Clinical Trial Design Considerations for Evaluating Efficacy in Immuno-oncology Clinical Trials

David McDermott, MD

Beth Israel Deaconess Medical Center

Dana Farber/Harvard Cancer Center

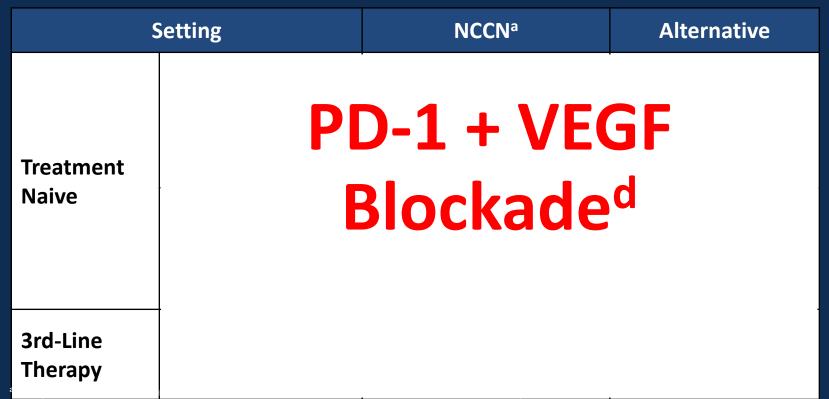
Harvard Medical School

Disclosures

Consultant

- Array Biopharma
- Bristol-Myers Squibb
- Calithera Biosciences
- Exelixis
- Genentech
- Merck
- Novartis
- Pfizer
- Jounce

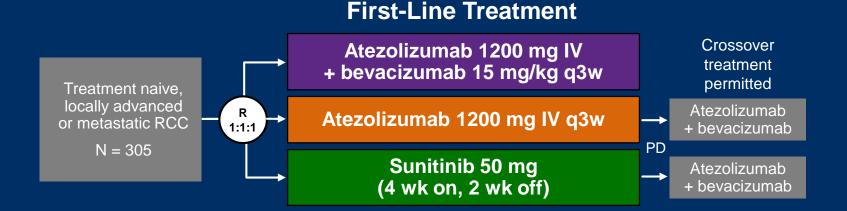
Research funding


- Prometheus Labs
- Bristol-Myers Squibb

mRCC: Most Applied Sequence 2017*

*Motzer RJ et al. NEJM 2015.

mRCC: Fusion of First and Second-line Therapy



Pending FDA review. Motzer RJ et al. SITC 2016. Abstract O38. Motxer et al, GU ASCO Abstract.

PRESENTED AT: 2018 Genitourinary Cancers Symposium | #GU18

Slides are the property of the author. Permission required for reuse.

IMmotion150 Trial: Randomized Phase 2, <u>Three Arm</u> Design

McDermott D, et al. IMmotion150 biomarkers: Nature Med 2018

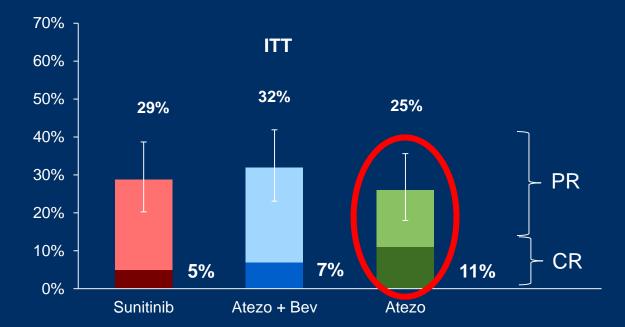
Rational Application of Combination IO Therapy: Lessons Learned from IMmotion 150


Trial Design

Patient Selection

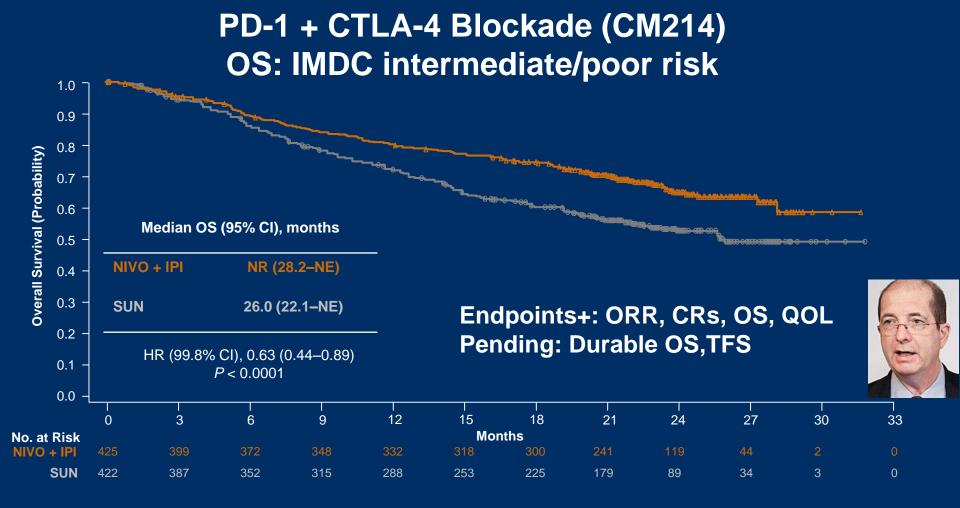
Novel Endpoints

IMmotion150 Trial Design: Randomized P2

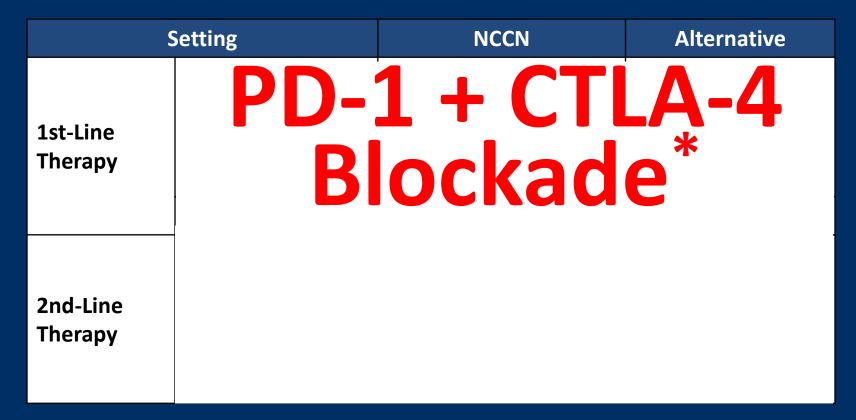

First-Line Treatment

- IMmotion150 was designed to be hypothesis generating and inform the Phase III study IMmotion151
- First Randomized Trial to:
 - Explore ICB (atezo) + Targeted Therapy (bev)
 - Explore the association between outcome and TME gene signatures
- First RCC Trial to:
 - Explore single agent ICB in 1st Line

