

Adoptively transferred T cells for primary and secondary CNS malignancies

Richard Sherry, MD, FACS, Surgery Branch National Cancer Institute, Bethesda, Maryland

Disclosure

I have no conflicts of interest to disclose

NCI Surgery Branch CRADA: Kite Pharma lovance Biotherapeutics Ziopharm Oncology

Richard Sherry, MD, FACS, Surgery Branch National Cancer Institute, Bethesda, Maryland

Baseline 12/2015

49 YO Woman with advanced BrCa ER+PR+ her2-

S/p multiple hormonal therapies

S/p 6 different lines of Chemotherapy

Received TIL *selected* for *somatic mutation* reactivity (And 4 doses Pembro)

Zacharakis et al. Nature Medicine June 4, 2018

Adoptively transferred T cells for primary and secondary CNS malignancies

ACT Background and Principles

Can infused Lymphocytes effectively traffic to the brain and cause cancer regression ?

Anti-EGFRvIII CAR for patients with GBM J Immunother 42(4):126, 2019

Adoptive Cellular Therapy (ACT) for Cancer

- Infusion of tumor specific T Cells in combination with lymphodepleting chemotherapy given to eliminate cancer.
- Depends on the isolation, identification, or de novo generation of appropriate effector T-Cells.

Adoptive T Cell Therapy for Cancer

Insertion of target receptor

Naturally occurring autologous lymphocytes derived from tumor

TIL

Naturally occurring autologous lymphocytes derived from tumor • Polyclonal

- TCR have had normal selection in the thymus
- TCRs recognize unique mutated peptide products expressed on the cancer cell surface on HLA

TCR

- Autologous PBL Transduced with TCR
- TCR inserted randomly into an "open repertoire"
- Each T Cells has its native unique TCR and the transduced TCR
- HLA presentation required

CAR

- Autologous PBL Transduced with CAR
- Each T Cell has its unique native TCR and the Transduced CAR
- CAR inserted randomly into an "open repertoire"
- Recognizes selected cell surface protein without HLA presentation

Adoptive Cell Transfer 2019

• The T Cell

Number of Cells impacts efficacy and toxicity Phenotype of Cells? (CM, EM, N) Persistence?

• The Target

Must be on the Tumor cell surface Antigen must be processed and presented by HLA Tumor heterogeneity?, normal tissue expression?, Ag loss?

• Lymphodepletion

Typical Conditioning Regimens

Importance of lymphodepletion on ACT

1998 20 Patients advanced MM TIL (2 E11) HD IL-2

Cytoxin 25 mg/kg X 1

40 % ORR Durable CR 5% Responses not durable 2016 101 Patients Advanced MM TIL (5 E10) HD IL-2

Cytoxin 60 mg/kg X2 Fludarabine 25 mg/m2 X5

56% ORR Durable CR/PR 36% Responses durable

Adoptive Cell Therapy with

Autologous Tumor-infiltrating Lymphocytes for Patients with Metastatic Melanoma

Resolution of liver disease in a patient treated with TIL and IL-2 after preparative lymphodepleting regimens of Cy/Flu

What is the evidence that ex vivo manipulated tumor specific lymphocytes can be infused and then traffic to the brain to mediate cancer regression ?

Melanoma TIL production takes weeks

Treatment of melanoma brain metastasis with Tumor infiltrating lymphocytes

Standard eligibility criteria for ACT *Plus*

Synchronous evaluable non CNS disease < 3 brain lesions < 10 mm

(Excluded protocol exemptions)

371 patients with advanced melanoma treated with TIL 2001-15

45 pts identified with **untreated** melanoma brain metastasis

Treatment of melanoma brain metastasis with Tumor infiltrating lymphocytes

45 pts with untreated melanoma brain metastasis and synchronous evaluable non CNS disease

	Overall Systemic Response	In Brain Response
ORR	15 (33%)	11 (24%)
PR	14	1
CR	1	10 (22%)

Resolution of multiple brain lesions in two patients treated with TIL and IL-2 after preparative lymphodepleting regimens of Cy/Flu

Cancer regression and neurologic toxicity following anti-MAGE-A3 TCR gene therapy

