

Immunotherapy and COVID-19

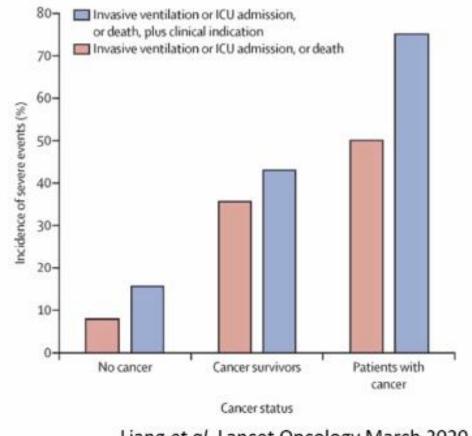
Trisha Wise-Draper, MD, PhD
Associate Professor of Medicine
Medical Director Clinical Trials Office
University of Cincinnati Cancer Center

Disclosures

- I have the following financial relationships to disclose:
 - Consultant for: Rakuten, Exicure, Shattuck Labs
 - Grant/Research support from: Merck, BMS, AstraZeneca, Tesaro/GSK
 - Ownership Interest (<5%): High Enroll
- I will not be discussing non-FDA approved indications during my presentation.

COVID-19 Pandemic

- Caused by SARS-CoV-2 virus which started in Wuhan China in 12/2019
- Common symptoms
 - Cough
 - Fever
 - Loss of smell/taste
 - Lymphocytopenia
- Severe complications
 - Cytokine storm and sepsis
 - Respiratory failure and ARDS
 - Hypercoagulability



Cancer and COVID-19 Severity

- Patients with cancer are uniquely susceptible to SARS-CoV-2 infection and subsequent complications
- Higher rates of hospitalization, Severe respiratory illness, and mortality

Liang et al. Lancet Oncology March 2020

Robilotti et al. 2020, Liang et al. 2020, Xia et al. 2020, Zhang et al., Dai et al. 2020, Lee et al., 2020, Kuderer et al. 2020

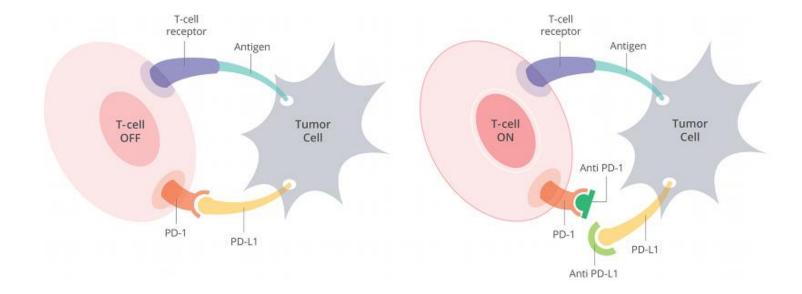
Mortality is High in Cancer Patients

	Region	Number of Cases	Mortality in Cancer Patients (%)
Miyashita et al.	New York (Mt Sinai)	334	11%
Mehta et al.	New York (Montefiore)	218	28%
Robilitti et al.	New York (MSKCC)	423	12%
Barlesi et al.	Paris (IGR)	137	15%
Lee et al.	United Kingdom (UKCCMP)	1044	30.6%
Garassino et al.	Global (TERAVOLT)	200	33%
Kuderer et al.	USA, Canada & Spain (CCC-19)	928	13%
Zhang et al.	USA, Europe, Asia (Meta- analysis: 15 studies)	3019	22.4%

Adapted from Solomon, ESMO 2020

COVID-19-induced cytokine storm

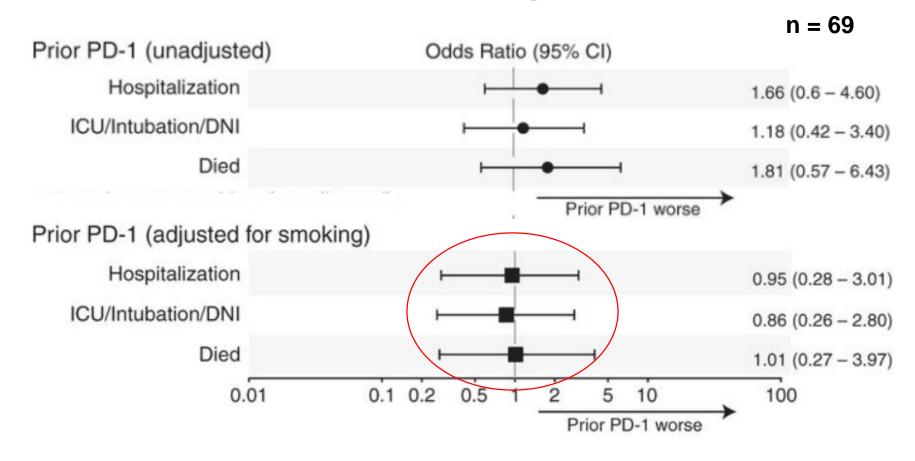
- Serious complication leading to ARDS and often fatality
- Clinically, most commonly characterized by:
 - Hypotension, hypoxia, fevers, coagulopathies
 - Increased ferritin, cytokine and chemokine levels
- Cytokine/chemokines commonly associated with COVID-19 cytokine storm:
 - IL-2, IL-6, IL-8, IL-4, IL-1B, IL-12, IL-18, IL-10, INFg, TNF-α, CXCL10, CCL2 (Chen et al. 2020, Coperchini et al. 2020)
- Anti-IL-6 antibody as well as other treatments are under investigation