TME, tumor microenvironment; ICB, immune checkpoint blockade


IMmotion 150: 1L Single Agent PD-L1 Blockade Activity

• 75% of responses are ongoing across treatment arms, and the median duration of response is not estimable due to an insufficient number of PFS events in responders


6

Confirmed responses measured by independent review facility. CR, complete response; PR, partial response. Clinical cutoff, Oct 17, 2016. Median duration of follow-up, 20.7 mo. McDermott, ASCO GU 2017.

Motzer RJ et al. NEJM 2017

mRCC: Era of Front-Line Combination Therapy

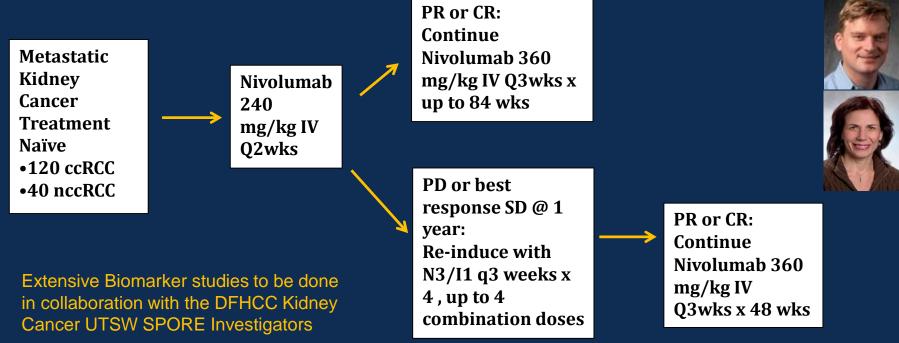
^{*I}ntermediate/Poor Risk Motzer RJ et al. NEJM 2017. FDA but not yet EMA approved.

YAHOO!

Bristol-Myers to get negative CHMP opinion on renal cancer drugs

C REUTERS Reuters July 26, 2018, 3:59 PM GMT+1

<


NEW YORK, July 26 (Reuters) - Bristol-Myers Squibb Co said on Thursday it was told by European regulators that they will recommend against approving the company's drugs Opdivo and Yervoy to treat firstline renal cancer.

CHMP discussed whether the **contribution of ipilimumab** to the efficacy of the combination therapy in the proposed dosage has been sufficiently demonstrated and some concern was expressed.

CHMP – Committee on Human Medicinal Products

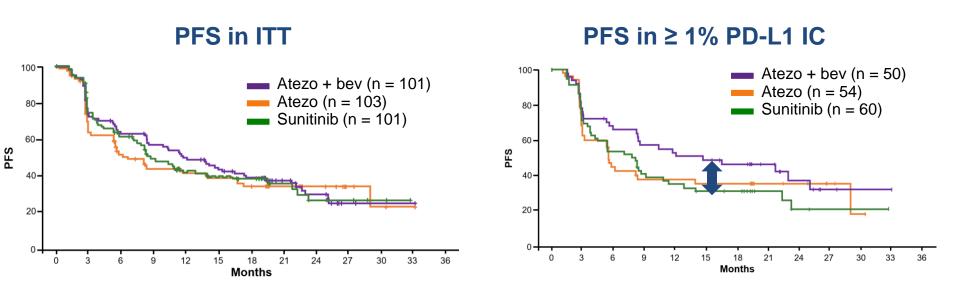
PD-1 then CTLA-4 Blockade

Trial Diagram – HCRN GU 260 (BMS 209-669)

Opened 4/17/17

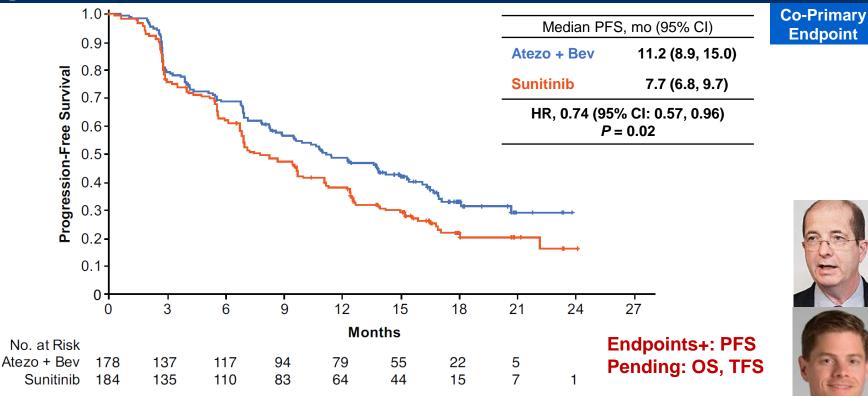
Atkins, Hammers, Signoretti NCT03117309

PRESENTED AT: 2018 Genitourinary Cancers Symposium | #GU18 Slides are the property of the author. Permission required for reuse.


Rational Application of Combination IO Therapy: Lessons Learned from IMmotion 150

Trial Design

- Patient Selection
 - Which patients benefits from Combination Rx?


Novel Endpoints

Encouraging Efficacy by PFS of Atezolizumab + Bevacizumab vs Sunitinib in Patients With IC PD-L1 Expression

Atezo, atezolizumab; bev, bevacizumab. IRF-assessed PFS. McDermott et al, Nat Med 2018.

