# **SITC** 2017

Ő

November 8-12 NATIONAL HARBOR MARYLAND

Gaylord National Hotel & Convention Center





# Cancer vaccines: What we need, what we have, and how we might do it better.

Ross M. Kedl

Professor

University of Colorado Denver



# Goals

- 1. Appreciate our current understanding of the requirements for successful T cell-mediated cancer therapy
- 2. Become familiar with some current approaches to vaccination against cancer.
- 3. Appreciate and understand T cell-specific vaccine principles for designing and developing better cancer vaccines.

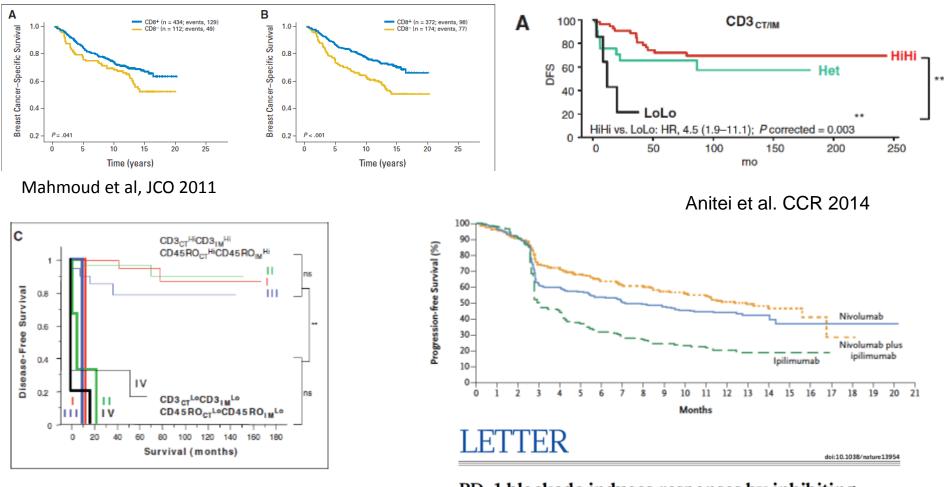


- Do we need T cells? Duh
- How Many T cells do we really need to make? More than you want to admit...
- What kind should we make?
  Self renewing T<sub>SCM</sub> or T<sub>CM</sub>
- How should we make them?
- <u>1- antigen dose and duration... Stop starving T cells</u>

and avoid long-lasting emulsions

- 2- target DCs/enhance cross-presentation
- 3- use adjuvants that induce IL-27
- 4- and CD80/86 (CD28 stimulation)

5- engage TNFR superfamily members


6- IL-21 for ACT



- Do we need T cells?
- How Many T cell do we really need to make?
- What kind should we make?
- Is anything working?
- How could we make them better?



#### T cell activity and clinical outcomes



Galon et al. Science 2006 PD-1 adapt

PD-1 blockade induces responses by inhibiting adaptive immune resistance

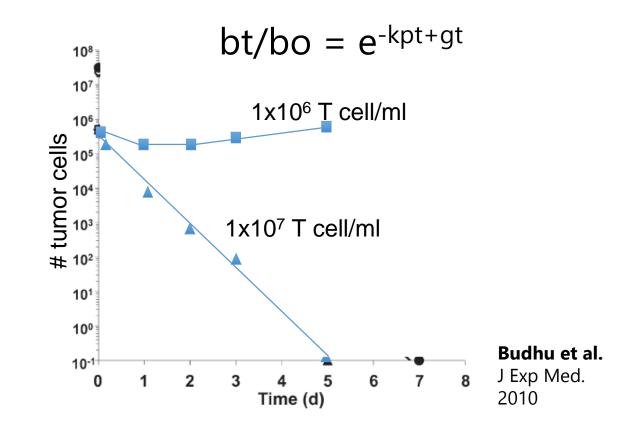
ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

Larkin et al. NEJM 2015



• Do we need T cells?

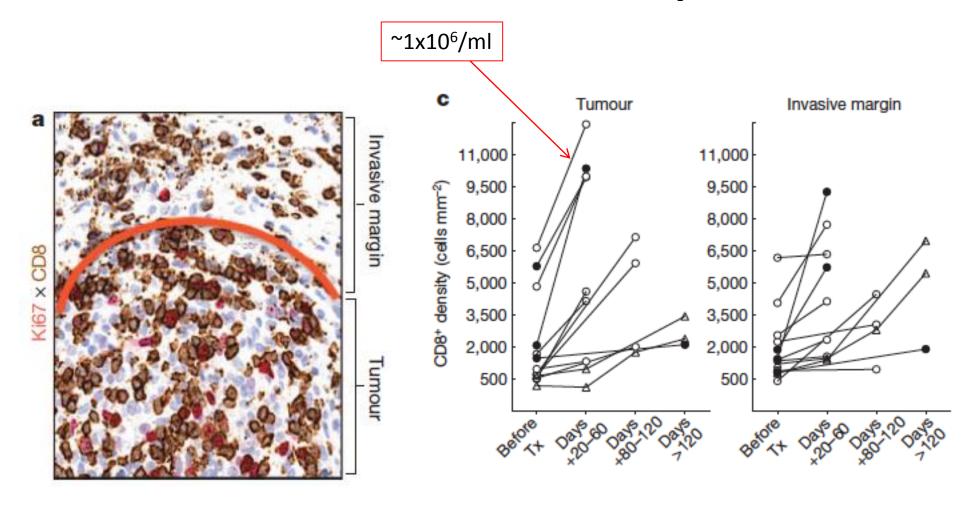
### <u>Therapeutic efficacy against cancer requires T cell</u> <u>activation and function</u>




### • Do we need T cells?

- How Many T cells do we really need to make?
- What kind should we make?
- Is anything working?
- How could we make them better?



