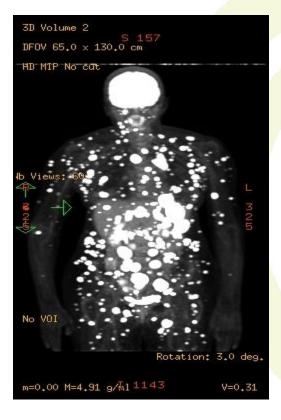
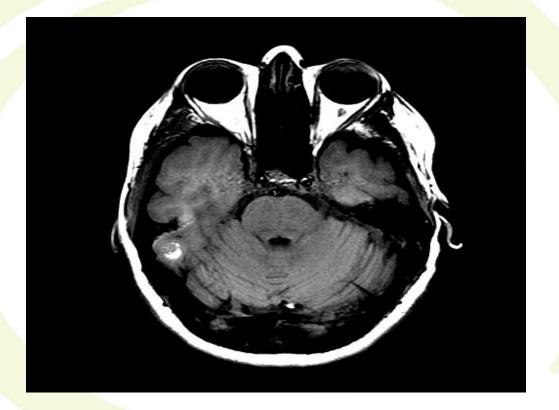


Immunotherapy for the Treatment of Melanoma

Igor Puzanov, M.D., M.S.C.I., F.A.C.P. Director, Early Phase Clinical Trials Program Roswell Park Comprehensive Cancer Center




Disclosures

- Consultant: Amgen, Roche, Nektar
- I will be discussing non-FDA approved indications during my presentation.

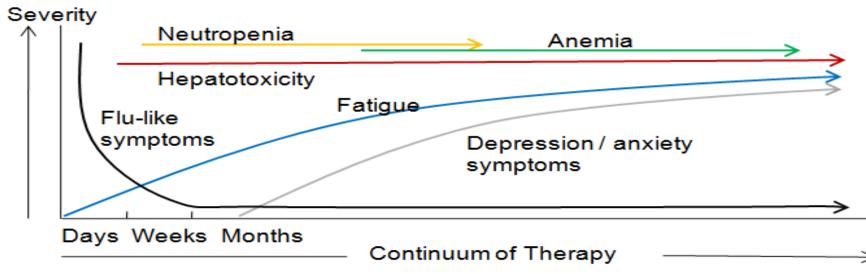
Types of Immunotherapies for Melanoma

- Cytokines
 - Interferon-α 2b- Adjuvant therapy
 - Interleukin-2- Stage IV
- Oncolytic Virus
 - Modified Herpes Virus (Talimogene Laharparepvec; TVEC)
- Checkpoint antibodies
 - Anti-CTLA4 (ipilimumab)
 - Anti-PD1 (pembrolizumab, nivolumab)
 - (Avelumab for Merkel cell carcinoma March 2017)

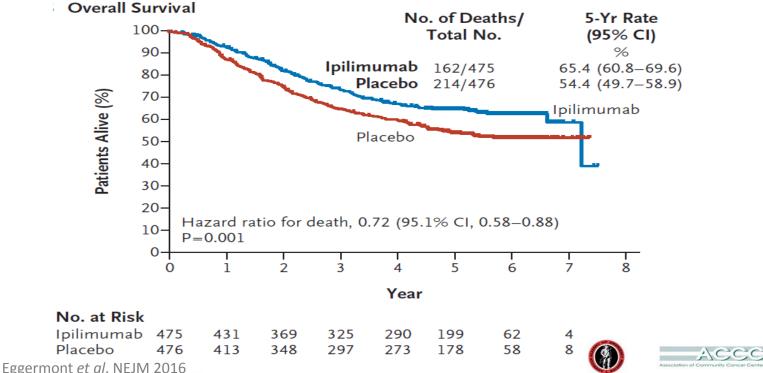
Adjuvant Therapy

Adjuvant Treatment of High-Risk Melanoma

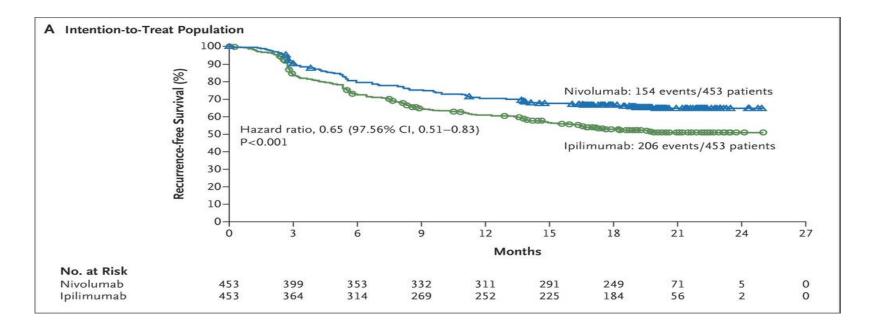
	HR	LL	UL	SE	Patients	Events (IFN/control))		
NCCTG (Creagan, 1995)	0.90	0.64	1.25	0.17	264	68/72			
E1684 (Kirkwood, 1996)	0.73	0.54	0.99	0.15	287	81/90		_	
FCGM (Grob, 1998)	0.70	0.49	0.98	0.17	499	59/76	←		
E1690 (Kirkwood, 2000)	0.98	0.76	1.24	0.12	642	194/186		₫	
SMG (Cameron, 2001)	0.86	0.54	1.35	0.23	96	31/36			
E1694 (Kirkwood, 2001)	0.72	0.52	0.99	0.16	880	52/81		_	
WHO (Cascinelli, 2001)	0.95	0.76	1.20	0.12	444	146/138			
UKCCCR (Hancock, 2004)	0.94	0.74	1.17	0.12	674	151/156	—		
EORTC18871 (Kleeberg, 2004)	0.98	0.77	1.23	0.12	484	137/202			
EORTC18952 (Eggermont, 2005)	0.91	0.76	1.07	0.09	1388	534/292		₩ −	
DeCOG (Garbe, 2008)	0.62	0.44	0.86	0.17	296	65/88		-	
EORTC18991 (Eggermont, 2008)	1.00	0.84	1.18	0.09	1256	256/257			
	0.89	0.83	0.96	0.04			•	▶	
							0.5	1	2
							Favors IFN	Favors co	ontrol