Richard A. Morgan^{1,*}, Nachimuthu Chinnasamy¹, Daniel D Abate-Daga, Alena Gros¹, Paul F. Robbins¹, Zhili Zheng¹, Steven A. Feldman¹, James C. Yang¹, Richard M. Sherry¹, Giao Q. Phan¹, Marybeth S. Hughes¹, Udai S. Kammula¹, Akemi D. Miller¹, Crystal J. Hessman¹, Ashley A. Stewart¹, Nicholas P. Restifo¹, Martha M. Quezado², Meghna Alimchandani², Avi Z. Rosenberg², Avindra Nath³, Tongguang Wang³, Bibiana Bielekova³, Simone C. Wuest³, Akula Nirmala⁴, Francis J. McMahon⁴, Susanne Wilde⁵, Barbara Mosetter⁵, Dolores J. Schendel^{5,6}, Carolyn M. Laurencot¹, and Steven A Rosenberg¹

J Immunother 36(2):133, 2013

Cancer regression and neurologic toxicity following anti-MAGE-A3 TCR gene therapy

Anti-Mage-A3 TCR

Recognized Epitope KVAELVHFL (Mage A3 protein)

AND

Recognized Epitope KMAELVHFL (Mage A12 protein)

J Immunother 36(2):133, 2013

Figure 5

Neurological imaging studies. Shown are MRI scans for patients 5, 7 and 8, with the timing of the images as listed.

BRIEF REPORT | SEPTEMBER 12, 2019

Tisagenlecleucel CAR T-cell therapy in secondary CNS lymphoma

Clinical Trials & Observations Brief Report

Matthew J. Frigault, Jorg Dietrich, Maria Martinez-Lage, Mark Leick, Bryan D. Choi, Zachariah DeFilipp, Yi-Bin Chen, Jeremy Abramson, Jennifer Crombie, Philippe Armand, Lakshmi Nayak, Chris Panzini, Lauren S. Riley, Kathleen Gallagher, Marcela V. Maus

Blood (2019) 134 (11): 860-866.

Phase I Study (NCT01454596)

NCI IRB approved All patients signed informed consent Opened 2011 Primary end points: Maximum safe dose Determine 6 month PFS Secondary end points: CAR persistence Radiologic response (Goff et al. J Immunother; 42:126, 2019)

Epidermal growth factor receptor (EGFR)

The most frequent genetic alteration associated with GBM

- The most frequent variant is EGFRvIII (25-64%)
- Driver mutation
- Extracellular ligand binding domain is truncated and is constitutively active EGFRvIII is not present in normal tissue and is tumor specific

ProtocolNonmyeloablative preparative chemotherapy
Cell infusion (1 E7 total cell starting dose)
Low dose IV IL-2 (72,000 IU/kg) q 8 to tolerance
MRI follow up at monthly intervals

Eligibility

Recurrent GBM following surgery , XRT , and chemo
18-70 years of age
Karnosfsky performance status ≥ 60%
Steroids allowed if on a stable dose

EGFRvIII + Determination based on a two step PCR on RNA from in-house or submitted samples (NCI Path Department)

Anti-EGFRvIII CAR T Cell Production and Analysis (139-28BBZ)

Single chain human scFV (139) 3rd Generation (CD28 costimulation, CD3Z, 4-1BB costimulation)

Diagram of retroviral construct detailing location of single chain variable fragment of Hu monoclonal Ab 139 CD8 linker domain, CD28 and 4-1BB costim domains and CD3zeta signaling domain

> Morgan RA et al. Hum Gene Ther. 2012,23(10):1043

Anti-EGFRvIII CAR T Cell Production and Analysis (139-28BBZ)

OKT3 stimulated PBL transduced with a gamma-retroviral vector encoding the EGFRvIII CAR

COA included > 10% CAR+ CD3 Cells Specific INF-g release to EGFRvIII+ cell lines

(>3 E 10 cells required additional rapid expansion)

Β.

EGFRvIII-specific cytokine release of infused cell product as measured by interferon-γ ELISA. UT: untransduced PBL, Td: PBL transduced with CAR-28BBZ, U251: glioblastoma cell line ± transduction to express EGFRwt or EGFRvIII

