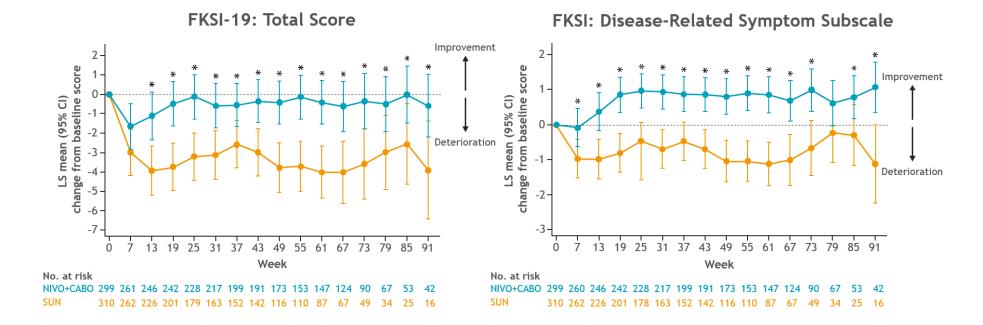
alncludes patients who were never treated, those who discontinued/died before disease assessment, those without measurable disease at baseline per BICR, or other reason not



CheckMate 9ER

"Includes events that occurred on therapy or within 30 days after the end of the treatment period of all treated patients. Treatment-related deaths per investigator: NIVO+CABO n = 1 (small intestine perforation), SUN n = 2 (pneumonia, respiratory distress); bTotal bar represents treatment-related AEs of any grade ≥ 20% in either treatment arm; of these events, none were grade 5.

15



CheckMate 9ER

CheckMate 9ER

Health-related quality of life

^{*}Between-arm difference was statistically significant at this timepoint (*P* < 0.05).

Change from baseline was assessed using descriptive statistics and a mixed-model repeated measures analysis, which controlled for treatment arm, time point, baseline patient-reported outcomes score, IMDC prognostic score, PD-L1 tumor expression, and region. No. at risk denotes intention-to-treat patients with baseline plus at least 1 post-baseline HRQoL assessment with non-missing patient-reported outcome data. Time 0 indicates baseline.

_FKSI-19, Functional Assessment of Cancer Therapy Kidney Symptom Index-19; LS, least square.

17

First line RCC

	CheckMate 214 ^{1,2}	KEYNOTE-426 ^{3,4}	CheckMate 9ER ⁵
	ITT	ITT	ITT
	(n=550 vs n=546)	(n=432 vs n=429)	(n=323 vs n=328)
mOS, months	NR vs 38.4	NR vs 35.7	NR vs NR
HR (CI);	0.72 (0.61–0.86);	0.68 (0.55-0.85);	0.60 (0.40–0.89);
P-value	0.0002	<0.001	0.001
Landmark OS at 12 months	83% vs. 78%	90 % vs. 79%	87 % vs. 78% (est)
mPFS, months	12.4 vs 12.3	15.4 vs 11.1 0.71 (0.60–0.84); <0.0001	16.6 vs 8.3
HR (CI);	0.88 (0.75–1.04);		0.51 (0.41–0.64);
p value	0.127 (NS)		<0.0001
ORR, % p value	39 vs 33 0.02	60 vs 40 < 0.0001	56 vs 27 < 0.0001
CR, %	11 vs 2	9 vs 3	8 vs 5
Med f/u, months	43.6	30.6	18.1
Prognostic risk, % Favorable Intermediate Poor	23	32	23
	61	55	58
	17	13	19
Randomization period	Oct 2014 – Feb 2016	Oct 2016 - Jan 2018	
Subsequent therapies for sunitinib arm, %	Overall (69%)	Overall (69%)	Overall (40%)
	IO (42%)	IO (48%)	IO (29%)

Case Study 2

65 year old female with metastatic renal cell cancer to the liver, lung and bone, previously treated with pazopanib and had been most recently on maintenance nivolumab for the past 2 years has progression of disease in the lung. She comes to discuss next options:

- A. Switch to TKI Cabozantinib
- B. Rechallenge with Pazopanib
- C. Add CTLA4 inhibitor
- D. Radiation to sites of progression

Nivo + Ipi in RCC Progressing After ICI (FRACTION-RCC): Study Design

 Preliminary analysis of Track 2 treated with Nivo + Ipi in ongoing international, open-label, randomized phase II trial with adaptive-platform, Simon 2-stage design

Stratified by prior TKI

Patients with histologically confirmed clear-cell advanced RCC; KPS ≥ 70%; life expectancy ≥ 3 mos; residual AEs from prior anticancer tx at baseline or grade ≤ 1; no life-threatening AEs with prior IO agents (planned N = 200)

Track 2:
Previous treatment
with anti–PD-(L)1 or
anti–CTLA-4

Current analysis

Other Immuno-oncology combinations per sub-protocol*

Nivo 3 mg/kg + Ipi 1 mg/kg Q3W x
4 → after 6 wks Nivo 480 mg Q4W

(Track 2: N = 46)

Up to 2 yrs or until PD, AE, or protocolspecified discontinuation; patients with PD may be rerandomized to other regimens on FRACTION