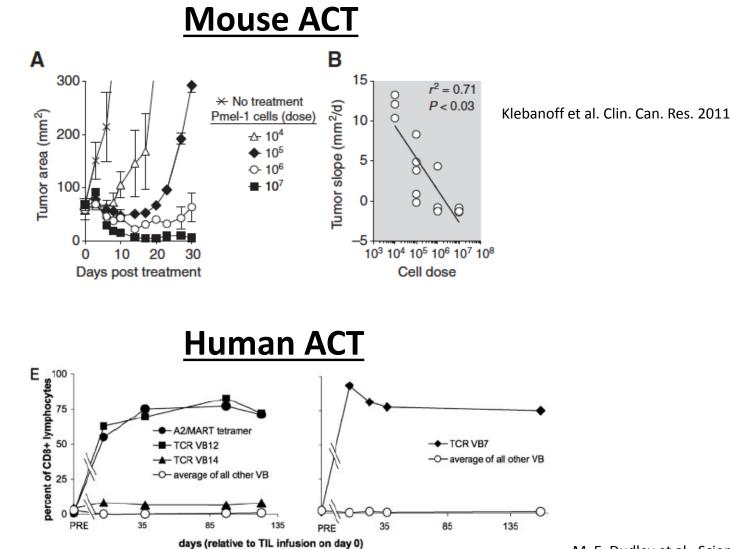

# **T cell numbers and Immune protection**



"...a concentration of ≥10<sup>7</sup> [T] cells/ml ... is required to produce sterilizing immunity..." ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE



# T cell numbers and Immune protection




ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE T

Tumeh et al. Nature 2014



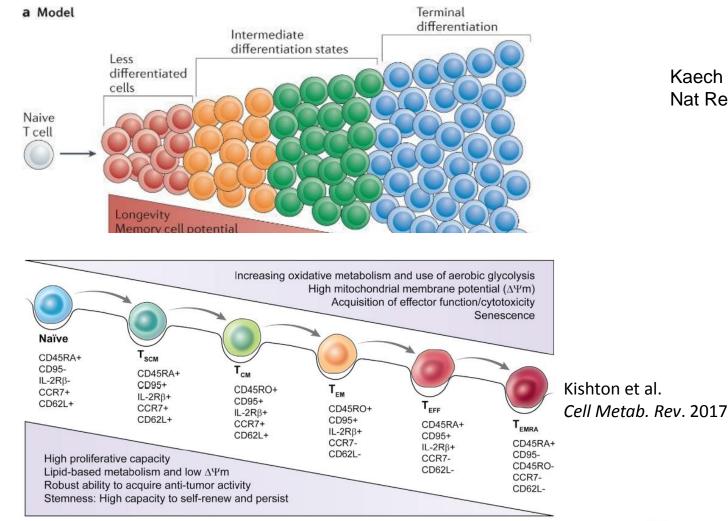
# **T cell numbers and Immune protection**



M. E. Dudley et al., Science 298, 850-854 (2002).



#### • How Many T cells do we really need to make?


### Lots... ~10<sup>6</sup>-10<sup>7</sup> T cells/cm<sup>3</sup>



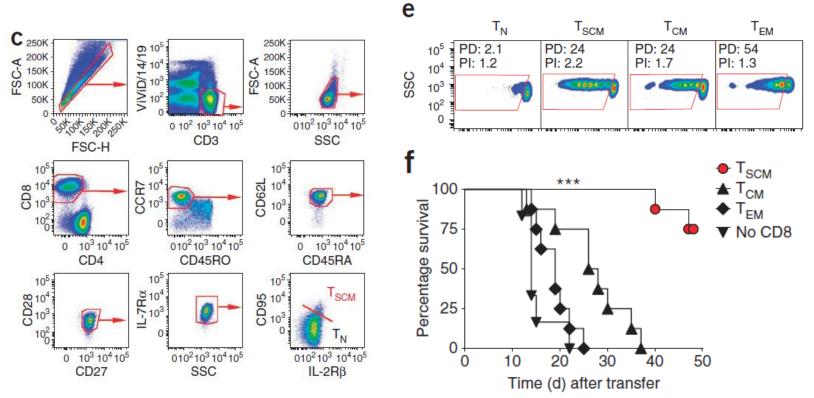
- Do we need T cells?
- How Many T cell do we really need to make?
- What kind should we make?
- Is anything working?
- How could we make them better?



#### Lineages and inter-relationships among memory subsets



Kaech & Cui Nat Rev Imm 2012


Progressive changes in chromatin

~ 900 genes are dynamically regulated

)E



#### Stem cell memory- superior self renewal and persistence

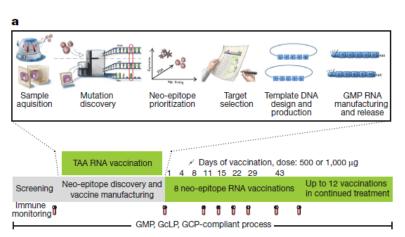


Gattinoni et al. 2011 nature medicine



#### • What kind should we make?

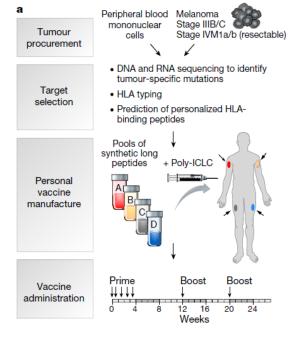
# <u>Self renewing memory cells- T<sub>SCM</sub> or T<sub>CM</sub></u>




- Do we need T cells?
- How Many T cell do we really need to make?
- What kind should we make?
- Is anything working?
- How could we make them better?



## Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer

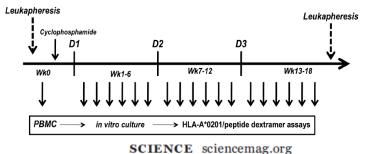

Ugur Sahin<sup>1,2,3</sup>, Evelyna Derhovanessian<sup>1</sup>, Matthias Miller<sup>1</sup>, Björn–Philipp Kloke<sup>1</sup>, Petra Simon<sup>1</sup>, Martin Löwer<sup>2</sup>, Valesca Bukur<sup>1,2</sup> Arbel D. Tadmor<sup>2</sup>, Ulrich Luxemburger<sup>1</sup>, Barbara Schrörs<sup>2</sup>, Tana Omokoko<sup>1</sup>, Mathias Vormehr<sup>1,3</sup>, Christian Albrecht<sup>2</sup>, Anna Paruzynski<sup>1</sup>, Andreas N. Kuhn<sup>1</sup>, Janina Buck<sup>1</sup>, Sandra Heesch<sup>1</sup>, Katharina H. Schreeb<sup>1</sup>, Felicitas Müller<sup>1</sup>, Inga Ortseifer<sup>1</sup>, Isabel Vogler<sup>1</sup>, Eva Godehardt<sup>1</sup>, Sebastian Attig<sup>2,3</sup>, Richard Rae<sup>2</sup>, Andrea Breitkreuz<sup>1</sup>, Claudia Tolliver<sup>1</sup>, Martin Suchan<sup>2</sup>, Goran Martic<sup>2</sup>, Alexander Hohberger<sup>3</sup>, Patrick Sorn<sup>2</sup>, Jan Diekmann<sup>1</sup>, Janko Ciesla<sup>4</sup>, Olga Waksmann<sup>4</sup>, Alexandra–Kemmer Brück<sup>1</sup>, Meike Witt<sup>1</sup>, Martina Zillgen<sup>1</sup>, Andree Rotherme<sup>2</sup>, Barbara Kasemann<sup>2</sup>, David Langer<sup>1</sup>, Stefanie Bolte<sup>1</sup>, Justafa Diken<sup>1,2</sup>, Sebastian Kreiter<sup>1,2</sup>, Smina Nemecek<sup>5</sup>, Christoffer Gebhardt<sup>6,7</sup>, Stephan Grabbe<sup>3</sup>, Christoph Höller<sup>5</sup>, Jochen Utikal<sup>6,7</sup>, Christoph Huber<sup>1,2,3</sup>, Carmen Loqual<sup>3</sup>\* & Özlem Tured<sup>8</sup>\*



#### doi:10.1038/nature23003

### An immunogenic personal neoantigen vaccine for patients with melanoma

Patrick A. Ott<sup>1,2,3</sup>\*, Zhuting Hu<sup>1</sup>\*, Derin B. Keskin<sup>1,3,4</sup>, Sachet A. Shukla<sup>1,4</sup>, Jing Sun<sup>1</sup>, David J. Bozym<sup>1</sup>, Wandi Zhang<sup>1</sup>, Adrienne Luoma<sup>3</sup>, Anita Giobbie-Hurder<sup>6</sup>, Lauren Peter<sup>7,8</sup>, Christina Chen<sup>1</sup>, Ortol Olive<sup>1</sup>, Todd A. Carter<sup>4</sup>, Shuqiang Li<sup>4</sup>, David J. Lieb<sup>4</sup>, Thomas Eisenhaure<sup>4</sup>, Evisa Gjini<sup>9</sup>, Jonathan Stevens<sup>10</sup>, William J. Lane<sup>10</sup>, Indu Javeri<sup>11</sup>, Kaliappanadar Nellaiappan<sup>11</sup>, Andres M. Salazar<sup>12</sup>, Heather Daley<sup>1</sup>, Michael Seaman<sup>7</sup>, Elizabeth I. Buchbinder<sup>1,2,3</sup>, Charles H. Yoon<sup>3,13</sup>, Maegan Harden<sup>4</sup>, Niall Lennon<sup>4</sup>, Stacey Gabriel<sup>4</sup>, Scott J. Rodig<sup>9,10</sup>, Dan H. Barouch<sup>3,7,8</sup>, Jon C. Aster<sup>3,10</sup>, Gad Getz<sup>3,4,14</sup>, Kai Wucherpfennig<sup>3,5</sup>, Donna Neuberg<sup>6</sup>, Jerome Ritz<sup>1,2,3</sup>, Eric S. Lander<sup>3,4</sup>, Edward F. Fritsch<sup>1,4</sup>†, Nir Hacohen<sup>3,4,15</sup>




doi:10.1038/nature22991

#### CANCER IMMUNOTHERAPY

#### A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells

Beatriz M. Carreno,<sup>1\*</sup> Vincent Magrini,<sup>2</sup> Michelle Becker-Hapak,<sup>1</sup> Saghar Kaabinejadian,<sup>3</sup> Jasreet Hundal,<sup>2</sup> Allegra A. Petti,<sup>2</sup> Amy Ly,<sup>2</sup> Wen-Rong Lie,<sup>4</sup> William H. Hildebrand,<sup>3</sup> Elaine R. Mardis,<sup>2</sup> Gerald P. Linette<sup>1</sup>



