

Advances in Cancer Immunotherapy™

Patient Selection based on Safety Concerns

Jarushka Naidoo, MB BCH MHS

Consultant Medical Oncologist, Beaumont RCSI Cancer Centre Dublin Adjunct Assistant Professor of Oncology, Johns Hopkins University

@DrJNaidoo

Disclosures

Research Funding:

- Merck
- Amgen
- Astrazeneca
- Novartis
- Bristol Myers Squibb
- Roche/Genentech
- Mirati

Consulting/Advisory Board:

- Merck
- Amgen
- Astrazeneca
- Novartis
- Bristol Myers Squibb
- Roche/Genentech
- Daiichi Sankyo
- Pfizer
- Takeda
- Kaleido Biosciences

Outline

- Toxicity:
- Autoimmune conditions/Prior irAEs
- Organ Transplants
- Poor Functional Status:
- Performance Status 2
- Elderly
- 'Untested' Populations:
- Paraneoplastic Syndromes

Prior Autoimmune Conditions: The Melanoma Experience

PD-1

- 55/119 pts prior AID received anti-PD-1
- ORR= 33%
- 38% (20/119): AID flare
- 29% (15/119): other irAE
- 8% (4/119): stopped Tx

Overall, tolerable

CTLA-4

- 67/119 with prior CTLA-4 irAEs, received anti-PD-1
- 3% (2/67): same irAE
- 38% (23/67): new irAEs
- 12% (8/67): stopped Tx

Overall, tolerable

PD-1/CTLA-4

- 55 pts prior AID
- ORR= 55%
- 33% (18/55): AID flare
- 67% (37/55): other irAE
- 36% (30/55): stopped Tx

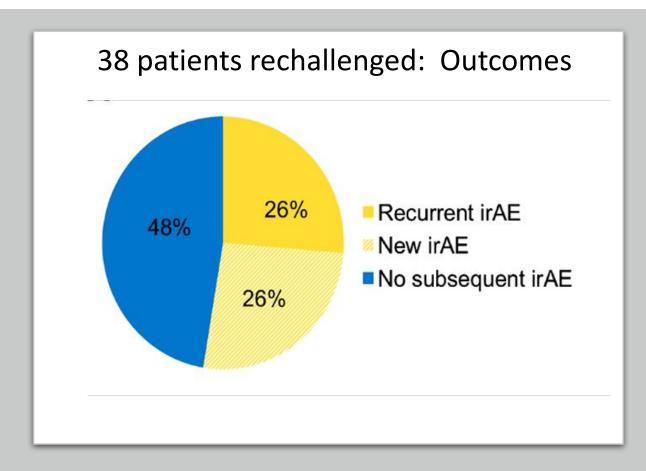
Not as Tolerable

Prior Autoimmune Conditions: The NSCLC Experience

56 pts NSCLC + AID

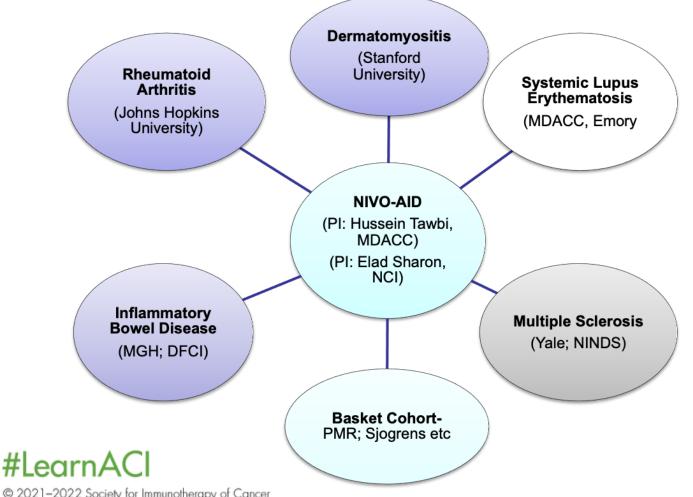
- ORR: 22%
- 23% AID flare (13% G3+)
- 38% other irAE (26% G3+)
- 6-mo cumulative incidence flare: 21%
- 18-mo cumulative incidence flare: 23%

21 patients with irAEs (23 irAEs)


- 29% G3+ irAEs
- 14% stopped PD-(L)1
- 5% flare + irAE
- No association baseline steroids & response
- No association flare & response



When to re-challenge?