Primary endpoints: investigator-assessed ORR per RECIST v1.1, DoR, probability of PFS up to 24 wks

Statistical assumptions for Track 2: if ≤ 1 of 21 respond, recommend early cohort termination; if ≥ 2 of 21 respond, recommend additional enrollment to stage 2

Key secondary endpoints: safety and tolerability up to 2 yrs

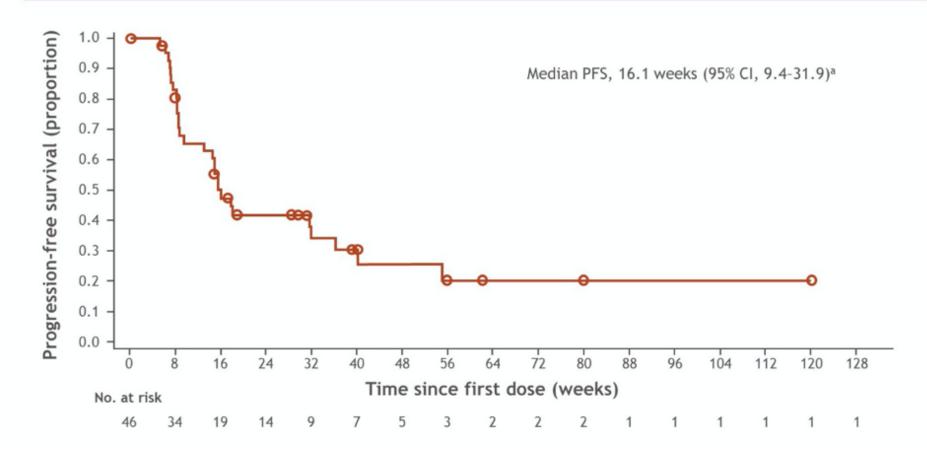
Chaugiri ASCO 2020 Abetr 5007 NCT020061

Slide credit: clinicaloptions.com

ASCO 2020: FRACTION-RCC

- 46 patients included, 13 had >4 lines of therapy
- None had prior CTLA 4 therapy, 37 progressed on TKI therapy, all had prior PDL1 therapy
- ORR 15.2%, (7/46 patients) Duration of response ranged from 2 to 19 months at a median follow up of 21.6 months

Response	Patients (N = 46)
ORR (co-primary endpoint), % (95% CI)	15.2 (6.3-28.9)
DCR (CR + PR + SD), % (95% CI)	52.2 (36.9-67.1)
Best overall response, n (%)	
■ CR	0
■ PR	7 (15.2)
■ SD	17 (37.0)
■ PD	15 (32.6)
Not evaluable/available	7 (15.2)



ASCO 2020: FRACTION-RCC

Progression-free survival

IO+IO (Nivo+Ipi) JCO Anita Gul et al

- Retrospective analysis of 45 patients with metastatic RCC who received prior anti–PD-1 pathway-targeted therapy and subsequently received ipilimumab and nivolumab
 - 80% of patients had demonstrated clinical benefit; 53% had a partial response, and 27% had stable disease
 - response rate to salvage ipi+nivo was 20% with a median PFS of 4.0 months.
 - Most of the responders were off ICI for only a median of 2.8 months
 - immune-related adverse events were severe (grade 3 or 4) in six patients, and 38% received steroids, and one patient required infliximab therapy.

The role of NIVO → +IPI (salvage/rescue)

	HCRN GU16-260 ASCO 2020	TITAN RCC ESMO 2019	OMNIVORE ASCO 2020	
N	123	207	83	
Prior TKI	No	Yes	Yes	
Timing	Nivo→lpi	Nivo→lpi	Nivo→lpi	
lpi doses	4 4		2	
ORR	13%	12%	4%	
CR	0%	2.7%	0%	

Nivo+ipi combo untreated ccRCC ORR 42%, CR 11% (Checkmate 214)1

1. Motzer et al, NEJM 2018

#ASCO20 Stains are the property of the author, permission required for recor.

ESENTED BY: Toni Choueiri, Highlights of the Day, #ASCO 20

Summary: Post-IO (PD-1/L1) therapy

	VEGF TKI	10	IO+IO (nivo+ipi)	IO→IO (nivo followed by ipi)	IO+VEGF
Evidence	Moderate	Low	Moderate	Moderate (to not do)	Moderate

- Low: few retrospective studies
- Moderate: retrospective, subgroups of phase 3, prospective non-randomized
- · High: randomized studies

NEW TARGETS ALWAYS WELCOME

PRESENTED AT

#ASCO20 Share are the property of the author, permission required for recon.

PRESENTED BY

7

Thoughts

- The addition of ipilimumab in patients with metastatic RCC who do not achieve an objective response to nivolumab monotherapy in the first line setting remains a question
- Of note, a subset of patients in this series with lack of an objective response to prior ICI-based therapy achieved a PR to salvage ipilimumab and nivolumab.
- Need to further define biomarkers for prediction of response
 - Molecular profiling, what constitutes immune sensitive, resistant, refractory (as well as prediction of toxicity)
- Upfront combination therapy is more effective than salvage therapy based on overall response rate and complete response rate.
- Need to balance toxicity/costs with benefit

Thank you