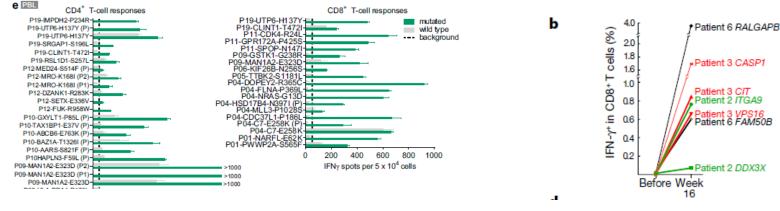
15 MAY 2015 • VOL 348 ISSUE 6236 803

Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial

Cornelia L Trimble, Matthew P Morrow, Kimberly A Kraynyak, Xuefei Shen, Michael Dallas, Jian Yan, Lance Edwards, R Lamar Parker, Lynette Denny, Mary Giffear, Ami Shah Brown, Kathleen Marcozzi-Pierce, Divya Shah, Anna M Slager, Albert J Sylvester, Amir Khan, Kate E Broderick, Robert J Juba, Timothy A Herring, Jean Boyer, Jessica Lee, Niranjan Y Sardesai, David B Weiner, Mark L Bagarazzi

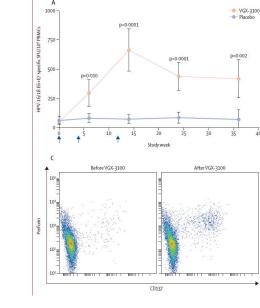
#### Lancet 2015; 386: 2078–88

Published Online September 17, 2015 http://dx.doi.org/10.1016/ S0140-6736(15)00239-1




# Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer

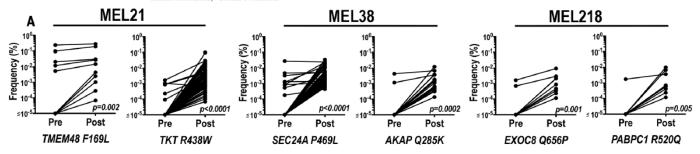
Ugur Sahin<sup>1,2,3</sup>, Evelyna Derhovanessian<sup>1</sup>, Matthias Miller<sup>1</sup>, Björn–Philipp Kloke<sup>1</sup>, Petra Simon<sup>1</sup>, Martin Löwer<sup>2</sup>, Valesca Bukur<sup>1,2</sup>, Arbel D. Tadmor<sup>2</sup>, Ulrich Luxemburger<sup>1</sup>, Barbara Schrörs<sup>2</sup>, Tana Omokoko<sup>1</sup>, Mathias Vormehn<sup>1,3</sup>, Christian Albrecht<sup>2</sup>, Anna Paruzynski<sup>1</sup>, Andreas N. Kuhn<sup>1</sup>, Janina Buck<sup>1</sup>, Sandra Heesch<sup>1</sup>, Katharina H. Schreeb<sup>1</sup>, Felicitas Müller<sup>1</sup>, Inga Ortseifer<sup>1</sup>, Isabel Vogler<sup>1</sup>, Eva Godehardt<sup>1</sup>, Sebastian Attig<sup>2,3</sup>, Richard Rae<sup>2</sup>, Andrea Breitkreuz<sup>1</sup>, Claudia Tolliver<sup>1</sup>, Martin Suchan<sup>2</sup>, Goran Martic<sup>2</sup>, Alexander Hohberger<sup>3</sup>, Patrick Sorn<sup>2</sup>, Jan Diekmann<sup>1</sup>, Janko Ciesla<sup>4</sup>, Olga Waksmann<sup>4</sup>, Alexandra–Kemmer Brück<sup>1</sup>, Meike Witt<sup>1</sup>, Martina Zillgen<sup>1</sup>, Andree Rothermel<sup>1</sup>, Barbara Kasemann<sup>2</sup>, David Langer<sup>1</sup>, Stefanie Bolte<sup>1</sup>, Justafa Diken<sup>1,2</sup>, Sebastian Kreiter<sup>1,2</sup>, Romina Nemceck<sup>5</sup>, Christoffer Gebhardt<sup>6,7</sup>, Stephan Grabbe<sup>3</sup>, Christoph Höller<sup>5</sup>, Jochen Utikal<sup>6,7</sup>, Christoph Huber<sup>1,2,3</sup>, Carmen Loquai<sup>3</sup> & Özlem Türeci<sup>8</sup>