MSKCC Experience: 482 PD(L)1-treated NSCLC pts:

- 68 had irAE warranting therapy hold
- 30 permanently discontinued

NCI-10204 (NIVO-AID): Nivolumab in patients with prior autoimmune disease

Primary Objective:

Establish safety, dose-limiting toxicity, associated with nivolumab in patients with varying severity of specific autoimmune diseases.

Study Status:

Open and enrolling at 8 sites Goal of 39 sites Goal accrual 384 patients

Organ Transplant Response to ICI and Organ Rejection

Characteristic	Total	Rejection	No rejection	р
Median age (yrs)	63.8	63	65.5	0.48
Time to ICI since transplant (median yrs, range)	8 (0.75-32)	6 (0.75-27.6)	8 (0.75-32)	0.74
Solid Organ Transplant Kidney Liver Heart Cornea	39 19 5 1	18 (46) 6 (32) 1 (20) 1 (100)	21 (54) 13 (68) 4 (80) 0 (0)	0.34
Type of ICI CTLA-4 PD-(L)1 Sequential	13 43 8	3 (23) 20 (47) 3 (37.5)	10 (77) 23 (53) 5 (62.5)	0.45
Responder to ICI (all) CTLA-4 PD-(L)1 Sequential	25 7 15 3	9 (37.5) 1 (14) 6 (40) 2 (66)	16 (62.5) 6 (86) 9 (60) 1 (33)	0.8

Clinical Trials of ICI+Transplant Nivo+Ipi+Tacrolimus in Renal Transplant

Background

Solid organ transplant recipients - +50x risk of selected cancers

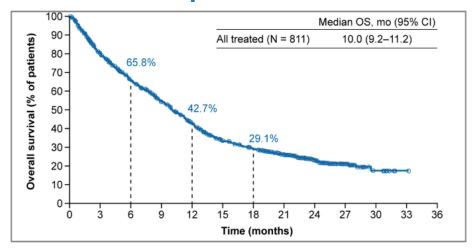
ICI can be effective against cancers in chronically immunosuppressed

Transplant recipients excluded from ICI trials due to risk of allograft rejection/loss

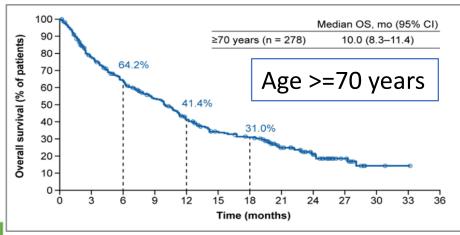
Study Design

Investigator-initiated phase 1/2 clinical trial testing nivolumab + tacrolimus + prednisone
Patients with progressive disease at 16 wks may receive ipilimumab

Study population:

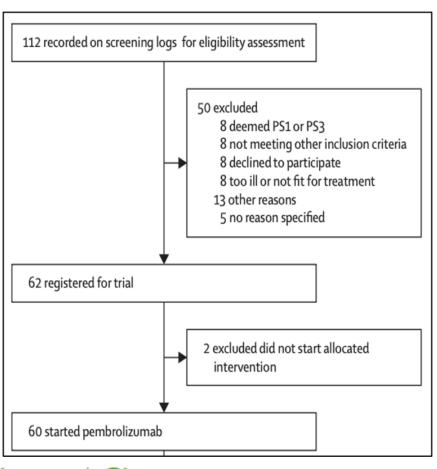

Adult kidney transplant recipients
Melanoma, Basal cell, Cutaneous squamous cell, Merkel cell
and MSI-high cancers

Primary objective:


Estimate % durable clinical benefit (RECIST v1.1) without allograft loss at 16 wks

