Clinical Activity of Adenosine A2A Receptor (A2aR) Inhibitor CPI-444 is Associated with Tumor Expression of Adenosine Pathway Genes and Tumor Immune Modulation

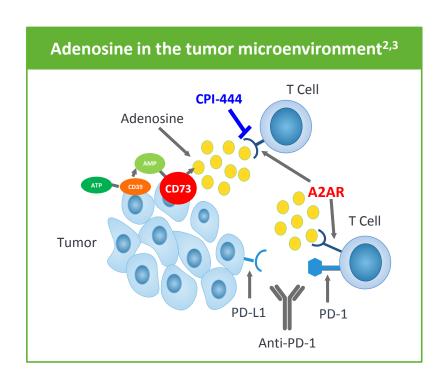
Drew Hotson¹, John Powderly², Leisha Emens³, Patrick Forde³, Matthew Hellmann⁴, Lawrence Fong⁵, Ben Markman⁶, Brett Hughes⁷, Jonathan Goldman⁸, Mario Sznol⁹, Daruka Mahadevan¹⁰, Shivaani Kummar¹¹, Joshua Brody¹², Philip Bonomi¹³, <u>Jason Luke¹⁴</u>, Matthew Riese¹⁵, Taofeek Owonikoko¹⁶, Sherene Loi¹⁷, Amy Wiese¹⁸, Robert Doebele¹⁹, James Lee²⁰, Chunyan Gu¹, Stephen Willingham¹, Ginna Laport¹, Richard Miller¹ and Ian McCaffery¹

¹Corvus Pharmaceuticals, Burlingame, CA; ²Carolina BioOncology Institute, Huntersville, NC; ³Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD; ⁴Memorial Sloan Kettering Cancer Center, New York City, NY; ⁵University of California, San Francisco, San Francisco, CA; ⁶Monash Medical Centre, Clayton, Australia; ⁷Royal Brisbane and Women's Hospital, Herston, Australia; ⁸University of California, Los Angeles, Los Angeles, CA; ⁹Yale University School of Medicine, New Haven, CT; ¹⁰University of Arizona Cancer Center, Tucson, AZ; ¹¹Stanford University School of Medicine, Stanford, CA; ¹²Icahn School of Medicine at Mount Sinai, New York City, NY; ¹³Rush University Medical Center, Chicago, IL; ¹⁴University of Chicago Medical Center, Chicago, IL; ¹⁵Medical College of Wisconsin, Milwaukee, WI; ¹⁶Emory University Hospital, Atlanta, GA; ¹⁷Peter MacCallum Cancer Centre, Melbourne, Australia; ¹⁸Karmanos Cancer Institute/Wayne State University, Detroit, MI; ¹⁹University of Colorado Anschutz Medical Campus, Aurora, CO; ²⁰University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA.

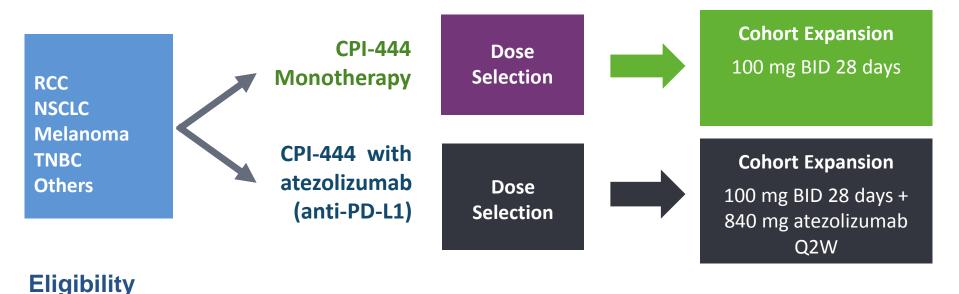
Disclosures

Consultancy

7 Hills, Actym, Amgen, Array, AstraZeneca, BeneVir, Bristol-Myers Squibb, Castle, CheckMate, EMD Serono, Gilead, Janssen, Novartis, Merck