# An immunogenic personal neoantigen vaccine for patients with melanoma

Patrick A. Ott<sup>1,2,3,\*</sup>, Zhuting Hu<sup>1,\*</sup>, Derin B. Keskin<sup>1,3,4</sup>, Sachet A. Shukla<sup>1,4</sup>, Jing Sun<sup>1</sup>, David J. Bozym<sup>1</sup>, Wandi Zhang<sup>1</sup>, Adrienne Luoma<sup>5</sup>, Anita Giobbie- Hurder<sup>6</sup>, Lauren Peter<sup>7,8</sup>, Christina Chen<sup>1</sup>, Oriol Olive<sup>1</sup>, Todd A. Carter<sup>4</sup>, Shuqiang Lieb<sup>4</sup>, Thomas Eisenhaure<sup>4</sup>, Evisa Gjin<sup>3</sup>, Jonathan Stevens<sup>10</sup>, William J. Lane<sup>10</sup>, Indu Javeri<sup>11</sup>, Kaliappanadar Nellaiappan<sup>11</sup>, Andres M. Salazar<sup>12</sup>, Heather Daley<sup>1</sup>, Michael Seaman<sup>7</sup>, Elizabeth I. Buchbinder<sup>1,2,3</sup>, Charles H. Voon<sup>3,13</sup>, Maegan Harden<sup>4</sup>, Niall Lennon<sup>4</sup>, Stacey Gabriel<sup>4</sup>, Scott J. Rodig<sup>9,10</sup>, Dan H. Barouch<sup>3,7,8</sup>, Jon C. Aster<sup>3,10</sup>, Gad Getz<sup>3,4,4</sup>, Kai Wucherpfennig<sup>3,5</sup>, Donna Neuberg<sup>6</sup>, Jerome Ritz<sup>1,2,3</sup>, Eric S. Lander<sup>3,4</sup>, Edward F. Fritsch<sup>1,4</sup><sup>†</sup>, Nir Hacohen<sup>3,4,15</sup>



Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial


Cornelia L Trimble, Matthew P Morrow, Kimberly A Kraynyak, Xuefei Shen, Michael Dallas, Jian Yan, Lance Edwards, R Lamar Parker, Lynette Denny, Mary Giffear, Ami Shah Brown, Kathleen Marcozzi-Pierce, Divya Shah, Anna M Slager, Albert J Sylvester, Amir Khan, Kate E Broderick, Robert J Juba, Timothy A Herring, Jean Boyer, Jessica Lee, Niranjan Y Sardesai, David B Weiner, Mark L Bagarazzi



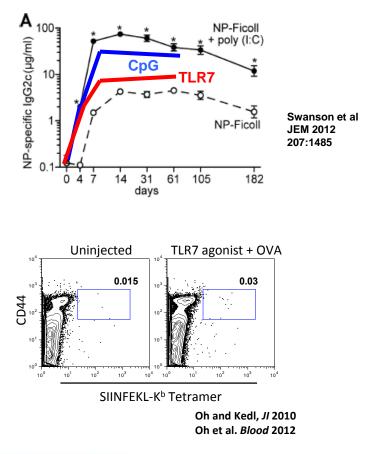
#### CANCER IMMUNOTHERAPY

#### A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells

Beatriz M. Carreno,<sup>1\*</sup> Vincent Magrini,<sup>2</sup> Michelle Becker-Hapak,<sup>1</sup> Saghar Kaabinejadian,<sup>3</sup> Jasreet Hundal,<sup>2</sup> Allegra A. Petti,<sup>2</sup> Amy Ly,<sup>2</sup> Wen-Rong Lie,<sup>4</sup> William H. Hildebrand,<sup>3</sup> Elaine R. Mardis,<sup>2</sup> Gerald P. Linette<sup>1</sup>






### • Is anything working?

<u>Surprisingly... yes.</u> <u>But could we do better?</u>



## Making better T cell responses

- Making 10-20,000 lymphocytes is easy.
- 10-20,000 B cells work great for providing antibody protection.
- 10-20,000 CD8+ T cells rarely did anyone any good

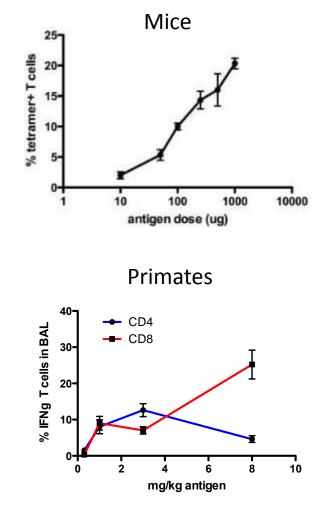




### 6 easy steps to better cancer vaccines

- 1. <u>antigen dose and duration... Stop starving T</u> <u>cells and avoid long-lasting emulsions</u>
- 2. <u>target DCs/enhance cross-presentation</u>
- 3. <u>use adjuvants that induce IL-27</u>
- 4. and CD80/86 (CD28 stimulation)
- 5. <u>engage TNFR superfamily members</u>
- 6. <u>IL-21 for ACT</u>



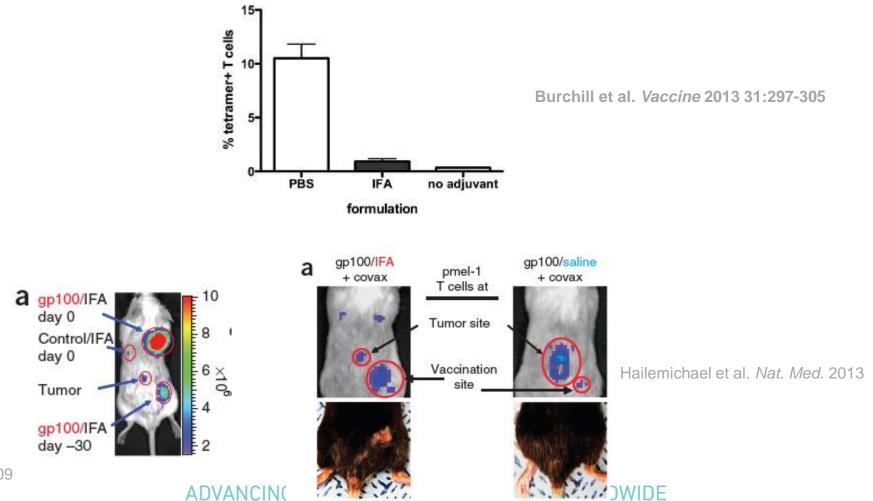

Step 1: Appropriate antigen dose and duration

- Doses that successfully raise CD8+ T cell responses in mice are usually 10-200ug of antigen
- These are the same amounts of antigen used in humans (ie. HBsAg is 10-20ug/dose), derived as a result of analyzing antibody responses
- Antigen processing and presentation for non-infectious antigen is notoriously inefficient
- Humans are ~3000X increase in mass and 200X in surface area.
- Mouse=1-10mg/kg (30mg/m<sup>2</sup>)... Human=0.0001mg/kg!!!

