Unraveling the Basic Components of Cancer Immunotherapy Alan L. Epstein MD, PhD **Department of Pathology USC Keck School of Medicine**

Working Hypothesis

• Targeting missing immunostimulatory molecules to tumor can generate complete immune response with memory

• Deletion of natural immunosuppression can enable immunotherapy to be effective

Targeting Tumor Necrosis with TNT Antibodies

USC

Major Characteristics of TNT Antibodies

- * Recognize abundant intranuclear antigens present in all cancers, all species
- ***** Have long retention times in tumor
- * Have enhanced uptake after cytoreductive therapies
- * Localize to necrosis, a site rich in tumor antigens

Tissue Biodistribution of I-125-chTNT-3/B in ME-180 Carcinoma-bearing Nude Mice

TNT Antibody Uptake in Tumor

Macroautoradiography of ¹²⁵I-TNT-1 in ME-180 Human Cervical CA

Macro and Microautoradiography of ¹²⁵I-TNT-3

Enhanced Uptake of TNT in Taxol Treated Colon 26 Tumors

Methods of Immunotherapy

- Vaccines
- Cytokine Therapy
- Adoptive Transfer of Immunity
- Fusion Proteins
 - Targeted (MAb)
 - Untargeted (Fc)
- Genetic alteration of T-cells
- Immunomodulatory drugs

Targeted Fusion Proteins

C-Terminal Fusion N-Terminal Fusion

Cytokines, Type II costimulatory molecules Chemokines, B7

Untargeted Fc

N-Terminal Fusion

Extracellular domains

Fc portion of human IgG1

Cytokine Fusion Proteins IL-2, IL-4, IL-12, TNFα, GM-CSF, IFNγ

Chemokine Fusion Protein

LEC

Immunotherapy of MAD 109 Lung CA Using Immunocytokine Fusion Proteins

LEC Chemokine

- Liver Expression Chemokine (LEC)
- A CC family (β family) chemokine (CCL16)
- Located on chromosome 17q in CC cluster
- Chemoattracts PMNS, monocytes, dendritic cells, and lymphocytes
- Interacts with CCR1, CCR5, and CCR8 receptors

LEC/chTNT-3 Immunotherapy in 3 Tumor Models of the BALB/c Mouse

Days

13

11

9

15

17

19

0.5

Histologic and IHC Analysis of Tumor Sections

Dendritic Cells

Control Treated LEC/chTNT-3 Treated

Lymphocyte Depletion Studies

- CD4⁺ T cell depletion: GK1.5 (0.5mg ip q5 days)
- CD8+ T cell depletion:
- 2.43 (0.5 mg ip q5 days)
- NK depletion:
- anti-asilao GM1(0.35mg ip q5 days)
- CD4+CD25+ depletion: PC61 (0.5 mg ip Day 0)

Control After Depletion

T-cell Subset Depletion Studies in Colon 26

Days

Days

Control

CD4 depletion control

LEC/chTNT-3

LEC/chTNT-3+CD4 depletion

Cell Proliferation Assay of TDLN after Incubation with Tumor Lysates

CD3e

Tumor Re-challenge Studies (3 months)

Colon 26 Naïve Mice

Colon 26 Regressed Mice

Combination Cytokine or Chemokine Fusion Protein Immunotherapy and T-cell Subset Depletion in Colon 26

Immunotherapy ¹	-T-cell Subset Depletion	% Tumor Reduction (Day 19)
chTNT -3 (control)	-	0%
chTNT -3 (control)	CD4 ⁺ depletion	33%
LEC/chTNT -3	-	60%
LEC/chTNT -3	CD4 ⁺ depletion	100%
chTNT -3/IL -2	-	38%
chTNT -3/IL -2	CD4 ⁺ depletion	64%
chTNT -3/IFN -γ		32%
chTNT -3/IFN -γ	CD4 ⁺ depletion	33%
chTNT -3/TNF -α	-	10%
chTNT -3/TNF -α	CD4 ⁺ depletion	33%

Antibodies and fusion proteins (20ug/dose) were injected iv for 5 consecutive days after tumors reached 0.5cm in diameter.