Immune Checkpoint Inhibitors (ICI) in COVID-19 Patients

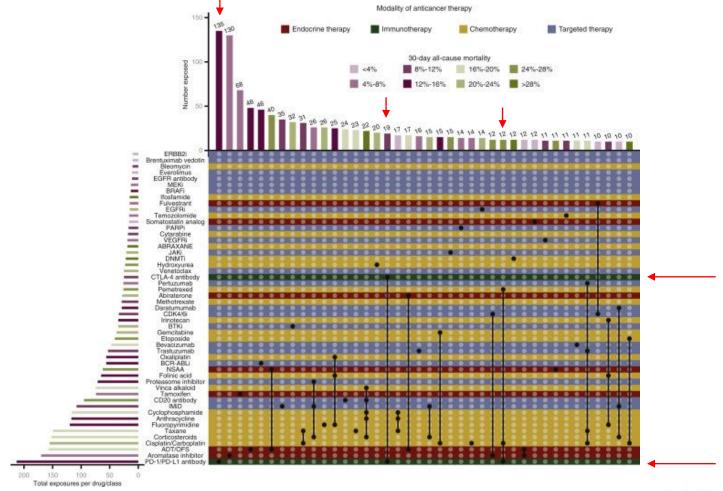
Anti-PD1-related cytokine storm: increased IL-6, IL-8, IL-10, IFN-gamma in a case study (Rotz et al. 2017)

Predictors of severe respiratory illness


Variable	Univariate		Multivariate			
	HR (95% CI)	P-value	HR (95% CI)	P-value		
Age (>65 years)	2.02 (1.33 – 3.08)	0.001	1.67 (1.07 – 2.60)	0.024		
Sex (female)	1.04 (0.68 – 1.58)	0.859				
Race (non-white)	1.20 (0.79 – 1.84)	0.394				
BMI (≥30)	1.01 (0.64 – 1.59)	0.965				
Smoking (Current/Former)	1.78 (1.17 – 2.72)	0.007	1.39 (0.89 – 2.17)	0.148		
Asthma/COPD	1.63 (0.98 – 2.71)	0.059	1.24 (0.72 – 2.13)	0.436		
Cancer (non-met solid)	1.00 (Ref)	-	1.00 (<i>Ref</i>)	-		
Cancer (met solid)	0.87 (0.48 – 1.59)	0.658	0.75 (0.40 – 1.41)	0.371		
Cancer (hematologic)	1.69 (0.92 – 3.10)	0.092	1.79 (0.97 – 3.32)	0.063		
Major Surgery (within 30d)	1.31 (0.63 – 2.71)	0.464				
Diabetes	1.09 (0.65 – 1.83)	0.745				
Cardiac Disorder	2.02 (1.28 – 3.19)	0.002	1.44 (0.88 – 2.37)	0.147		
HTN/chronic kidney disease	1.68 (1.09 – 2.58)	0.020	1.18 (0.73 – 1.89)	0.505		
Systemic chemotherapy (within 30d)	1.19 (0.78 – 1.82)	0.407				
Chronic lymphopenia or corticosteroids	1.59 (0.97 – 2.59)	0.066	1.42 (0.86 – 2.34)	0.165		
Immune checkpoint inhibitor	2.38 (1.29 – 4.38)	0.005	2.74 (1.37 – 5.46)	0.004		

Cox proportional hazard (N=423)

No increased COVID-19 severity with ICI in Lung Cancer



CCC-19 ICI and Mortality

Cohorts of COVID-19 patients with cancer: Immune Checkpoint Inhibitors

	CCC19 ¹	CACOVID-19 ²	UKCCMP ³	OnCovid ⁴	TERAVOLT ⁵	LEOSS ⁶	IGR cohort ⁷	Robilotti ⁸	Yang ⁹	Tian ¹⁰	ITA-HEMA-COV ¹¹
Region	Int.	France	UK	Europe	Int.	Europe	France/IGR	US/MSK	China	China	Italy
Number of patients	4966	1289	1044	890	200	435	178	423	205	232	536
Types of cancer	All	All	All	All	Lung	All	All	All	All	All	Heme
	Risk Factors for Adverse Outcomes										
Immune Checkpoint Inhibitors	NS	-	NS	NS	NS	-	NS	X (increased risk of severe disease)	NS	-	-

