

Immunotherapy on the Horizon

Infinite universe, limited scope of comprehension, much too tight trousers

John Godwin, MD, MS

Program Leader Hematologic Malignancies

Robert W. Franz Cancer Research Center Earle A Chiles Research Institute

Disclosures Relevant To Potential Commercial Bias

- John Godwin, MD, MS
- Speakers Bureau BMS,
- Local PI Phase I clinical trial Macrogenics
- Local PI Phase III clinical trial Amgen, Blinatumomab
- Institutional Grant Support BMS
- There will be discussion about the use of products for non-FDA approved indications in this presentation.

•Rhetorical:

Should I be an expert – if I have nothing to disclose?

Lecture Objectives

- 1. Describe New Immunotherapies Currently in Clinical Trial -Emphasis on Hematologic malignancies
- 2. Discuss Immunotherapy Cytokine Associated Toxicities
 - a. Cytokine Release Syndrome (CRS)
- 3.T Cell Engager Therapies- Examples
 - a. Blinatumomab in ALL. Cooperative Group Trial E1910
 - b. First in man phase I clinical trial MGD006 CD123
 x CD3 DART

T Cell Cancer Immunotherapies-A Simple List

- 1. Cancer Vaccines (not further discussed)
- 2. mAbs that block T cell checkpoints
- 3. Bispecific mAbs that engage endogenous T cells
- 4. Adoptive T cell therapy
 - a. Endogenous Tumor reactive T cells
 - b. Gene modified TCRs
 - c. Chimeric Antigen Receptors (CARs)

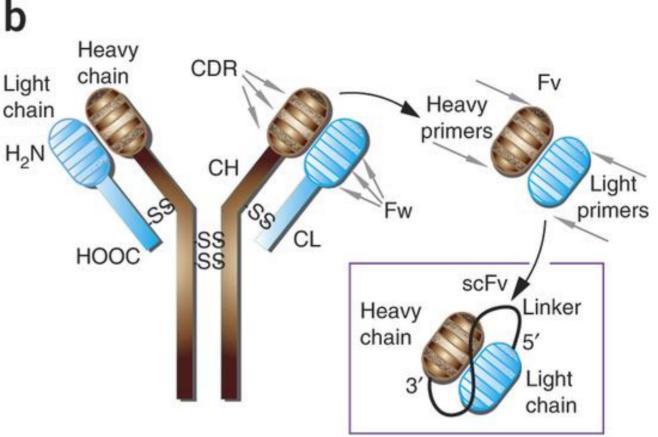
T Cell Cancer Therapies

- Check point inhibitors
- "Unleash" Immune response
- Immune reaction already present

- T Cell Engagers
- Create a Productive
 Immune Response

Bispecific Molecules

- Bispecific antibodies recruiting T cells have been under development for almost 20 years
- They hold the promise of mounting a polyclonal T-cell response against tumor cells by employing one of the immune system's most effective killer cell population-
- The T Cells engaged do not have T Cell Receptor specificity for the target


ANTIBODY FRAGMENTS TO BISPECIFICS

scFv- Single Chain Variable Fragment

- Genetic
 I
 engineering
- production of scFvwhich are linked by a flexible pepetide with specific binding

Manipulation and length of the linker creates different scFV

Promise of Bispecifics in Cancer Treatment

- Activity NOT rely on Ag specific T-cell clones
- Immune escape mechanisms are less likely to impact the therapy
- Polyclonal: engages the large endogenous existing T-cell pool
- No need for MHC class I restriction, or antigen presentation
- Not only cytotoxic CD8⁺ T -, but also CD4⁺ T cells.

Barriers for BisAbs

- molecules are often unstable when stored or administered in vivo
- have proven difficult to produce to pharmaceutically acceptable standards
- Limited number of clinically useful targets – Tumor specific; safe

A Peak At The Plethora of BsAbs

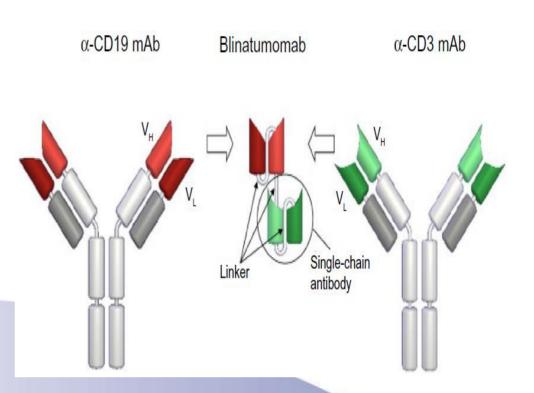
• Many on the horizon -complex-

Table 1

Bispecific antibodies and other bispecific immunotherapeutics in clinical development.

