BASIC PRINCIPLES OF IMMUNOTHERAPY

Ivan Borrello, M.D.
Sidney Kimmel Cancer Center at Johns

Hopkins

DISCLOSURES

- WindMIL Therapeutics Receipt of Intellectual Property Rights/Patent Holder
- Bristol-Myers Squibb, Celgene Corporation -Contracted Research
- I will be discussing non-FDA approved treatments during my presentation.

Effect of Immune Infiltration on Overall Survival

Colon Cancer

The Immune Editing Hypothesis (3E's)

Types of Anti-Tumor Immunotherapy

- Cancer Vaccines educate T cells to better recognize and kill the pre-existing tumor
- Adoptive Immunotherapy activate and increase T cell numbers to better kill tumor
- Immunomodulation use drugs or antibodies to either:
 - increase immune stimulation
 - overcome immune inhibition

Mechanisms of Tumor-induced Immune Tolerance

CANCER VACCINES

Normal Host:

Cancer Patient:

Inability to expand
T cells with vaccination

Cancer Vaccine Design

Vaccine Requirements

- Contain a desired antigen(s)
- Possess an adjuvant capable of stimulating/generating an immune response

Vaccine Antigens

Single Antigen Approaches

- Nucleic Acids: RNA or DNA
 - generally targets a single antigen
- Peptides
- Proteins

Multiple Antigen Approaches

- Pulsed Dendritic Cells
- Tumor cell Dendriitc Cell Fusions
- Whole cell vaccines

Cancer Vaccine Goal

Dendritic Cells Traffic and Present Antigen To Specific CD4 and CD8 T Cells in the Draining Lymph node through a process known as Cross Presentation

Issues Around Tumor Vaccines

Benefits:

- Capable of generating a durable, long-lived response
- Delivered with minimal toxicity
- May be an "off-the-shelf" product
- Can be combined with additional immunotherapies to enhance overall efficacy.

<u>Disadvantages:</u>

- Can take several weeks to generate a meaningful systemic response
- Likely works best in a setting of minimal disease or a slow growing tumor
- Relapses of antigen-specific vaccines may be with the generation of antigen escape variants

T CELL THERAPIES

T Cell Therapy

- CARs chimeric antigen receptors
- TCRs T cell receptors
- TILs Tumor infiltrating lymphocytes
- MILs Marrow infiltrating lymphocytes
- Allogeneic BMT

Composition of a CAR

Rarrett DM, et al. 2014. Annu. Rev. Med. 65:333–47

CAR's

TCR Engineered T cells

- TCR cloned for a specific CD8 restricted antigen-specific peptide
- T cells genetically engineered to express this TCR
- T cells are HLA-restricted for the specific peptide

Non-gene modified T cells

TILs

- obtained surgically from metastatic lesions
- present in 40-60% of patients
- able to be expanded in 50% of those patients
- expansion takes 2-4 weeks
- available as therapy to ~25% of patients
- shown efficacy in metastatic melanoma

Non-gene modified T cells

MILs

- found in 100% of the bone marrow of patients
- expanded in virtually all patients
- expansion in 7-10 days
- has broad antigenic specificity
- potentially beneficial in solid tumors

ANTIBODY APPROACHES

Immune Checkpoint Modulators

Page DB, et al. 2014.

Annu. Rev. Med. 65:185-202

Anti-CTLA-4

CTLA-4 Prevents Normal T Cell Activation

Ipilimumab (Anti-CTLA-4) Blocks the CTLA-4 Checkpoint, Restoring T Cell Activation

Role of Checkpoint Inhibitors

R Lizée G, et al. 2013. Annu. Rev. Med. 64:71–90

BiTE

Limitation of Current BiTEs

- Absence of an Fc responsible for short half-life
- Act through engagement of CD3+ cells
- Combines the benefit of antibody targeting with a T cell response
- Require a continuous infusion because of their short halflife

Rationale for Combination Chemo-Immunotherapy

C Combination therapy

Maus MV, et al. 2014. Annu. Rev. Immunol. 32:189–225