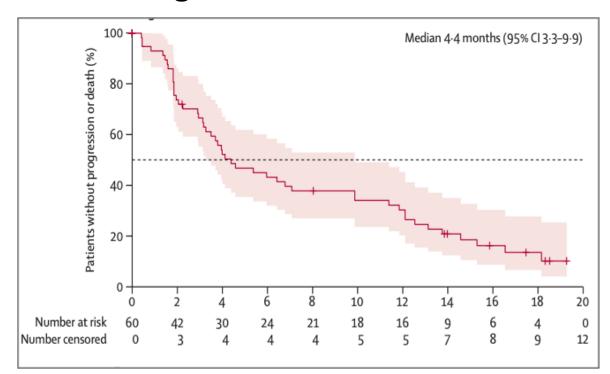
CM-171

Nivolumab in Squamous NSCLC: ECOG PS 2 + Elderly

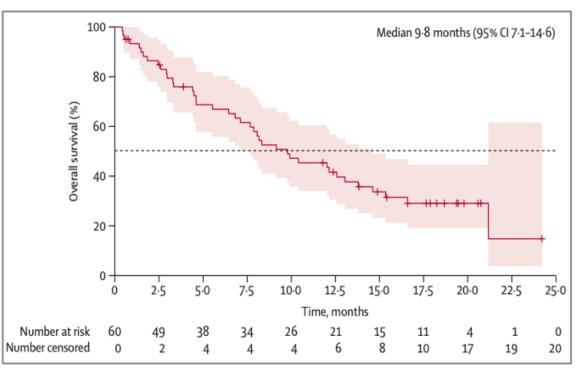


PePs2:

Pembrolizumab in PD-L1>1% Advanced NSCLC ECOG PS 2



	Durable clinical benefit incidence	Toxicity incidence	Objective response incidence
All (n=60)	37% (22; 26–49)	28% (17; 19-41)	27% (16; 17–39)
Line of therapy			
First-line (n=24)	38% (9; 21–57)	29% (7; 15-49)	21% (5; 9–40)
Subsequent-line (n=36)	36% (13; 22–52)	28% (10; 16-44)	31% (11; 18–47)
PD-L1 tumour proportion score			
<1% (n=27)	22% (6; 11–41)	26% (7; 13-45)	11% (3; 4–28)
1-49% (n=15)	47% (7; 25–70)	13% (2; 4–38)	33% (5; 15–58)
≥50% (n=15)	53% (8; 30-75)	40% (6; 20-64)	47% (7; 25–70)
Unknown (n=3)	NE (n=1)	NE (n=2)	NE (n=1)

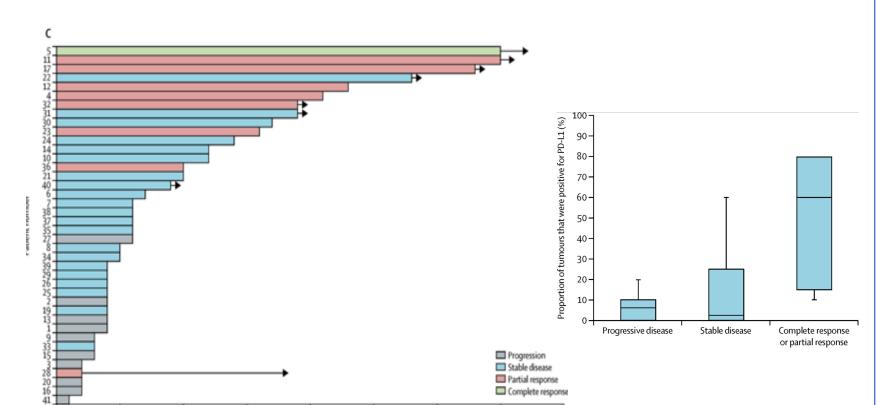


Progression-Free Survival

Overall Survival

CM817:

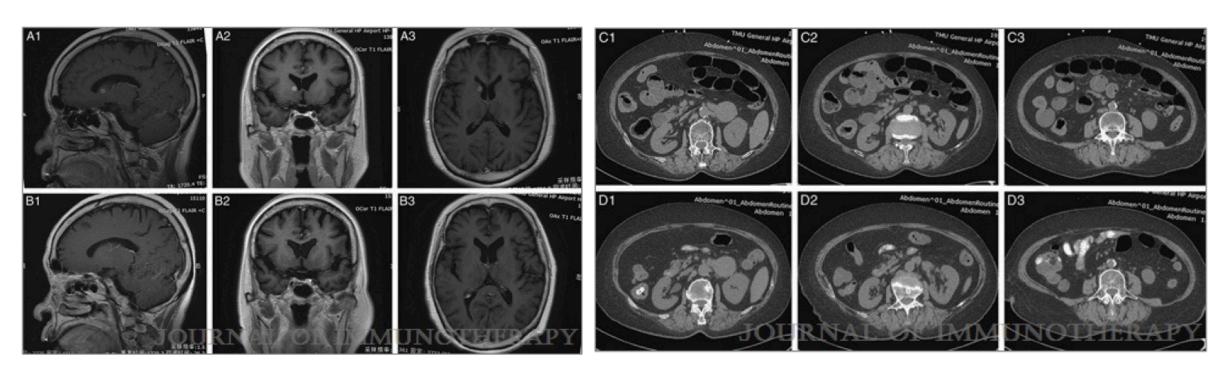
Nivo/Ipi in First-line Advanced NSCLC and ECOG PS 2