Anti-PD-L1/VEGF Antibodies (IM151) Progression-Free Survival in PD-L1+

PFS assessed by investigators. Minimum follow-up, 12 mo. Median follow-up, 15 mo. The PFS analysis passed the pre-specified P value boundary of alpha = 0.04.

Pembrolizumab Combo Fails in Melanoma

Jason M. Broderick @jasoncology Published: Friday, Apr 06, 2018

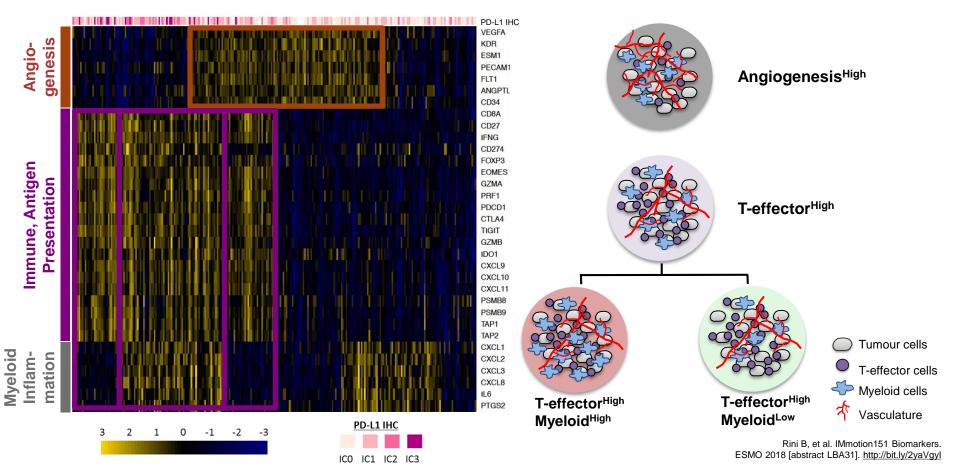
The combination of the PD-1 inhibitor pembrolizumab (Keytruda) and the IDO1 inhibitor epacadostat failed to improve progression-free survival (PFS) versus single-agent pembrolizumab in patients with unresectable or metastatic melanoma, according to findings from the phase III ECHO-301/KEYNOTE-252 trial.

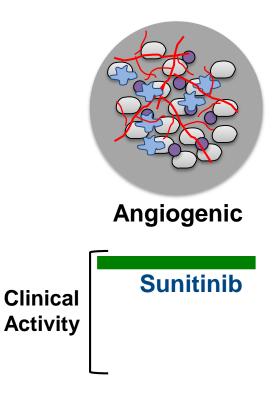
Rational Application of Combination IO Therapy: Lessons Learned from IMmotion 150

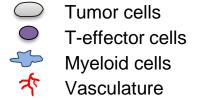
Trial Design

Patient Selection

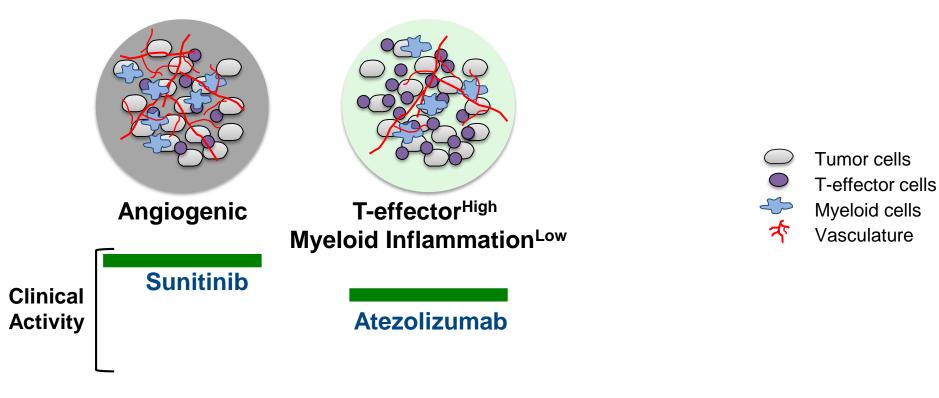
- Novel Endpoints
 - Will Next Gen Biomarkers advance the field?



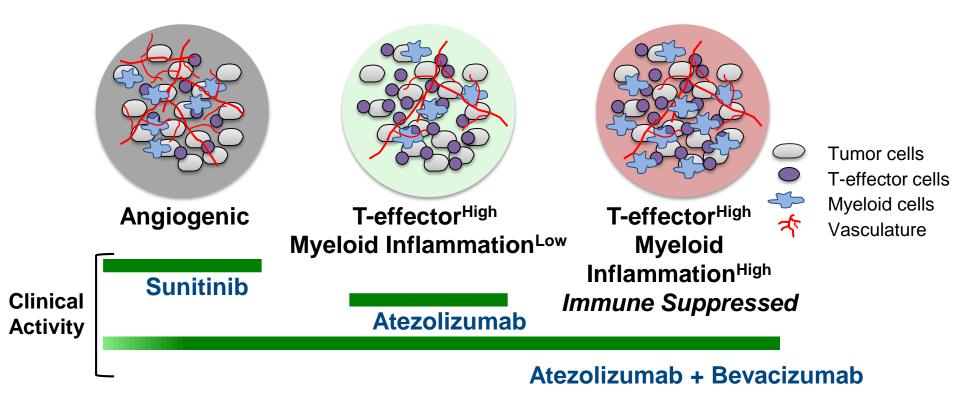

Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma


David F. McDermott^{1*}, Mahrukh A. Huseni², Michael B. Atkins³, Robert J. Motzer⁴, Brian I. Rini⁵, Bernard Escudier⁶, Lawrence Fong⁷, Richard W. Joseph⁸, Sumanta K. Pal⁹, James A. Reeves¹⁰, Mario Sznol¹¹, John Hainsworth¹², W. Kimryn Rathmell¹³, Walter M. Stadler¹⁴, Thomas Hutson¹⁵, Martin E. Gore¹⁶, Alain Ravaud¹⁷, Sergio Bracarda¹⁸, Cristina Suárez¹⁹, Riccardo Danielli²⁰, Viktor Gruenwald²¹, Toni K. Choueiri²², Dorothee Nickles², Suchit Jhunjhunwala², Elisabeth Piault-Louis², Alpa Thobhani²³, Jiaheng Qiu², Daniel S. Chen², Priti S. Hegde², Christina Schiff², Gregg D. Fine² and Thomas Powles²⁴