### T cell responses to clinical vaccines are starving for antigen.



#### Step 1: Appropriate antigen dose and duration



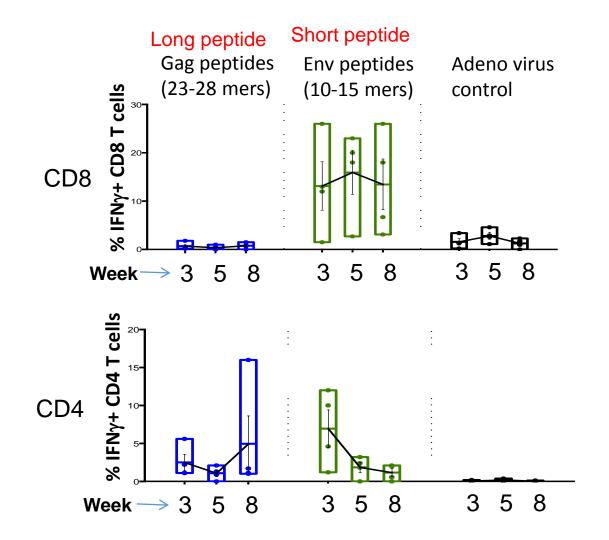

ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE



#### Step 1: Appropriate antigen dose and duration

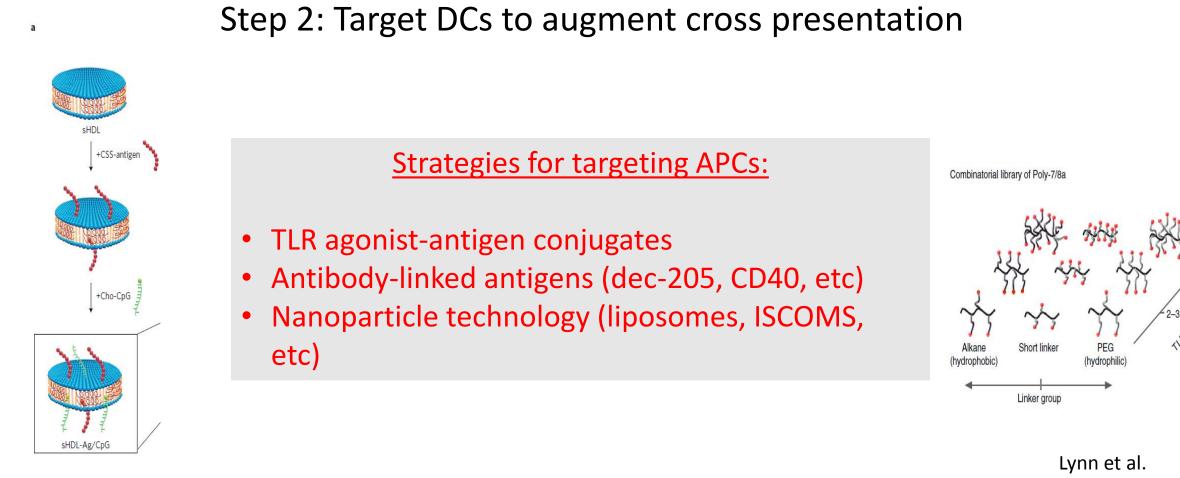
#### **Emulsions neutralize the T cell response to vaccination**




Cho & Celis Cancer Res. 2009 Reinhardt et al. JEM 2003



- Can we make them better?
- 1. <u>antigen dose and duration... Stop starving T cells and</u> <u>avoid long-lasting emulsions</u>
- 2. <u>target DCs/enhance cross-presentation</u>
- 3. <u>use adjuvants that induce IL-27</u>
- 4. and CD80/86 (CD28 stimulation)
- 5. <u>engage TNFR superfamily members</u>
- 6. <u>IL-21 for ACT</u>