²CD4 ⁺ depletion (0.5 mg/dose of GK1.5) was performed ip 1 day after tumor implantation and repeated every 5 days.

Treg Markers

- * The concept of suppressor T cells was elusive until: Sakaguchi et al identified a subpopulation (about 10%) of CD4+ cells that express CD25.
- * Most cell markers for Treg cells are also expressed on CD4+CD25⁻ cells upon activation.

* None of the known cell surface markers appear to be responsible for CD4+CD25+ mediated suppression.

Real-Time PCR Analysis of Foxp3 in 4 Treated and Untreated Murine Tumor Models

Y Axis: Fold Increase over control

Untargeted and Targeted Co-stimulation

B7 GITRL

Co-stimulatory Molecules

T-cell

dendritic cell

B7.1-Fc

B7.1/NHS76

SDS PAGE

CFSE Proliferation Assay

NHS76

B7.1/NHS76

B7.1/Fc

anti-CD3 alone

counts

anti-CD3 + B7.1/Fc

CFSE

B7.1-Fc Dosing Study in Colon 26 Tumor Model

Days after tumor implantation

IHC of Control and Treated Colon 26

Control **B7.1-Fc + CD25 depletion B7.1-Fc** H & E **GD**4 CIJ8

Tumor Infiltrating Lymphocytes (TIL)

CD11b+

CD11c+

Activation of TIL With Tumor Lysate In Vitro

CFSE

CD3e⁺

T-Cell Depletion Studies in B7.1-Fc Treated Colon 26-Bearing Mice

B7.1/Fc + CD8 depletion

B7.1/Fc + CD25 depletion

IFN-gamma Vital for B7.1 Therapy as Demonstrated in KO mice

Anti IL-4 Therapy Does Not Reverse B7.1-Fc

Dual Function of GITR

Activity Assay of GITRL Fusion Proteins at 48 Hours

CFSE

DTA-1

• Performed on naïve splenocytes.

- 2ug of protein was used for each sample.
- CFSE stained CD4+ T cells

Targeted and Non-targeted GITRL Dosing Studies in Colon 26 Tumor Model

H & E of GITRL Treated COLON-26 Bearing Mice

Targeting Innate Immunity

TNT-3/CpG

Multiple Functions of CpG

Potential for CpG ODNS

- Protective Immunity
 - TLR9 detects CpG→ triggers ↑ response

- Allergies

- TH1 response
- Vaccine Response
 - Th1 and proinflammatory cytokines→Improves APC function
 - Promotes induction of Ag-specific response
- Cancer Therapy
 - ↑ CTLs and NK cells

Nature Reviews | Immunology

Heterobifunctional Linkage of CpG to Antibody

In Vitro Assay Demonstrating CpG Activity of Immunoconjugate

chTNT-3/CpG Immunotherapy

SUMMARY: Major Pathways of Immune Activation for Cancer Immunotherapy

- Chemotaxis (chemokines)
- **Co-Stimulation (second signal)**
- Combination T-cell activation and inhibition of Treg (GITRL)
- Activators of innate immunity (CpG)

SUMMARY: Major Inhibitory Mechanisms That Generate Tolerance to Tumors

- Treg cells
- T-cell death receptors (PD-1, 2)
- Soluble cytokines (IL-10, TGFβ)
- Inhibition of CD28 Co-stim (CTLA-4, B7.1-Fc?)
- IDO (Indoeamine 2,3-dioxygenase)

 degrades tryptophan
- Loss or release of MHC class I molecules

Epstein Laboratory

Peisheng Hu, PhD Leslie Khawli, PhD

PhD Students Ahong Liu Robyn Arias Meg Flanagan Nan Zhang Rebecca Sadun Master Students Charleen Nien Howard Kuo

Technicians Maggie Yun Mandy Han James Pang

Aspen, CO

Los Angeles, CA

Canada

The Birth of Man Mills Garden, Stockholm