IMmotion150: Transcriptome Map of Angiogenesis and Immune-Associated Genes in RCC Tumours



Molecular Correlates of Differential Response to Atezolizumab ± Bevacizumab vs Sunitinib in mRCC



Molecular Correlates of Differential Response to Atezolizumab ± Bevacizumab vs Sunitinib in mRCC

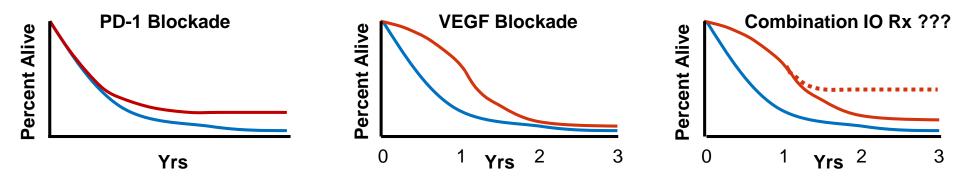
Molecular Correlates of Differential Response to Atezolizumab ± Bevacizumab vs Sunitinib in mRCC

McDermott D, et al. IMmotion150 biomarkers: AACR 2017

Molecular correlates differentiate response to atezolizumab + bevacizumab vs sunitinib: results from a Phase III study (IMmotion151) in untreated metastatic renal cell carcinoma

Brian I. Rini,¹ Mahrukh Huseni,² Michael B. Atkins,³ David F. McDermott,⁴ Thomas Powles,⁵ Bernard Escudier,⁶ Romain Banchereau,² Li-Fen Liu,² Ning Leng,² Jinzhen Fan,² Jennifer Doss,² Stefani Nalle,² Susheela Carroll,² Shi Li,² Christina Schiff,² Marjorie Green,² Robert J. Motzer⁷

¹Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA; ²Genentech, Inc., South San Francisco, CA, USA; ³Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA; ⁴Beth Israel Deaconess Medical Center, Boston, MA, USA; ⁵Barts Cancer Institute and the Royal Free Hospital, Queen Mary University of London, London, UK; ⁶Gustave Roussy, Villejuif, France; ⁷Memorial Sloan Kettering Cancer Center, New York, NY, USA


First-Line Phase 3 Trials in Advanced RCC

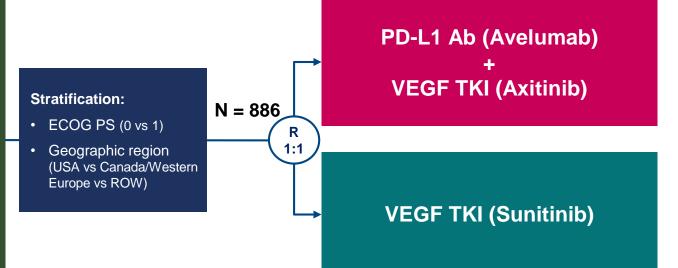
Control	Experimental Arm	
Sunitinib	Axitinib + avelumab	
Sunitinib	Bevacizumab + atezolizumab	
Sunitinib	Nivolumab + cabozantinib	
Sunitinib	Lenvatinib + everolimus or lenvatinib + pembrolizumab	
Sunitinib	Axitinib + pembrolizumab	
Sunitinib	Nivolumab + ipilimumab 🗸	

Are these approaches additive or synergistic?

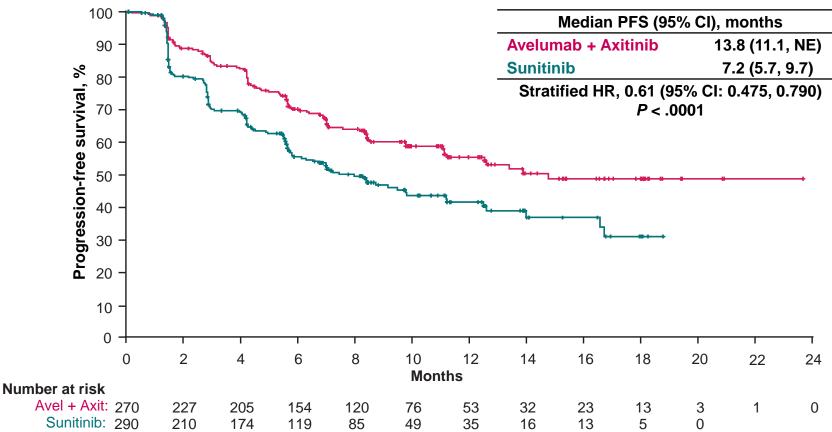
Bold = met primary endpoint

PD-1 Blockade Based Combinations in mRCC: Are they Additive or Synergistic?

- PD-1 + VEGF certainly additive
 - Improvements in the targeted therapy endpoints of ORR and mPFS are encouraging
 - OS may be prolonged, FDA approvals seem likely
- But are these combination synergistic?
- Do they generate improvements in IO* endpoints?
 - CR or near-CR, Landmark PFS, Long Term OS
 - Treatment-free Intervals Remissions


IO – Immuno-oncology,

Side courtesy of T RIbas.