Clinical Trial Support to Institution

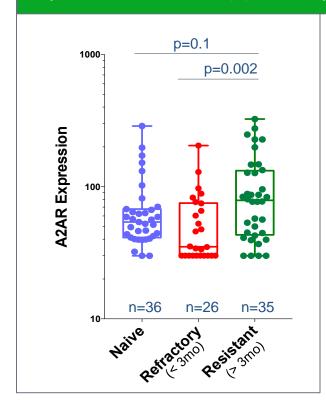
AbbVie, Boston Biomedical, Bristol-Myers Squibb, Celldex, Corvus, Delcath, Five Prime, Genentech, Immunocore, Incyte, Intensity, MedImmune, Macrogenics, Novartis, Pharmacyclics, Merck, Tesaro

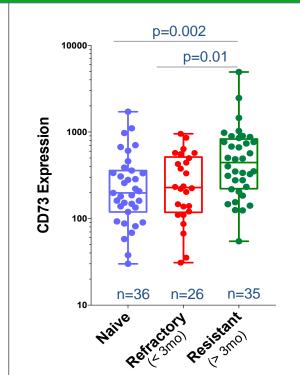

Funding for CPI-444 clinical trial provided by Corvus

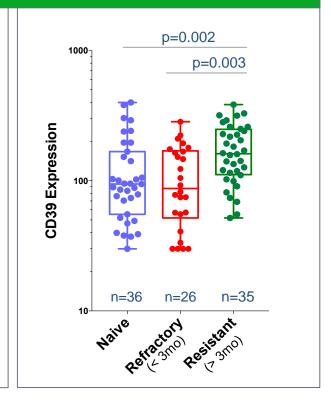
Background

- Anti-PD-(L)1 antibodies are approved for treatment of several cancers but a small proportion of patients benefit
- Mechanisms of anti-PD-(L)1 resistance are not well understood and no agents are approved to overcome resistance
- Adenosine pathway mediates tumor immunosuppression; may be a resistance mechanism to anti-PD-(L)1 therapy
- CPI-444 is an oral, small molecule inhibitor of A2AR that has shown anti-tumor activity in anti-PD-(L)1 resistant/refractory, and PDL-1 negative patients¹

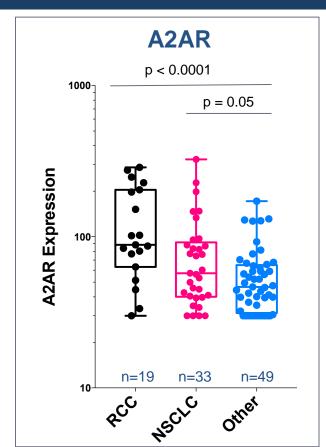
Phase 1/1b Clinical Study with Oral Drug CPI-444

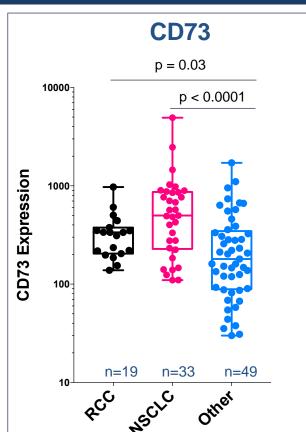


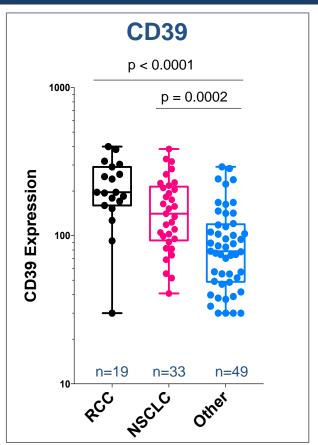

- Prior anti-PD-(L)1 allowed
 - Resistant: SD or better > 3 months of treatment
 - **Refractory:** progression within 3 months


- Must have progressive disease on prior therapy
- No selection for PD-L1 expression

Prior Anti-PD-(L)1 Treatment Increases A2AR, CD73 and CD39 Adenosine pathway is a potential mechanism of resistance

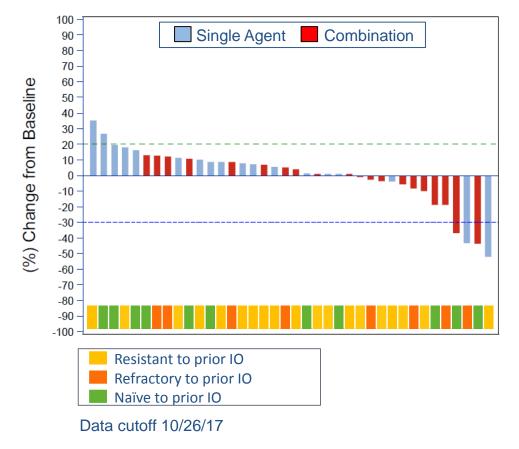

Exposure to anti-PD-(L)1 therapy (> 3 months) increases A2AR, CD73, and CD39 expression