	BsAb (other names, sponsoring organizations)	BsAb format	Targets	Proposed mechanisms of action	
-	Catumaxomab (Removab [®] , Fresenius Biotech, Trion Pharma, Neopharm)	BsIgG: Triomab	CD3, EpCAM	Retargeting of T cells to tumor, Fc mediated effector functions	
	Ertumaxomab (Neovii Biotech, Fresenius Biotech)	BsIgG: Triomab	CD3, HER2	Retargeting of T cells to tumor	
	Blinatumomab (Blincyto [®] , AMG 103, MT 103, MEDI 538, Amgen)	BiTE	CD3, CD19	Retargeting of T cells to tumor	
					>30 BsAb in
	Solitomab (AMG 110, MT110, Amgen)	BiTE	CD3, EpCAM	Retargeting of T cells to tumor	clinical
	MEDI 565 (AMG 211, MedImmune, Amgen)	BiTE	CD3, CEA	Retargeting of T cells to tumor	
	BAY2010112 (AMG 212, Bayer; Amgen)	BiTE	CD3, PSMA	Retargeting of T cells to tumor	development
	MGD006 (Macrogenics)	DART	CD3, CD123	Retargeting of T cells to tumor	development
	MGD007 (Macrogenics)	DART	CD3, gpA33	Retargeting of T cells to tumor	
	AFM11 (Affimed Therapeutics)	TandAb	CD3, CD19	Retargeting of T cells to tumor	
	AFM13 (Affimed Therapeutics)	TandAb	CD30, CD16A	Retargeting of NK cells to tumor cells	
	GD2 (Barbara Ann Karmanos Cancer Institute)	T cells preloaded with BsAb	CD3, GD2	Retargeting of T cells to tumor	
	pGD2 (Barbara Ann Karmanos Cancer Institute)	T cells preloaded with BsAb	CD3, Her2	Retargeting of T cells to tumor	
	EGFRBi-armed autologous activated T cells (Roger Williams Medical Center)	T cells preloaded with BsAb	CD3, EGFR	Autologous activated T cells to EGFR-positive tumor	
	Anti-EGFR-armed activated T-cells (Barbara Ann Karmanos Cancer Institute)	T cells preloaded with BsAb	CD3, EGFR	Autologous activated T cells to EGFR-positive tumor	
	rM28 (University Hospital Tübingen)	Tandem scFv	CD28, MAPG	Retargeting of T cells to tumor	
	IMCgp100 (Immunocore)	ImmTAC	CD3, peptide MHC	Retargeting of T cells to tumor	
	DT2219ARL (NCI, University of Minnesota)	2 scFv linked to diphtheria toxin	CD19, CD22	Targeting of protein toxin to tumor	
	Duligotuzumab (MEHD7945A, Genentech, Roche)	DAF	EGFR, HER3	Blockade of 2 receptors, ADCC	
	LY3164530 (Eli Lily)	Not disclosed	EGFR, MET	Blockade of 2 receptors	
	MM-111 (Merrimack Pharmaceuticals)	HSA body	HER2, HER3	Blockade of 2 receptors	
	MM-141, (Merrimack Pharmaceuticals)	IgG-scFv	IGF-1R, HER3	Blockade of 2 receptors	
	RG7221 (RO5520985, Roche)	CrossMab	Ang2, VEGF A	Blockade of 2 proangiogenics	
	RG7716 (Roche)	CrossMab	Ang2, VEGF A	Blockade of 2 proangiogenics	
	TF2 (Immunomedics)	Dock and lock	CEA, HSG	Pretargeting tumor for PET or radioimagin	ng
	ABT-981 (AbbVie)	DVD-Ig	IL-1α, IL-1β	Blockade of 2 proinflammatory cytokines	
	ABT-122 (AbbVie)	DVD-Ig	TNF, IL-17A	Blockade of 2 proinflammatory cytokines	
	COVA322	IgG-fynomer	TNF, IL17A	Blockade of 2 proinflammatory cytokines	

Spies et. al. Alternative molecular formats and therapeutic applications for bispecific antibodies (Mol Immunol 2015)


Examples from Real World Use

Blinatumomab-CD19xCD3 First Bispecific antibody approved for Cancer Treatment MGD006 – CD123xCD3 Dual Affinity Re-Targeting (DART) Bi-Specific Antibody-Based Molecule

Blinatumomab CD19 X CD3 construct

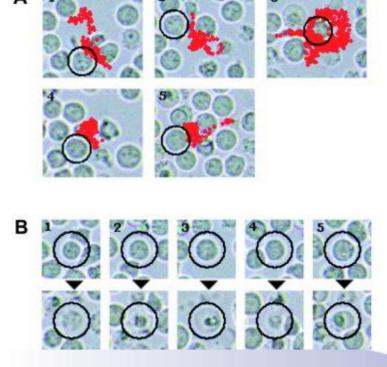
- Blinatumomab is made of scFvs that form a 55 kDa fusion protein
- _Recombinant DNA corresponding VL and VH regions cloned into separate plasmid vectors as templates.
- VL_{CD19} - VH_{CD19} - VH_{CD3} - VL_{CD3}
- LINKER thought to give the two scFvs a significant degree of rotational ability to enhance binding of epitopes on separate cells