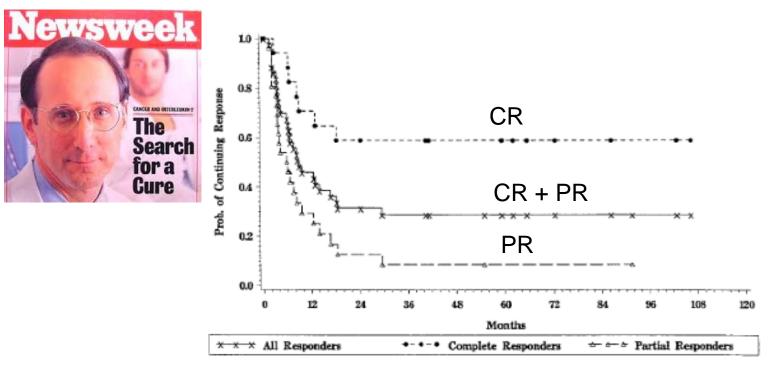

JAVELIN Renal 101: study design

Key eligibility criteria:

- Treatment-naive aRCC with a clear cell component
- ≥ 1 measurable lesion as defined by RECIST v1.1
- Tumor tissue available for PD-L1 staining
- ECOG PS 0 or 1

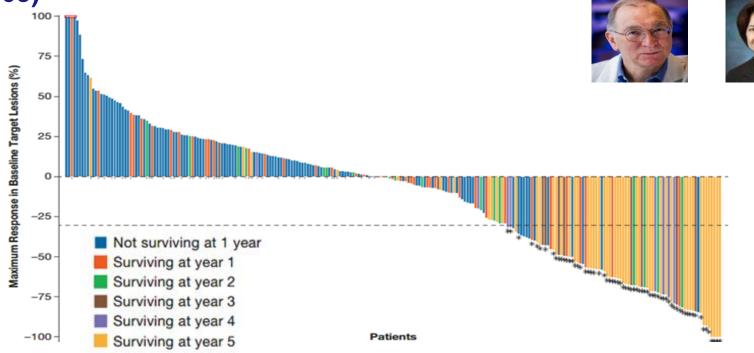
PFS per IRC in the PD-L1+ group

Minimum follow-up, 6 months. Median follow-up, 9.9 months (avelumab + axitinib) and 8.4 months (sunitinib). The PFS analysis crossed the prespecified efficacy boundary based on the alpha-spending function (P = .001).


Motzer et al ESMO 2018 NE, not estimable.

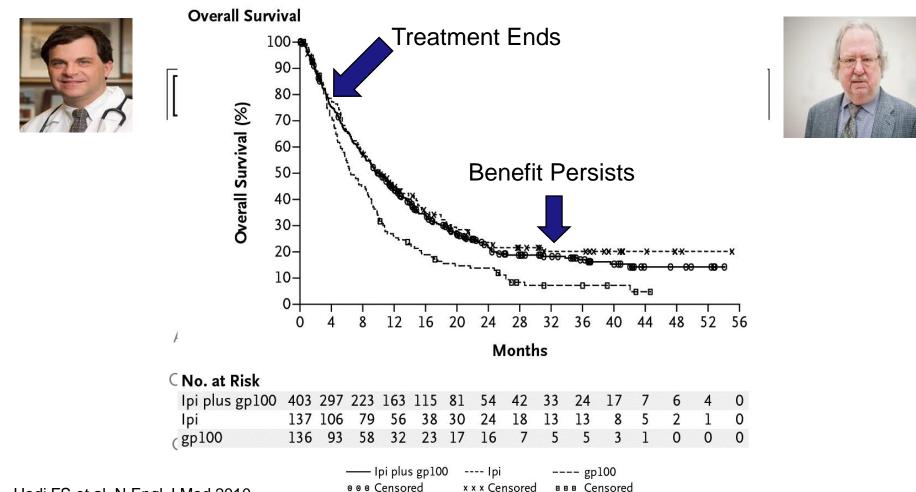
mRCC PD-1 Based Combination Trial Comparison

	Ave + Axi ¹ Javelin 101	Nivo + Ipi ² CheckMate 214
	ITT	ITT
Phase	3	3
Comparator	Sunitinib	Sunitinib
Ν	442	550
Median follow-up, months	9.9	25.2
mPFS, months	13.2 [†]	12.4 [†]
HR (95% CI)	0.61 (0.48, 0.79)	0.68 (0.49, 0.95) [§]
ORR, %	55 [†]	39†
CR, %	3	9
TRAEs, % All grades/Grade 3 or 4	95/51	93/46 [¶]
Discontinuations due to AEs/TRAEs, %	NA/4	NA/22


*Data represent a summary of reported data and are not intended for cross-trial comparisons. †IRRC-assessed. 1. Motzer et al Presented at: ESMO 2018. 2. Motzer, et al. NEJM 2017.

Proof of Principle: Deep HD IL-2 responses produce remissions

Deep Responses = Durable Survival Target Tumor reduction and length of survival with PD-1 blockade (CM-003)

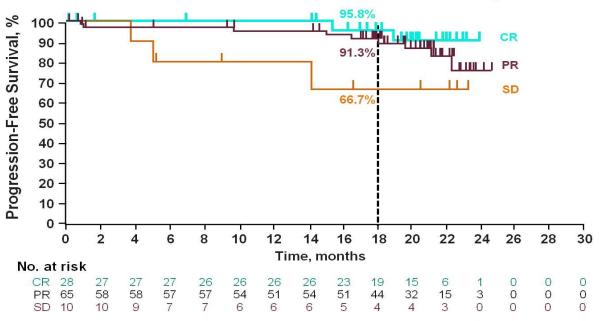


aIncludes all patients with target lesion at baseline and ≥1 on-treatment tumor assessment. Asterisks in waterfall plot represent responders

(ie, achieved a partial response or complete response).

Denotes changes truncated at 100%.

CR = complete response; ORR = objective response rate; PR = partial response; ST = stable disease.



Hodi FS et al. N Engl J Med 2010

Can we stop PD-1 Blockade in Metastatic Melanoma?