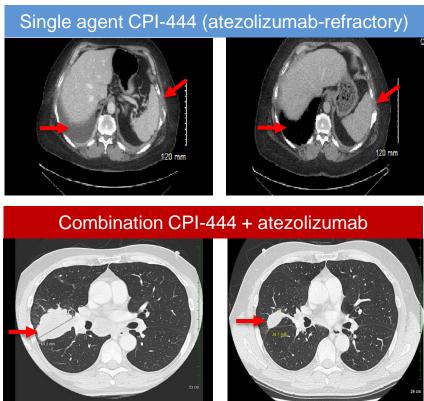


Adenosine Pathway Expression is Higher in RCC and NSCLC Pre-Treatment Biopsies

Other = bladder, colorectal, triple-negative breast, melanoma, prostate


Renal Cell Cohorts Expanded Patient characteristics

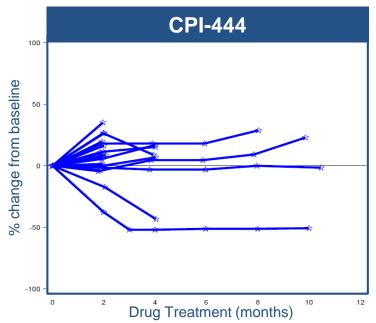
	Renal Cell Cancer (N=51)
Prior anti-PD-(L)1 exposure Naïve Resistant/Refractory	16 (31%) 35 (69%)
PD-L1 Negative (archival) *	91%
Median time since IO agent, months (range)	1.6 (1 – 71)
Histology	50 (98%) Clear cell 1 (2%) Papillary
Median age, years (range) No. of patients: single agent /combination Median number prior therapies (range)	64 (44-70) 25/26 3 (1-5)
Adverse Prognostic Factors (%) Visceral metastases Hepatic metastases Anemia Elevated LDH	88% 20% 45% 21%

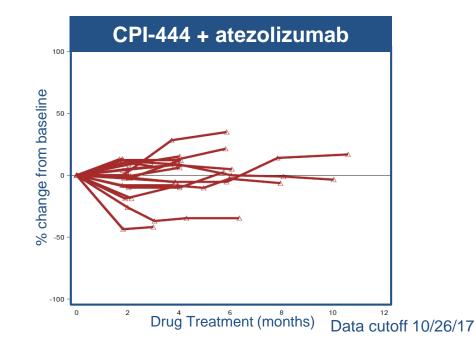

^{*} PD-L1 status determined using FDA-approved assay (SP142, cutoff = 5%)

CPI-444 Anti-Tumor Activity in Renal Cell Cancer

Responses with single agent and combination

Partial Responses in RCC




Renal Cell Cancer

Response rate and disease control rate in evaluable patients

Treatment	Objective Response Rate	Disease Control Rate
CPI-444	2*/14 (14%)	4/14 (29%)
CPI-444 + atezolizumab	2/16 (13%)	11/16 (69%)