Pharmacology & Therapeutics 136 (2012) 334–342

Not T Cell Agonist In Isolation

- Blinatumomab alone does not activate T CELLS-
 - Purified T cells NOT activated in absence of CD19 expressing cells
- Conversely Blin does not cause apoptosis of purified CD19 B cells
- All T-cell populations except naive T cells showed high-level redirected lysis.
- resting T cells effective- no need for prior activation

Nagorsen et al. / Pharmacology & Therapeutics 136 (2012) 334–342


Potent

- Blinatumomab was found to be extremely potent,
 - Measured as half-maximum concentration for <u>redirected lysis of CD19-positive</u> target cells of 10–100 pg/mL using T cells from healthy donors
- The clinical target dose of 15µg/m2/day gives a steady state concentration of about 730 pg/ml

Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct

BsCD19xCD3 alters the behaviour of T cells

Prolonged contacts of 1 individual T cell with 5 different NALM-6 B lymphoma cells during a 9 hr incubation.

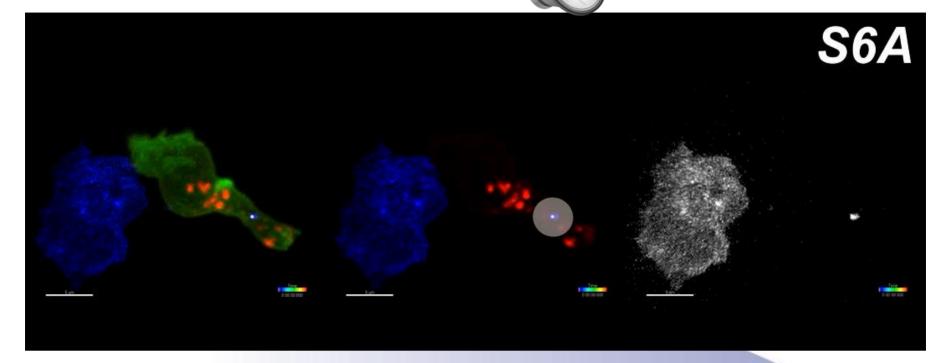
The red dots indicate the positions of the mass center of individual T cells. The positions of T cells are shown every 18 sec. Those target cells that were in longest contact with the T cell, as indicated by trajectories, are marked by a circle.

After 9 hours

EARLE A. CHILES

International Journal of Cancer Volume 115, Issue 1, pages 98-104, 1 FEB 2005 DOI: 10.1002/ijc.20908

http://onlinelibrary.wiley.com/doi/10.1002/ijc.20908/full#fig2



T-cell "Serial Killer"

- BiTE-activated T cells were shown to kill cancer cells by membrane perforation using perforin, granzymes
- At high effector Target ratios- killing is rapid
- Both CD8 and CD4 cells kill targets
- Serial lysis was observed by video microscopy- a single Tcell can latch on to kill and disengage over 30-200min

4D Dynamics of Cytolytic Granules in Relation to Cytoskeletal Elements (A) Time-lapse maximum intensity projection images of confocal sections taken through a CTL expressing Lifeact-EGFP, CD63-mCherry, and PACT-TagBFP as it interacts with an EL4-blue target cell

Killer T-Cell ;Credit: Gillian Griffiths/Jonny Settle

http://creativecommons.org/licenses/by/3.0/

Phase I Blinatumomab

- First in Man Phase I studies- began in 2001
- Pts w relapsed / refractory NHL
- doses ranging from 0.75–13 µg/m² administered once, twice, or three times weekly as 2- or 4-hour intravenous infusions.
- Adverse events included fever, rigors, and fatigue. Significant neurologic events included aphasia, ataxia, disorientation, and seizures and led to discontinuation of therapy in 6 of 22 patients. Cytokine release syndrome and infections were also observed

D. Nagorsen et al. / Pharmacology & Therapeutics 136 (2012) 334–342

Phase I Blinatumomab

- Following initiation of Blinatumomab infusion, T cells transiently disappeared from the circulation
- 2. Then re-appeared with activated phenotype, including expression of CD25 and CD69
- For many pts T Cell counts expanded both CD4 and CD8, with the phenotype of effector memory cells

Ther Adv Hematol 2016, Vol. 7(3) 142–156

Change to CIV Infusion

- Based the short serum half-life of blinatumomab in humans of ~2 h
- And mechanism of action relying on a continued search-and-destroy mode of BiTE®-antibody-engaged T cells
- Changed to CIV dosing-
- This has become the standard for all treatments