PFS^a in Patients Who Completed Protocol-Specified Time on Pembrolizumab (n = 103)

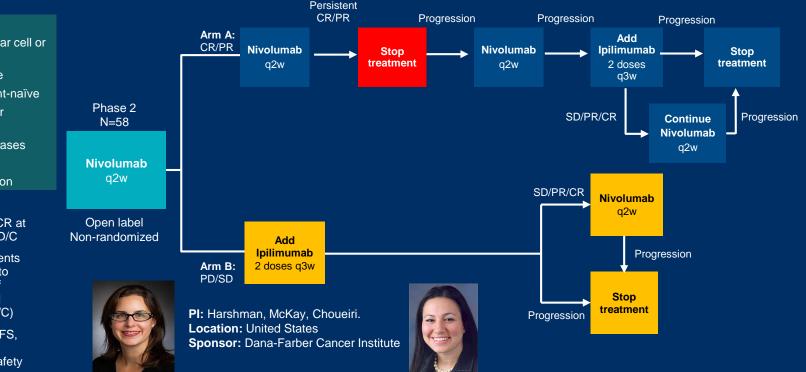
^aPer immune-related response criteria by investigator review; time is measured from last dose of pembrolizumab. Data cutoff: Dec 4, 2017.

Presented By Georgina Long at 2018 ASCO Annual Meeting

ONGOING CLINICAL TRIALS FOR TREATMENT OPTIMIZATION

Estimated primary completion date: November 30, 2020

OMNIVORE¹: Response-based approach to treatment with nivolumab in advanced/metastatic RCC


Eligibility:

- Advanced /mRCC: clear cell or non-clear cell
- Biopsy tissue available
- · Pretreated or treatment-naïve
- No prior ICI therapy for metastatic RCC
- No active CNS metastases
- ECOG PS 0-2
- Adequate organ function

Primary endpoints:

- Arm A: Persistent PR/CR at 1 year after nivolumab D/C
- Arm B: Number of patients converted from PD/SD to PR/CR upon addition of Ipilimumab (evaluated 1 year after Nivolumab D/C)

Secondary endpoints: PFS, OS, salvage therapy-free interval (arm A), irORR, safety

Rational Application of Combination IO Therapy:

Novel Endpoints

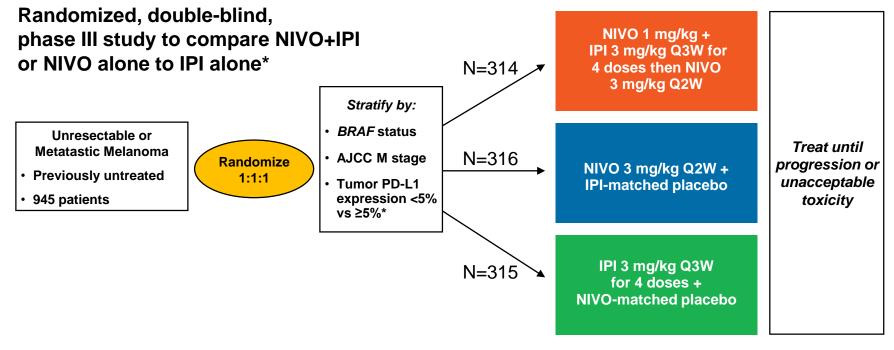
- Make IO Endpoints Primary
 - More remissions = Achieving patient's goal
 - Near CR endpoint = shorter timelines for R&D
 - Stopping Rx = Reduced Toxicity/Cost
- Conventional Endpoints (e.g. PFS and OS)
 - May not be comprehensive

Why should we aim to stop therapy?

Regimen cost for "typical" patient (80 kg) with Melanoma in Phase 3 (Checkmate 067)^a

Drug	Median Doses	Cost
Nivolumab	15	\$89,000
Nivolumab + ipilimumab	4	\$150,000
Remission	0	0

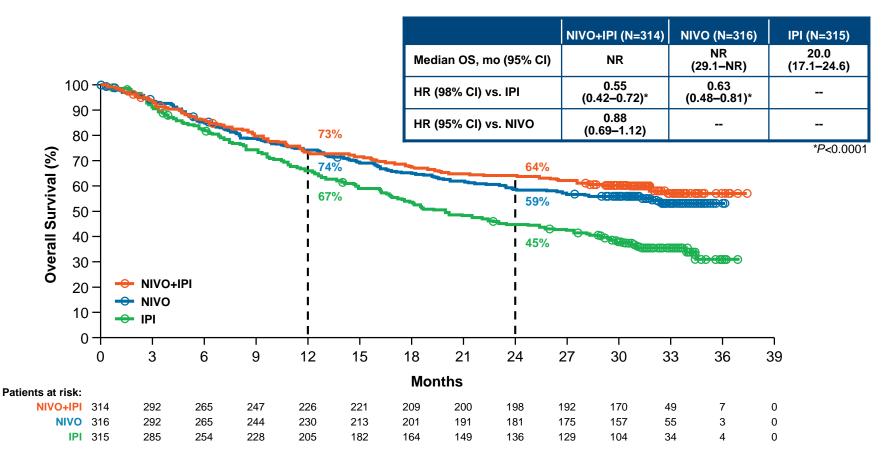
- Nivolumab: \$24.70/mg^b
- Ipilimumab: \$135.18/mg^b


^aLarkin J et al. *N Engl J Med.* 2015; 373:23-34. ^bFirst quarter 2016, in US dollars.

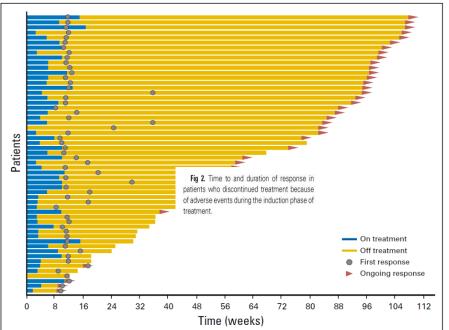
Rational Application of Combination IO Therapy:

Novel Endpoints

- Make IO Endpoints Primary
 - Near CR endpoint = shorter timelines for R&D
 - More remissions = Achieving patient's goal
 - Stopping Rx = Reduced Toxicity/Cost
- Conventional Endpoints (e.g. PFS and OS)
 - May not be comprehensive


CheckMate 067: Study Design

Database lock: Sept 13, 2016 (median follow-up ~30 months in both NIVO-containing arms)