ID	AGE	SEX	PRIOR TREATMENTS
1	45*	М	Surgery, XRT, TMZ,
			bevacizumab, BCNU
2	43	М	Surgery, XRT, TMZ,
			bevacizumab
3	52*	М	Surgery, XRT, TMZ, bevacizumab
4	46	М	Surgery, XRT, TMZ
5	55	М	Surgery, XRT, TMZ
6	57*	М	XRT, TMZ, bevacizumab
7	53	М	Surgery, XRT, TMZ
8	56	М	Surgery, XRT, TMZ, AZD7451
9	55	F	Surgery, XRT, TMZ, bevacizumab
10	55	М	Surgery, XRT, TMZ
11*	61*	F	Surgery, XRT, TMZ
12*	66 *	М	Surgery, XRT, TMZ,
			veliparib, bevacizumab
13	60 *	М	Surgery, XRYT, TMZ, bevacizumab, EGFRvIII vaccine
14*	64	F	Surgery, XRT, TMZ,
			IMA950 vaccine
15	61*	М	Surgery, XRT, TMZ,
			EGFRvIII vaccine vs. placebo trial, bevacizumab, trebananib
16	43 *	М	Surgery, XRT, TMZ
			carotuximab, bevacizumab
17	47*	М	Surgery, XRT, TMZ,
			EGFRvIII vaccine vs placebo trial, bevacizumab
18*	57	М	Surgery, XRT, TMZ

			ADMINISTERED CELLS					SURVIVAL (MONTHS)	
						# IL-2			
ID	AGE		DOSE	% CAR (+)	# CAR (+)	DOSES	RESP	PFS	OS
1	45*	М	1.00E+07	71.0%	7.10E+06	7	NR	1.1	2.2
2	43	М	1.00E+07	62.6%	6.26E+06	10	NR	1.9	13.1
3	52 *	М	3.00E+07	67.6%	2.03E+07	8	NR	1.1	4.5
4	46	М	3.00E+07	66.5%	2.00E+07	4	NR	2.0	11.1
5	55	М	1.00E+08	67.5%	6.75E+07	7	NR	1.5	9.0
6	57*	М	1.00E+08	62.9%	6.29E+07	6	NR	0.0	6.9
7	53	М	3.00E+08	76.5%	2.30E+08	8	NR	1.2	9.7
		М							
8	56		1.00E+09	62.0%	6.20E+08	6	NR	0.9	10.1
9	55	F	1.00E+09	67.6%	6.76E+08	6	NR	1.1	2.0
10	55	Μ	1.00E+09	73.3%	7.33E+08	5	NR	1.3	4.4
11*	61 *	F	2.48E+09	35.0%	8.68E+08	3	NR	12.5	46.8+
12*	66 *	М	3.00E+09	67.9%	2.04E+09	5	NR	0.9	2.1
13	60 *	Μ	3.00E+09	79.3%	2.38E+09	1	NR	2.7	4.5
14*	64	F	1.00E+10	49.4%	4.94E+09	5	NR	1.6	8.9
15	61 *	М	1.00E+10	66.0%	6.60E+09	0	NR	1.1	1.4
16	43*	Μ	1.00E+10	75.3%	7.53E+09	1	NR	1.1	6.9
17	47*	М	6.00E+10	43.2%	2.59E+10	0	NE	TRM	TRM
18*	57	М	3.00E+10	49.9%	1.50E+10	0	NR	2.0	13.6

Grade 3 and 4 Serious AEs

(excludes CY/Flu Aes)

Cardiopulmonary	Dyspnea/Hypoxia	2
	Hypotension(non septic)	2
	Capillary leak	1
Infectious	Febrile Neutropenia	2
	Bacteremia	8
Neurologic	transient motor weakness	1
	transient urinary incontinence	1
Coagulation	Prolonged PTT	1
	DVT	1
	PE	1

Persistence of infused CAR+ cells as measured by qPCR

Persistence at one month (median day 32, n=14) was correlated with CAR+ cell dose (r=0.6615, p=0.0121), but not survival (not shown).

Persistence of infused CAR+ cells as measured by qPCR

Patients who received <3x10⁷ CAR+ cells

Patients who received >3x10⁸ CAR+ cells

The Safety and Feasibility of Administering T Cells Expressing Anti-EGFRvIII Chimeric Antigen Receptor to Patients with Malignant Gliomas Expressing EGFRvIII

ConclusionsSafe cell dose (1 -3 E 10 total cells)
Patients with GBM can tolerate CAR T-Cells/NMA/LD IL-2
Persistence of CAR T cells appeared to be dose related
Low level CAR T cells could be detected months following
infusion
CAR Persistence did not correlate with survival

Administration of anti-EGFRvIII Car T cells did not mediate a clinically meaningful effect in patients with GBM in this Phase 1 Study

(Goff et al. J Immunother; 42:126, 2019)

NCI Surgery Branch

CONSORT Diagram of Trial Enrollment