Dose in ALL vs NHL

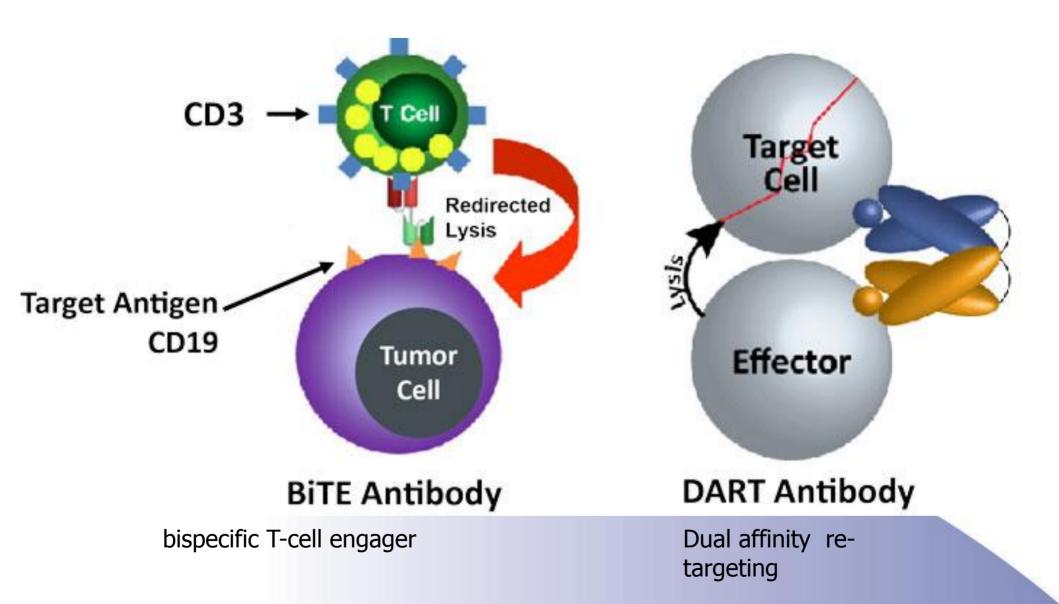
- 1. The MTD in NHL was 60µg/m2/day
- 2. Doses as low as 15µg/m2/day were effective in bone marrow involvement
- 3. In ALL the optimal dose was found to be 5 µg/m2/day with a step up
- 4. stepped up to 15µg/m2/day
- 5. There was no additional benefit for higher doses in ALL

Ther Adv Hematol 2016, Vol. 7(3) 142–156

Topp, et. al. ALL Phase II

- 1. 189 PH1 neg ALL patients 2012-2013, enrolled and treated with Blinatumomab.
- 2. Primary refractory or relapsed within 12 mo of remission or relapse p AlloHSCT
- After two cycles, 81 (43%, 95% CI 36–50) patients had achieved a CR or CRh: 63 (33%) patients had a CR and 18 (10%) patients had a CRh

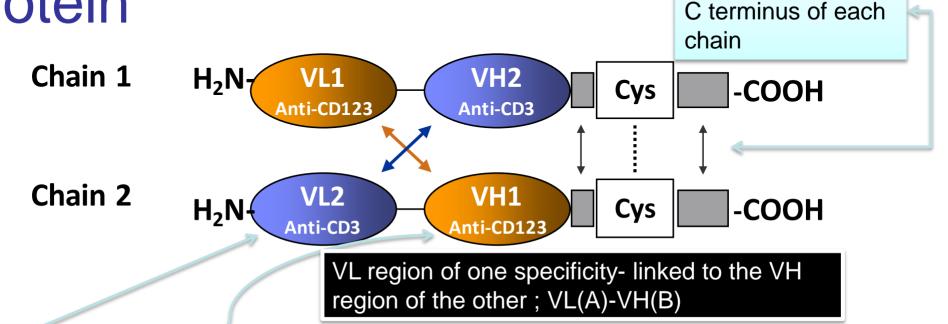
Lancet Oncol 16: 57–66. Jan 2015

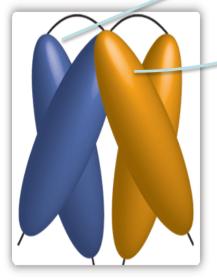

Topp, et. al. ALL Phase II

- 1. Study required <u>pre-treatment W</u> dexamethasone 10-24 mg /m2 per day up to 5 days for those with blasts >50% in marrow, or PB blasts >#15,000
- 2. Dex stopped 3 days before Blin
- 3. 9 μ g/day for 1 week, then 28 μ g/day for
- 4. 3 weeks to reduce risk of cytokine release syndrome.
- 5. required dexamethasone (20 mg) premedication within 1 h before treatment initiation in each cycle

Lancet Oncol 16: 57–66. Jan 2015

DART v BiTE




BiTE vs DART

- 1. DART architecture is well suited for maintaining cell-to-cell contact,
- 2. apparently contributing to the high level of target cell killing.
- 3. CD19 x TCR and CD19 x CD3 DARTs have demonstrated in vitro killing of B-cell lymphomas by human T cells or peripheral blood mononuclear cells (PBMCs) that exceeds the killing with a similar bispecific antibody construct, BiTE

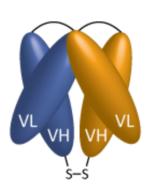
Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood 2011 Apr 28;117(17):4542-51.