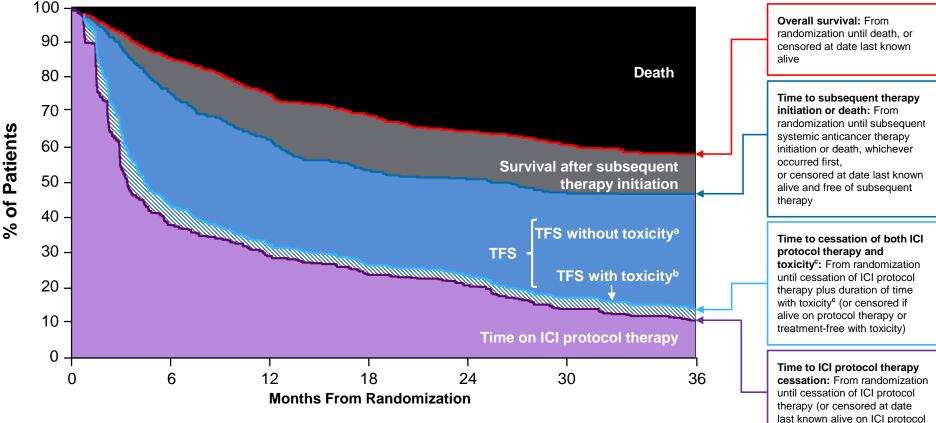

*The study was not powered for a comparison between NIVO and NIVO+IPI

Overall Survival: CM 067

Patients who Discontinued NIVO+IPI for AEs

- Pooled analysis of CM067/CM069 showed a subset of patients who discontinued NIVO+IPI early because of AEs achieved a meaningful treatment-free interval
- 176/407 (43%) discontinued for AEs;
 96 (24%) in induction phase
- ~1/3 who discontinued started subsequent systemic anti-cancer therapy
- Median time to subsequent therapy 25mo among the 96 pts who d/c during induction phase

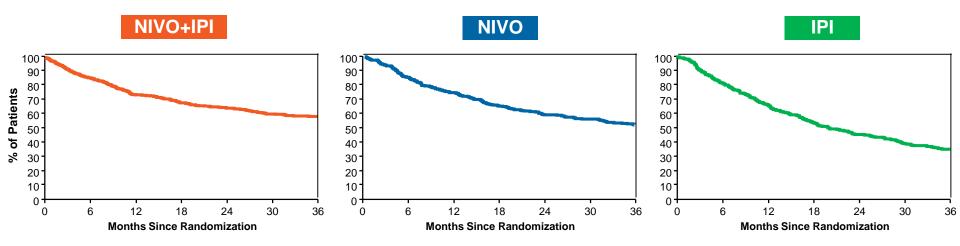
Treatment-Free Survival, a Novel Outcome Applied to Immuno-oncology Agents in Advanced Melanoma


Meredith M. Regan¹, Lillian Werner¹, Ahmad A. Tarhini², Sumati Rao³, Komal Gupte-Singh³, Corey Ritchings³, Michael B. Atkins⁴, David F. McDermott⁵

¹Dana-Farber Cancer Institute; ²Cleveland Clinic Taussig Cancer Institute; ³Bristol-Myers Squibb; ⁴Georgetown-Lombardi Comprehensive Cancer Center; ⁵Beth Israel Deaconess Medical Center

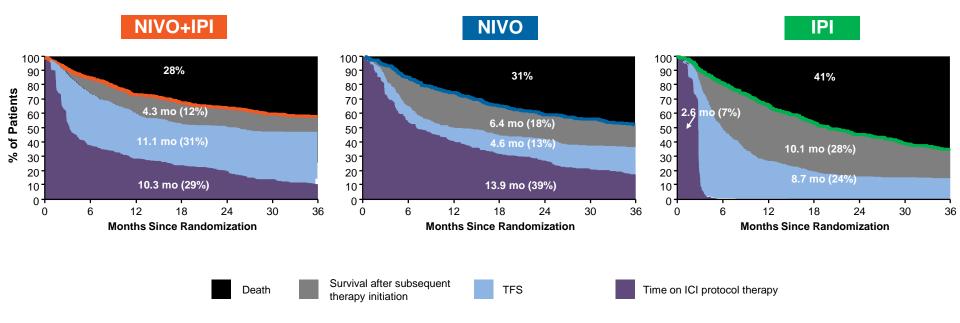
Please visit SITC Poster #380 for more details

Health States Based on Time-to-Event Endpoints: Definitions

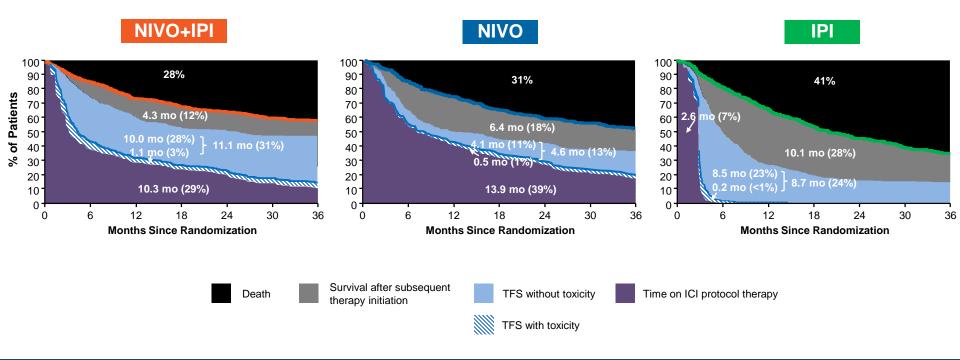


therapy)