- Multi cohort ph III/IV study
- Cohort A1 (n=198): ECOG PS 2
 or ECOG PS 0–1 with 1 of:
 Asymptomatic brain metastases,
 Hepatic, Renal impairment, HIV.
- Cohort A (n=391) ECOG PS 0-1.
- Nivo 240 mg Q2W + Ipi 1 mg/kg Q6W x 2 years or until disease progression/toxicity
- Safety and efficacy endpoints

CheckMate 817 safety	Cohort A1			Cohort A
	All treated (n=198)	ECOG PS 2 (n=139)	AOSPb (n=59)	All treated ¹ (n=391)
TRAEs n, (%) Any grade Grade 3–4	132 (67) 54 (27)	86 (62) 34 (24)	46 (78) 20 (34)	295 (75) 123 (31)
TRAEs leading to discontinuation, n (%) Any grade Grade 3–4	30 (15) 23 (12)	20 (14) 16 (12)	10 (17) 7 (12)	69 (18) 52 (13)
Treatment-related deaths, n	2°	2°	0	2 ^d
CheckMate 817 efficacy	Cohort A1			Cohort A
Objective response rate n/N % 95% CI	50/198 25 19.4–31.9	28/139 20 13.8–27.8	22/59 37 25.0–50.9	136/391 35 30.1–39.7

Untested Populations Paraneoplastic Syndromes

Number of pembrolizumab cycles



- 15% (6/20 pts) developed severe autoimmune toxicity:
 - myocarditis
 - polymyositis
- Patients with MG or Pure Red Cell Aplasia excluded
- Safety of administering ICIs in those with known paraneoplastic syndromes is unknown

Untested Populations Paraneoplastic Syndromes

Anti-Hu antibody induced encephalitis & enteric neuropathy in SCLC treated with sintilimab

Patient Selection for ICI based on Safety

Toxicity:

- Autoimmune conditions/Prior irAEs
- Organ Transplants

- AIDs/prior irAEs do not preclude ICI, tolerability poorer with PD-1/CTLA-4
- Organ Transplant= high rejection risk

Poor Functional Status:

- Performance Status 2
- Elderly

- PD-1 and PD-1/CTLA4 may be effective in ECOG PS2, elderly, other high-risk groups (CM171, 817, PePs2)

Untested Populations:

- Paraneoplastic Syndromes

- Risk of irAEs/poor outcomes in pts with paraneoplastic syndromes unknown

Advances in Cancer Immunotherapy™

Colleagues and Collaborators

Beaumont RCSI Cancer Centre, Dublin

Liam Grogan, MD Oscar S. Breathnach, MD Patrick Morris, MD Bryan Hennessy, MD Adrian Murphy, MD Noel G. McElvaney, MD Arnie Hill, MD Cathal Kelly, MD Mark Sherlock, MD Siobhan Glavey, MD Gerard Curley, MD PhD Jochen Prehn, PhD Triona Ni Conghiale, PhD Darren O'Connor, PhD Leonie Young, PhD Fergal O'Brien, PhD

Irish Cancer Society

Cancer Trials Ireland

Ray McDermott, MD PhD Seamus O'Reilly, MD PhD Eibhlin Mulroe Verena Murphy, PhD Roisin Connolly, MD

Irish Lung Cancer Alliance

Catriona Dowling, PhD Annemarie Baird, PhD Seamus Cotter

ETOP

Rolf Stahel Solange Peters

IASLC ASSOCIATION FOR THE STUDY OF LUNG CANCER Conquering Thoracic Cancers Worldwide

JHH Thoracic Oncology Program

Julie R. Brahmer, MD Patrick M. Forde, MD Valsamo Anagnostou

JHH Bloomberg Kimmel Institute of Cancer Immunotherapy

Drew Pardoll, MD PhD Cynthia Sears, MD PhD Jiajia Zhang, MD MHS Laura Cappelli, MD MHS

Funding Sources

NIH KL2
Lung Cancer Foundation
of America
IASLC
Irish Cancer Society