MGD006: CD123 x CD3 DART disulfide BOND at C terminus of each

Equilibrium Dissociation Constants (K_D) for the Binding of MGD006 to Human and Cynomolgus Monkey CD3 and CD123

	$k_a (\pm SD)$	$k_d (\pm SD)$	$K_{D}(\pm SD)$
Antigens	(M ⁻¹ s ⁻¹)	(s ⁻¹)	(n M)
Human CD3ε/δ	5.7 (± 0.6) x 10^5	$5.0 (\pm 0.9) \ge 10^{-3}$	9.0 ± 2.3
Cynomolgus CD3ε/δ	5.5 (± 0.5)x 10^5	5.0 (± 0.9) x 10 ⁻³	9.2 ± 2.3
Human CD123-His	$1.6 (\pm 0.4) \ge 10^6$	$1.9 (\pm 0.4) \ge 10^{-4}$	0.13 ± 0.01
Cynomolgus CD123-His	$1.5 (\pm 0.3) \ge 10^6$	$4.0 (\pm 0.7) \ge 10^{-4}$	0.27 ± 0.02

The data are averages of 3 independent experiments each performed in duplicates.


Science Translational Medicine 27 May 2015: Vol. 7, Issue 289, pp. 289ra82

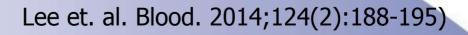
EARLE A. CHILES RESEARCH INSTITUTE

CD123= IL-3Rα

- CD123, the interleukin-3 receptor alpha chain (IL- 3R α)
- CD123 is constitutively expressed on normal HSC.
- The majority of AML blasts express surface CD123.
- Leukemic Stem Cells (LSCs) are CD34+ CD38and express CD123 consistently at a higher density than observed for normal CD34 cells

- Redirected T-cell killing against targeted leukemia cells
 - -Selective elimination of leukemic stem cells
 - Sparing of normal hematopoietic stem cells
- Anticipate very low dosing (ng/kg)

Toxicity of Cancer Immunotherapy


- autoimmune toxicity /
- Autoimmune toxicity, so-called "on target, offtumor toxicity," results from antigen-specific attack on host tissues that express the tumor target antigen
- Checkpoint inhibitors

- cytokineassociated toxicity.
- Cytokine-associated toxicity, also known as cytokine release syndrome (CRS), is a non-antigen specific toxicity that occurs as a result of high-level immune activation
- T Cell Engagers

CRS

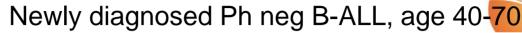
- Cytokine-associated toxicity,
- cytokine release syndrome (CRS),
 - a **non-antigen-specific toxicity** that occurs as a result of intensive immune activation.

- CRS

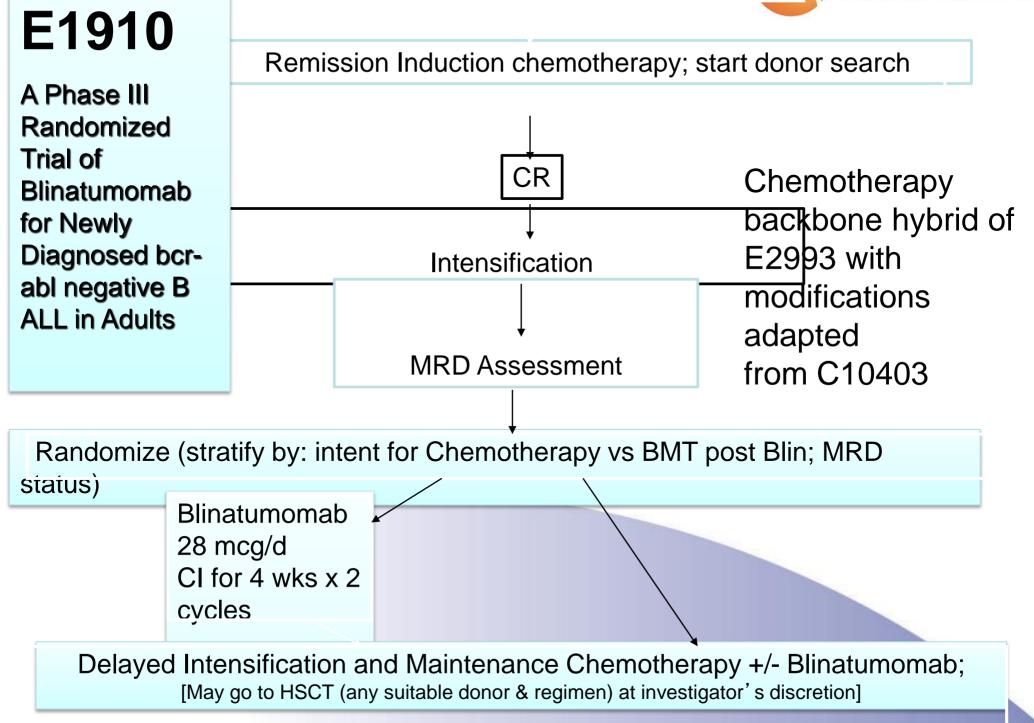
Organ system	Symptoms	
Constitutional	(BAD FLU LIKE) Fever, rigors,, fatigue, anorexia, myalgias, arthalgias , nausea, vomiting, headache	
Gastrointestinal	Nausea, vomiting, diarrhea, Transaminitis, hyper bilirubinemia	
Skin	rash	
Respiratory	Tachypnea, hypoxemia	
Cardiovascular	Tachycardia, hypotension, increased cardiac output (early), diminished LVEF(late), QT prolongation, troponinemia	
Coagulation Renal	Elevated D-dimer, hypofibrinogenemia ± bleeding AKI, TLS, hyponatremia, hyokalemia	
Neurologic	Headache, mental status changes, confusion, delirium, word finding difficulty or frank aphasia, hallucinations, tremor, altered gait, seizures	