#### Step 2: Target DCs to augment cross presentation

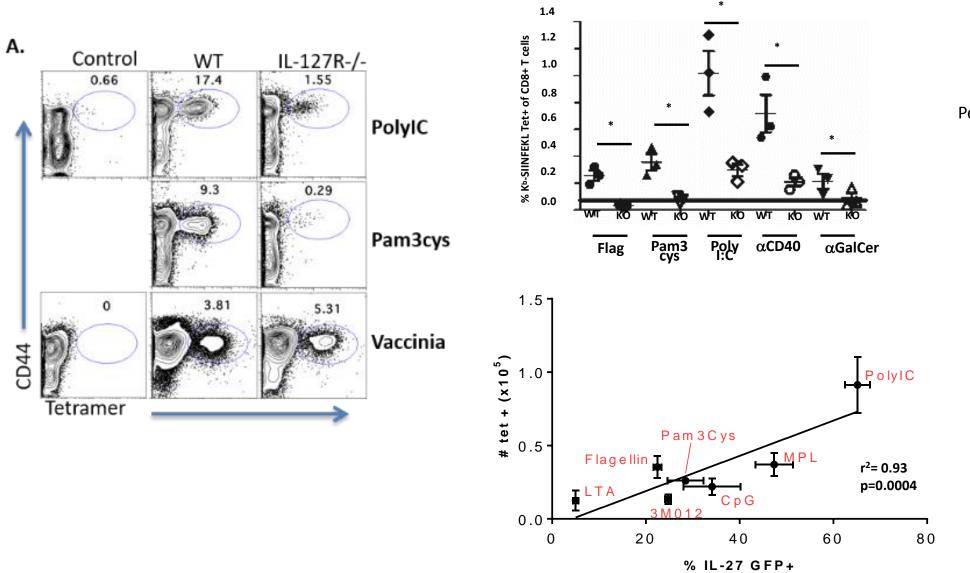


#### Cross-presentation is harder to induce in primates





Kai et al. Nature Materials 2016 Lynn et al. Nature Biotech 2015




- Can we make them better?
- 1. <u>antigen dose and duration... Stop starving T cells and</u> <u>avoid long-lasting emulsions</u>
- 2. <u>target DCs/enhance cross-presentation</u>
- 3. <u>use adjuvants that induce IL-27</u>
- 4. and CD80/86 (CD28 stimulation)
- 5. <u>engage TNFR superfamily members</u>
- 6. <u>IL-21 for ACT</u>

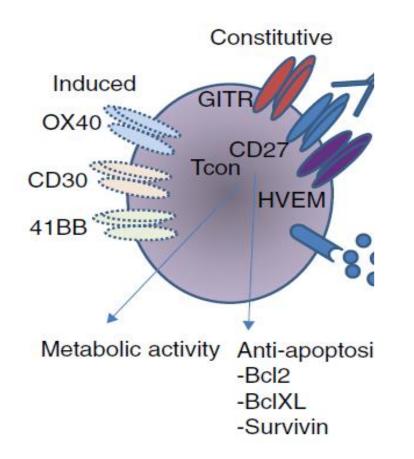
#### SITC 2017 November 8-12 • NATIONAL HARBOR, MD



#### Step 3: IL-27 as signal 3



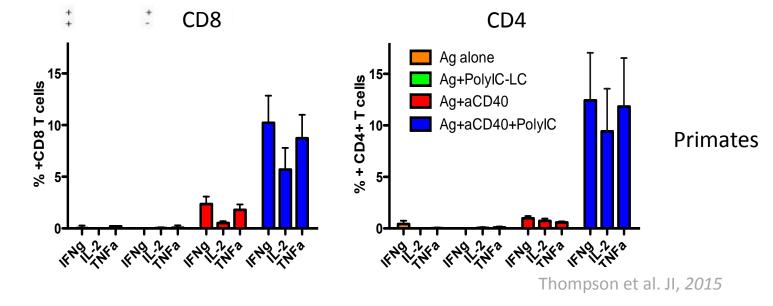
Pennock et al. PNAS 2015

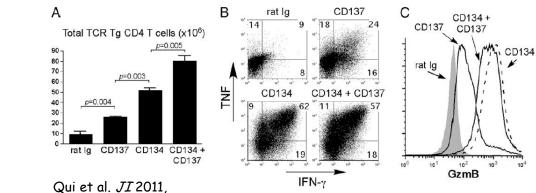

Kilgore et al. submitted



- Can we make them better?
- 1. <u>antigen dose and duration... Stop starving T cells and</u> <u>avoid long-lasting emulsions</u>
- 2. <u>target DCs/enhance cross-presentation</u>
- 3. <u>use adjuvants that induce IL-27</u>
- 4. and CD80/86 (CD28 stimulation)
- 5. <u>engage TNFR superfamily members</u>
- 6. <u>IL-21 for ACT</u>




#### Step 5: TNF Receptor/Ligand engagement




Bullock. Curr. Opin. Imm. 2017 ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