^{*}Adapted from Dr. Toni Choueiri

^{1.} Grivas et al., *Annals Onc*, 2021.; 2. Lièvre A. et al., *Eur J Cancer*, 2020. PMID: 33129039; 3. Lee L.Y.W. et al., *Lancet Oncol.*, 2020. PMID: 32853557; 4. Pinato D.J. et al., *Cancer Discov.*, 2020. PMID: 32737082; 5. Garassino M.C. et al., *Lancet Oncol.*, 2020. PMID: 32539942; 6. Rüthrich M.M., *Ann. Hematol.*, 2020. PMID: 33159569; 7. Albiges L. et al., *Nat Cancer*, 2020; 8. Robilotti E.V. et al., *Nat Med.*, 2020. PMID: 32581323; 9. Yang K. et al., *Lancet Oncol.*, 2020. PMID: 32479787; 10. Tian J. et al., *Lancet Oncol.*, 2020. PMID: 32798473

NCCN Guidance

- Patients receiving ICIs and who develop SARS-CoV-2 infection may benefit from interruption of ICI therapy.
 - However, at this point in time, consensus recommendations regarding duration
 of ICI interruptions are ill-defined and should be patient-individualized including
 considerations for the specific ICI and severity of COVID-19.

- ICIs may enhance viral clearance by upregulating CD8+ T cell response.
 - Cai et al., Viruses, 2020

Vaccine Administration with ICI

Table 1, COVID-19 Vaccination Recommendations for Cancer Patients

Patients					
Treatment/Cancer Type	Timing ^{†,‡}				
Hematopoietic Cell Transplantation (HCT)/Cellular Therapy					
Allogeneic transplantation	At least 3 months post-				
Autologous transplantation	HCT/cellular therapy ^{a,b}				
Cellular therapy (eg, CAR T cell)					
Hematologic Malignancies					
Receiving intensive cytotoxic chemotherapy (eg, cytarabine/anthracycline- based induction regimens for acute myeloid leukemia [AML])	Delay until absolute neutrophil count (ANC) recovery ^c				
Marrow failure from disease and/or therapy expected to have limited or no recovery	When vaccine available				
Long-term maintenance therapy (eg, targeted agents for chronic lymphocytic leukemia or myeloproliferative neoplasms [MPN])	When vaccine available ^c				
Solid Tumor Malignancies					
Receiving cytotoxic chemotherapy	When vaccine available ^{c,d}				
Targeted therapy	When vaccine available				
Checkpoint inhibitors and other immunotherapy	When vaccine available				
Radiation	When vaccine available				
Major surgery	Separate date of surgery from				
	vaccination by at least a few daysf				
Caregivers and Household/Close Contacts (≥16 years of age)					
Any time eligible to receive the vaccine ⁵					

+COVID-19 vaccines should be prioritized over other needed vaccines, as data on dual vaccination are not available to date. Fourteen days are recommended between COVID-19 vaccines and other approved vaccines.

#Discussion with clinical trial leads should be considered in advance to prevent protocol violations or exclusions.

e) Theoretical risk of exacerbated immune-related adverse events in patients receiving immune checkpoint inhibitors; there are no data on timing of vaccine administration, so this may be considered on the same day as immunotherapy for convenience and to reduce added visits to the office whenever possible.

SOAP Trial- Delaying 2nd Pfizer Vaccine decreases antibody response

- Interim results show antibody response after 1st dose at 3 weeks:
 - 97% for healthy controls
 - 39% for solid tumors
 - 13% for malignant heme
- Antibody response after 2nd dose 3 weeks after the 1st dose:
 - 95% for solid tumors after 2 weeks
- Without a vaccine boost at 3 weeks, antibody response at 5 weeks:
 - 43% of solid tumors
 - 8% of malignant heme
 - 100% of healthy controls

Conclusions

- ICI therapy does not appear to increase COVID-19 severity
- Caution with ICI therapy in those with lung disease
- Interruption of ICI therapy in patients with active SARS-CoV2 infection is controversial
- Vaccination can occur safely during ICI therapy and should not be delayed in cancer patients

Acknowledgements

- CCC-19 Jeremy Warner, Toni Choueri and rest of the steering committee, project coordinators, and investigators as well as the patients
 - CCC19.org; NCT04354701

University of Cincinnati • UC Health • Cincinnati Children's