Lee et. al. Blood. 2014;124(2):188-195)

CRS Grading Lee et al. Blood 2014


Grade 1	Symptoms are not life threatening and require symptomatic treatment only (e.g. fever, nausea, fatigue, headache, myalgias, malaise)	Grade 1	Mild reaction; infusion interruption not indicated; intervention not indicated
Grade 2	Symptoms require and respond to moderate intervention Oxygen requirement <40% or hypotension responsive to fluids or low dose of one vasopressor or grade 2 organ toxicity	Grade 2	Therapy or infusion interruption indicated but responds promptly to symptomatic treatment (e.g., antihistamines, NSAIDS, narcotics, IV fluids); prophylactic medications indicated for <=24 hrs
Grade 3	Symptoms require and respond to aggressive intervention Oxygen requirement ≥ 40% or Hypotension requiring high dose or multiple vasopressors or Grade 3 organ toxicity or grade 4 transaminitis	Grade 3	Prolonged (e.g., not rapidly responsive to symptomatic medication and/or brief interruption of infusion); recurrence of symptoms following initial improvement; hospitalization indicated for clinical sequelae (e.g., renal impairment, pulmonary infiltrates)
Grade 4	Life-threatening symptoms Requirements for ventilator support or Grade 4 organ toxicity (excluding transaminitis)	Grade 4	Life-threatening consequences; pressor or ventilatory support indicated
Grade 5	Death	Grade 5	Death
		Lee e	et. al. Blood. 2014;124(2):188-195)