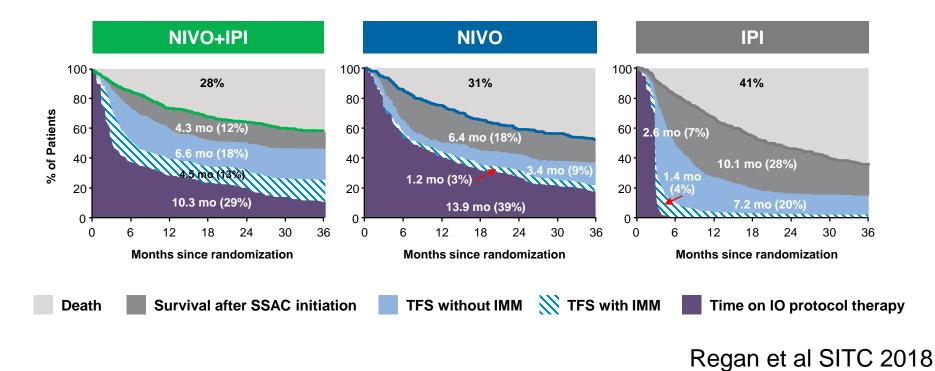
^aTime after cessation of ICI protocol therapy without toxicity, before initiation of subsequent systemic anticancer therapy or death ^bTime after cessation of ICI protocol therapy with toxicity while treatment-free


^cIncludes toxicity persisting since protocol therapy and toxicity newly presenting after protocol therapy cessation

Health States Over a 36-Month Period

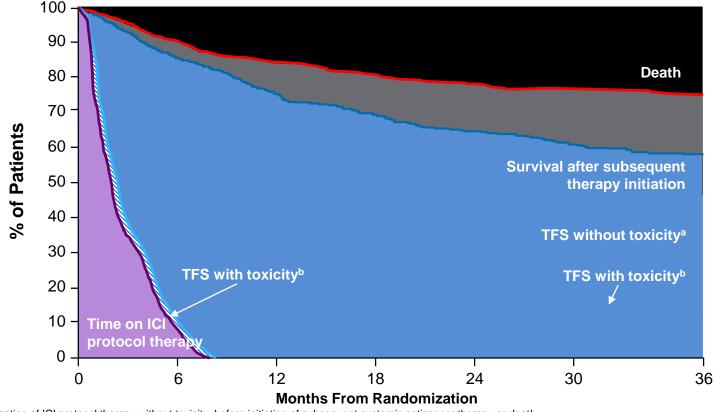

Data labels represent the mean number of months at any health state and the percentage of time in the 36-month period. mo=months.

Health States Over a 36-Month Period


Data labels represent the mean number of months at any health state and the percentage of time in the 36-month period. mo=months.

Health States: TFS Without / With Toxicity Defined by Grade 3-4 trAEs

Data labels represent the mean number of months at any health state and the percentage of time in the 36-month period. mo=months.


Health States: TFS With and Without IMM Use

Data labels represent the mean number of months in any health state and the percentage of time in the 36-month period. mo, months

Abstract #380

Health States Based on Time-to-Event Endpoints: Desired State

^aTime after cessation of ICI protocol therapy without toxicity, before initiation of subsequent systemic anticancer therapy or death ^bTime after cessation of ICI protocol therapy with toxicity while treatment-free

°Includes toxicity persisting since protocol therapy and toxicity newly presenting after protocol therapy cessation

Conclusions

- To foster the rational application of IO Rx
- FDA/Industry Support for:
 - Innovative Trial Design
 - Next Gen Biomarkers
 - IO Endpoints
- Focus on the Patient's Goal:
 - Increasing Treatment-free Survival

Standard Therapy for mRCC: 2028

Setting		NCCN	Alternative
1st-Line Therapy	Treatment based on TME* Profile		
2nd-Line Therapy	Not Necessary		

*TME – Tumor Microenvironment, Smyth et al, Nat Rev Clin Oncol 2016

Acknowledgements

- DFHCC Collaborators
 - Kidney Cancer
 - Toni Choueiri
 - Sabina Signoretti
 - Bill Kaelin (SPORE co-PI)
 - Gordon Freeman
 - Dror Michaelson
 - Cathy Wu
 - Melanoma
 - Steve Hodi
 - Ryan Sullivan
 - Beth Buchbinder
 - Keith Flaherty

- GLCCC Mike Atkins, Dick Schegel
- MIT David Sabatini
- HMS Arlene Sharpe
 - Funding

- Kidney Cancer SPORE P50-CA101942
- DFHCC Kidney Cancer Program P30-CA006516
- Department of Defense KC170036
- BIDMC Development Office
- Research Administration
 - Tara Johnston
 - Mary Mahoney, Ramesh Gunawardena
 - Stephanie Wasserman, Denise Graham, Vikas Sukhatme

Our BIDMC Team

- Medical Onc
 - Jim Mier, Rupal Bhatt, Anu Desai, Kathleen Mahoney, Virginia Seery, Reed Drews, Xin Gao, Ben Izar, David Miller, Lowell Schnipper
- Surgical Onc/Dermatology
 - Nick Tawa, Leah Abbott, Caroline Kim, Peggy Wu, Drew Wagner, Jodi Mechaber, Sharukh Jalisi
- RN Coordinators
 - Michelle Perkins, Paddy Connelly
- Clinical Research Team
 - Rose Marujo, Chrissy D'Alessandro, Sue Gotthardt, Nordine Benhaga, Connor Gray, Kristin Curreri, Angelina McKenna, Frank Riley, Sarah Kim, Chrissy Byrnes, Steve Buchholz, Eva Glieberman, Janine Morrissey

- Administrative Support
 - Ali Levy, Myrna Campbell

Our BIDMC Team

- Inpatient Nursing Leadership
 - Brid Walsh
- Nursing
 - Reisman 11, Shapiro 9, Gryzmish 7
- Social Work
 - Frank Mahoney
- Palliative Care
 - Mary Buss, Katie Rimer
- Psychiatry
 - Lisa Carbone
- Radiation Oncology
 - Matthew Abrams, Irving Kaplan
- Neuro Onc
 - Eric Wong, Eric Uhlmann

- Radiology Kevin Donohoe
- Pathology

Derm - Steve Tahan, Beverly Faulkner-Jones, Ashley Ward, MJ Zimarowski GU - Seymour Rosen, Huihui Ye, Mamta Gupta