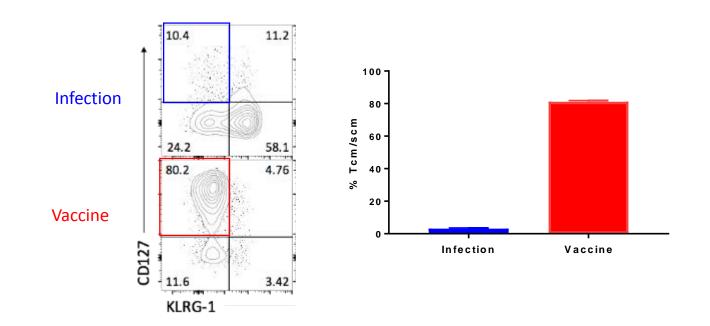


# Augmenting T cell responses by Targeting TNF receptors... in mice and primates





ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE


<u>CD27</u>

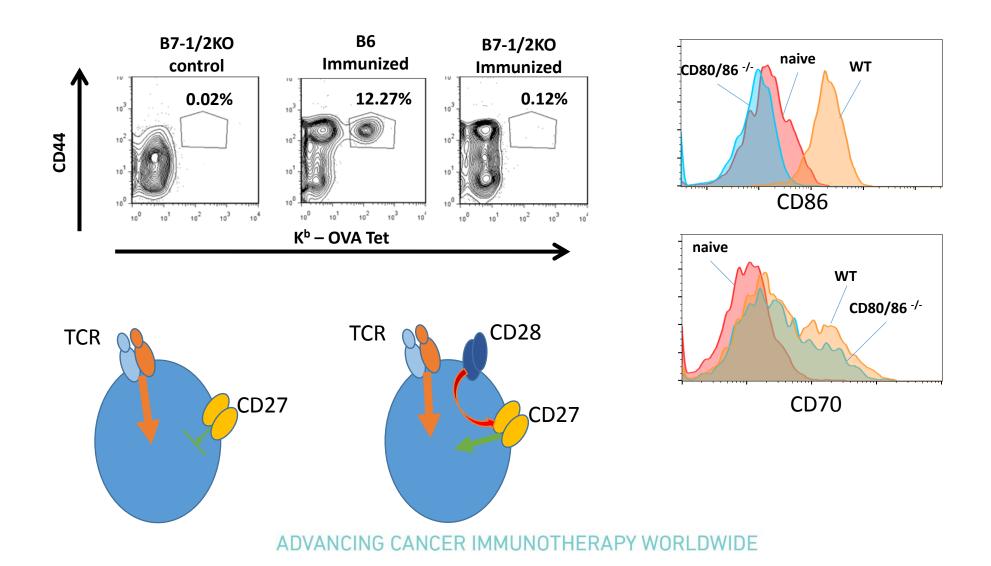
OX40 and

41BB



### Targeting TNF receptors augments Tcm/Tscm



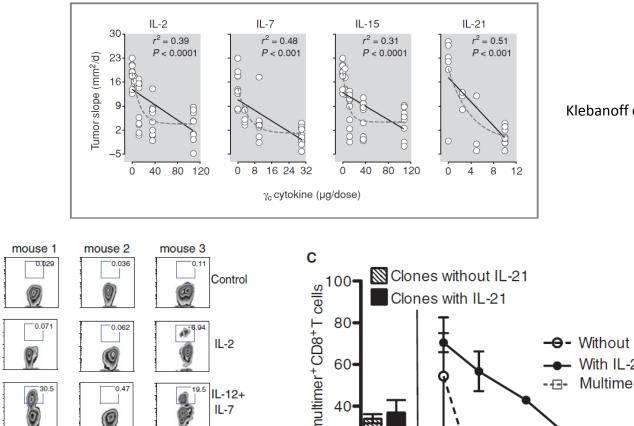

Edwards et al. Immunol. Res. 2013



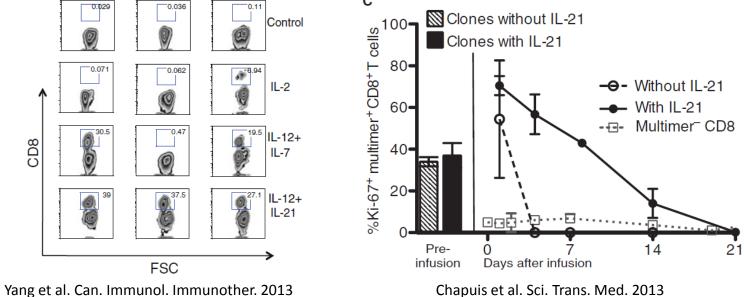
- Can we make them better?
- 1. <u>antigen dose and duration... Stop starving T cells and</u> <u>avoid long-lasting emulsions</u>
- 2. <u>target DCs/enhance cross-presentation</u>
- 3. <u>use adjuvants that induce IL-27</u>
- 4. and CD80/86 (CD28 stimulation)
- 5. <u>engage TNFR superfamily members</u>
- 6. <u>IL-21 for ACT</u>



#### Step 4: strong CD28 costimulation







- Can we make them better?
- 1. <u>antigen dose and duration... Stop starving T cells and</u> <u>avoid long-lasting emulsions</u>
- 2. <u>target DCs/enhance cross-presentation</u>
- 3. <u>use adjuvants that induce IL-27</u>
- 4. and CD80/86 (CD28 stimulation)
- 5. <u>engage TNFR superfamily members</u>
- 6. <u>IL-21 for ACT</u>



#### Step 6 (For adoptive cell therapy): Use IL-21



Klebanoff et al. Clin. Can. Res. 2011





### 6 easy steps to better cancer vaccines

- 1. <u>antigen dose and duration... Stop starving T cells</u> <u>and avoid long-lasting emulsions</u>
- 2. <u>target DCs/enhance cross-presentation</u>
- 3. <u>use adjuvants that induce IL-27</u>
- 4. and CD80/86 (CD28 stimulation)
- 5. <u>engage TNFR superfamily members</u>
- 6. <u>IL-21 for ACT</u>



# **Clinical approaches engaging these vaccine principles**

- TNFR-targeting antibodies;
  - Varilimumab (CD27)
  - Utomilumab (CD137/41BB)
  - CD134/OX40 (Medimmune/PF/Genetech)
  - TRX5-18 (GITR)
  - APX005M/R07009789/CP-870,893 (CD40)
- CMB305- lentiviral vector + TLR4 agonist
- NC-6300- pH-sensitive lipid particles



- Do we need T cells? Duh
- How Many T cells do we really need to make? More than you want to admit...
- What kind should we make?
  Self renewing T<sub>SCM</sub> or T<sub>CM</sub>
- How should we make them?
- <u>1- antigen dose and duration... Stop starving T cells</u>

and avoid long-lasting emulsions

- 2- target DCs/enhance cross-presentation
- 3- use adjuvants that induce IL-27
- 4- and CD80/86 (CD28 stimulation)

5- engage TNFR superfamily members

6- IL-21 for ACT



# Goals

- 1. Appreciate our current understanding of the requirements for successful T cell-mediated cancer therapy
- 2. Become familiar with some current approaches to vaccination against cancer.
- 3. Appreciate and understand T cell-specific vaccine principles for designing and developing better cancer vaccines.