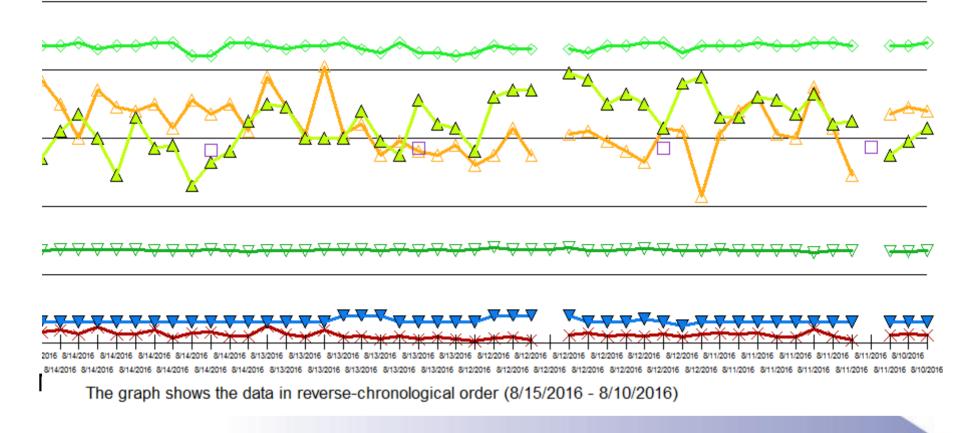
CRS Management Lee et al. Blood 2014


Cytokine Release Syndrome Grading assessment	Extensive co-morbidities or older age? No/Yes	Treatment
Grade 1: •Fever (defined as ≥ 38.3 •Constitutional symptoms	N/A	 Vigilant supportive care Assess for infection Treat fever and neutropenia if present, monitor fluid balance, antipyretics, analgesics as needed
Grade 2: •Hypotension: responds to fluids or one low dose vasopressor •Hypoxia: responds to <40% O2 •Organ toxicity: grade 2	No	 Vigilant supportive care As above for grade 1 Monitor cardiac and other organ function closely
Grade 2: •Hypotension: responds to fluids or one low dose vasopressor •Hypoxia: responds to <40% O2 •Organ toxicity: grade 2	Yes	 Vigilant supportive care As above for grade 2 Consider tocilizumab ± corticosteroids
Grade 3: •Hypotension: requires multiple vasopressors or high dose vasopressors •Hypoxia: requires ≥ 40% O ² •Organ toxicity: grade 3, grade 4, transaminitis	N/A	
Grade 4 •Mechanical ventilation •Organ toxicity: grade 4 excluding transaminitis	N/A	

Lee et. al. Blood. 2014;124(2):188-195)

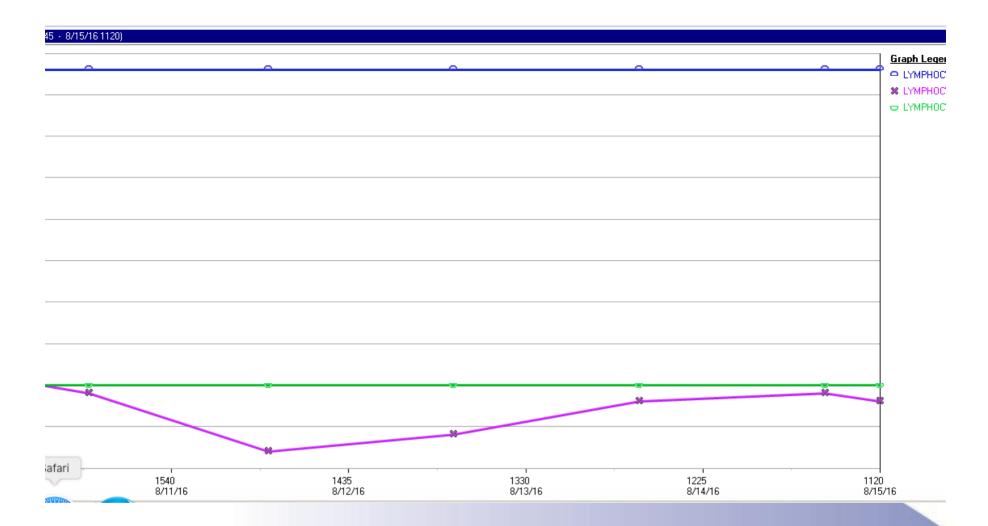
EARLE A. CHILES

RESEARCH INSTITUTE


Pt R.M.

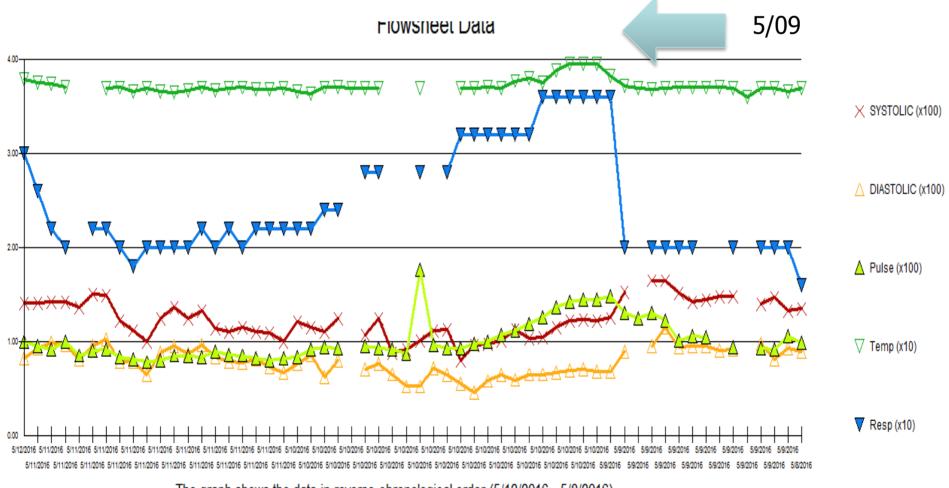
- 1. 32 yr male pre B ALL enrolled on E1910
- 2. Randomized to Blinatumomab
- 3. Admission on 8/10/16

R.M. week 1



R.M. Lymphocytes –

A Phase 1, First-in-Human, Dose Escalation Study of MGD006, a CD123 x CD3 Dual Affinity Re-Targeting (DART) Bi-Specific Antibody-Based Molecule, in Patients with Relapsed or Refractory Acute Myeloid Leukemia