^{*1} unconfirmed

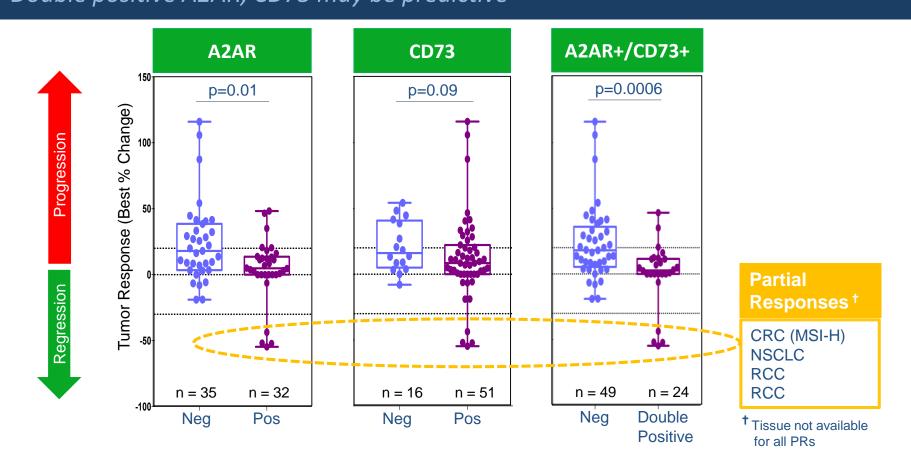
Treatment-Related Adverse Events

Adverse Events (Gr1/2) > 5% Frequency (n=210)

	CPI-444 (%)	CPI-444/Atezo (%)
Fatigue	21	29
Nausea	12	14
Pruritus	11	10
Pyrexia	5	9
Decreased appetite	6	7
Diarrhea	7	5
Anemia	6	4
Vomiting	3	6
Rash	3	6

Grade > 3 Serious Adverse Events

CPI-444 (n=1)

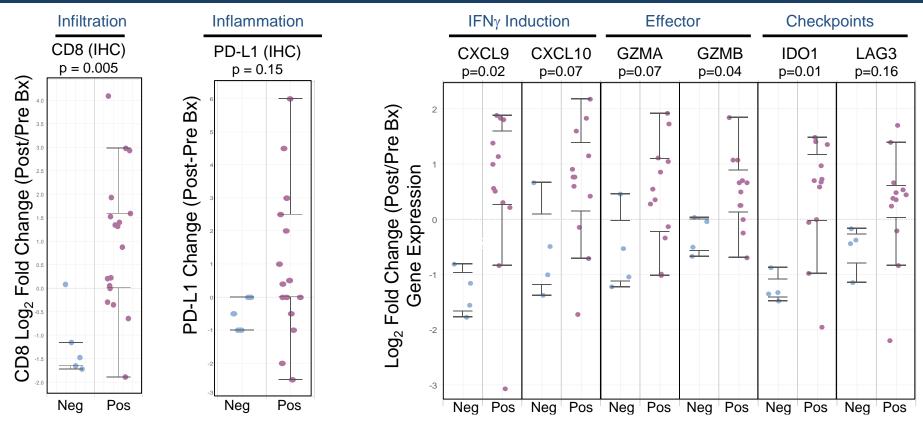

• Gr 3 nausea/vomiting/diarrhea

CPI-444/Atezolizumab (n=5)

- Gr 3 immune related hepatitis, dermatitis, mucositis, pneumonitis
- Gr 3 autoimmune hemolytic anemia
- Gr 3 increased ALT/AST
- Gr 3 thrombocytopenia/ Gr 4 encephalitis
- Gr 3 pneumonitis

Data cutoff 10/26/17

Screening A2AR and CD73 Associated with Response Double positive A2AR, CD73 may be predictive


Screening A2AR, CD73 Associated with Disease Control Rate Double positive A2AR, CD73 may be predictive

Disease Control Rate (all indications; biomarker assessable)

	Negative	Positive
A2AR	4/39 (10%)	10/34 (29%)
CD73	2/22 (9%)	12/51 (24%)
A2AR + CD73 (Double Positive)	4/49 (8%)	10/24 (42%)*

^{*}p=0.0007

In CD73+ Tumors, Single Agent CPI-444 Induces Expression of T cell Activation Markers in Post-Dose Biopsies

CD73 Expression (in Screening Biopsies)

CD73 Expression (in Screening Biopsies)

Summary

- Tumor expression of A2AR, CD73 and CD39 are increased in patients that are resistant to prior treatment with anti-PD-(L)1
- RCC and NSCLC have high tumor expression of adenosine pathway genes A2AR, CD73 and CD39
- CPI-444 has anti-tumor activity in RCC
 - Reponses seen in anti-PD-(L)1 resistant/refractory patients
 - A2AR and CD73 expression in screening biopsies is associated with response to therapy
- CPI-444 increases CD8+ infiltration in tumors and induces expression of IFN γ -dependent genes and Th1 activation
- This study continues to enroll patients with RCC and NSCLC in expansion cohorts

Acknowledgements

Patients and their Families

Clinical Investigators and their staff

Colleagues at Corvus