CP-MGD006-01

Patient- S.Q. MGD006

- 1. S.Q.: 54 yr old male, relapsed AML.
- 2. Dx 8/2012. induction x2, CR 11/2012. consolidation x3.
- 3. 1st Relapse 9/2013. 10/2013 second CR, no transplant. Vidaza 12/2013- 12/2015
- 4. 2nd Relapse 12/2015
 a. No CR despite 2 inductions
- 5. Admission 5/09/16 for study drug
- 6. Start time MGD-006 is 3:12pm- 5/09/16

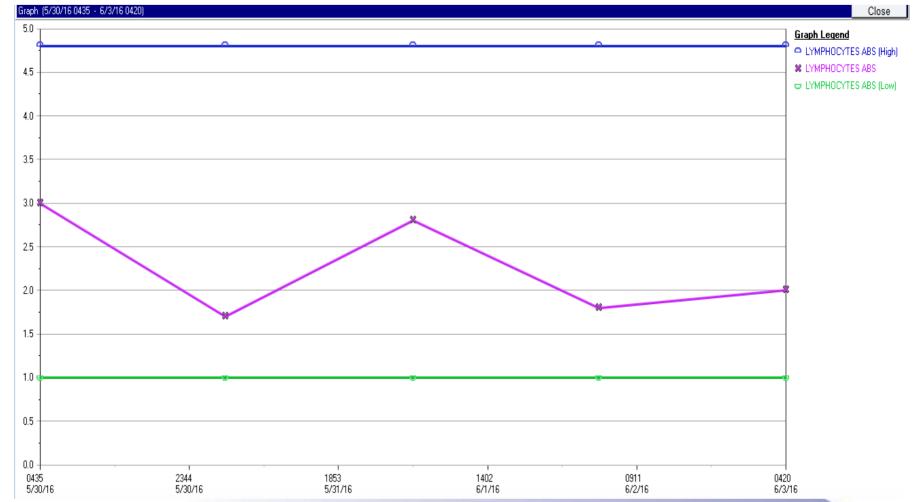
The graph shows the data in reverse-chronological order (5/12/2016 - 5/8/2016)

5/9-5/10: Grade 2 CRS as evidenced by grade 2 hypotension (BP min 80/55), grade 2 pyrexia (24hr tmax 39.5C), tachycardia and tachypnea. Tocilizumab administered at 0200; total of 2.5L NS boluses given. Infusion held per protocol. Once VSS, infusion resumed at 1334 on 5/10 at 30 ng/kg/hr.

S.Q.- Subsequent Events

- Week 2 infusion 5/16-5/17: Grade 2 CRS
- Infusion held at 1500. Toci given at 1543.
- 5/17-5/18: Grade 2 CRS
 - Toci 4 mg/kg hung at 1600 and 500 NS bolus given. Patient febrile at completion of toci. MGD infusion stopped and held for 3 hours
- **5/18-5/19:** Tolerating infusion at goal rate of 500 ng/kg/hr.
 - New generalized erythema and joint aches (hands).
- 5/19-5/20: CRS grade 1

SQ lymphocytes Wk 1 Start



S.Q. –Lymphocytes wk2,3

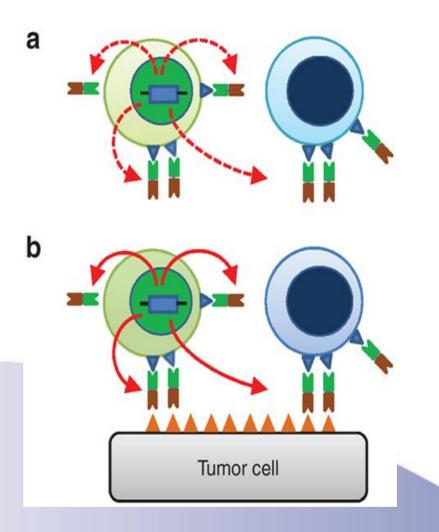
S.Q. Wk 4

Week 4 infusion started 5/30 @ 0748. **5/30-5/31:** CRS Grade 1 as evidenced by hypotension (102/68) and pyrexia (38C). Hypotension resolved with MIVF rate increase and fever was responsive to tylenol. Infusion continues at goal rate.

Considerations

- 1. Different drugs
- 2. Different diseases
- 3. Markedly different CRS potential

New Directions


- Engager T Cells: A New Class of Antigen-specific T Cells That Redirect Bystander T Cells
 - Molecular Therapy (2015); **23** 1, 171–178.
- report the generation of T cells that themselves secrete a bispecific T-cell engager (ENG T cells) specific both for CD3 and the tumor-associated antigen

Engager T Cell Secretion

Model of ENG T-cell mode of

action. (a) ENG T cells (light green) express and secrete engager molecules
(b) Once engager bind antigen, ENG and bystander T cells are activated

Iwahori. *Molecular Therapy* (2015); **23** 1, 171–178.

Discussion And Close