Mocellin et al. JNCI. 2010

Toxicity of Adjuvant Interferon- α

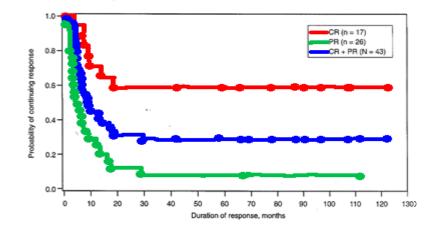


http://www.sinobiological.com/Interferon-Side-Effects-a-6085.html


Adjuvant Ipilimumab in High-Risk Melanoma

Adjuvant nivolumab vs ipilimumab in High-Risk Melanoma

Systemic Therapy/Injectables

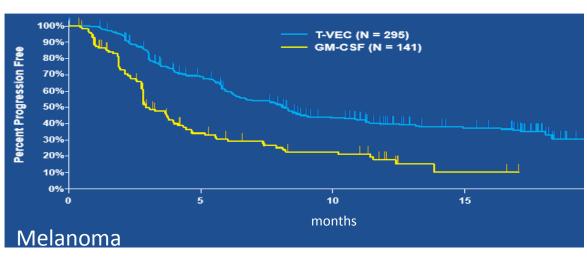


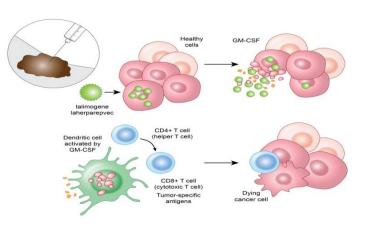
High Dose Interleukin-2 Therapy (HD IL-2) : Durable Responses

- HD IL-2 produces durable responses in 6%-10% of patients with advanced melanoma
- Few relapses in patients responding for over 2.5 years (cured?)
- FDA approval for melanoma in 1998
- High toxicity

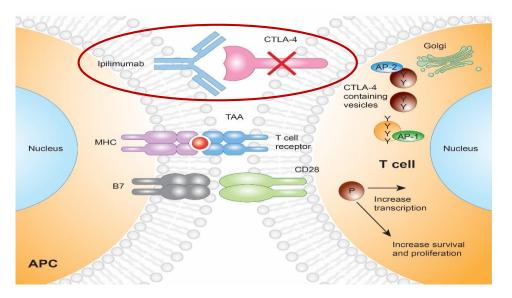
Atkins et al. J Clin Oncol. 1999 © 2017 Society for Immunotherapy of Cancer

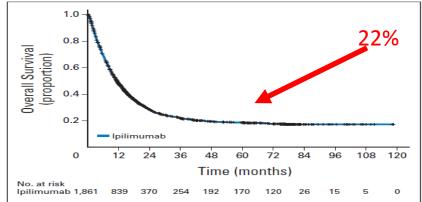
Atkins et al. J Clin Oncol. 1999





Phase III Trial of T-VEC vs GM-CSF PFS per Investigator

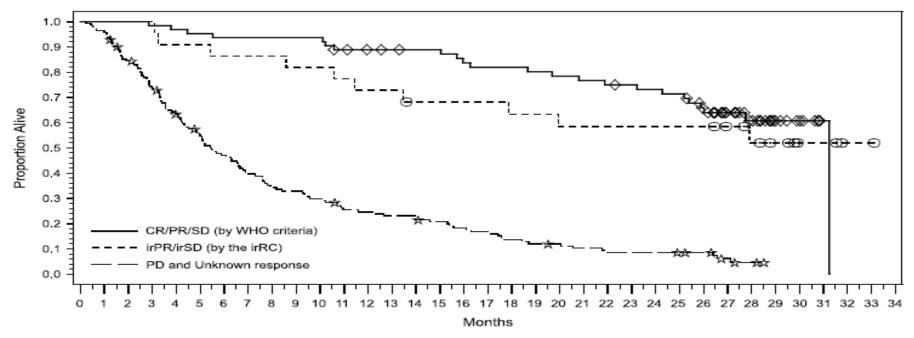




Andtbacks et al. ASCO 2013; LBA9008 © 2017 Society for Immunotherapy of Cancer

Ipilimumab & Immune Check-Point Blockade

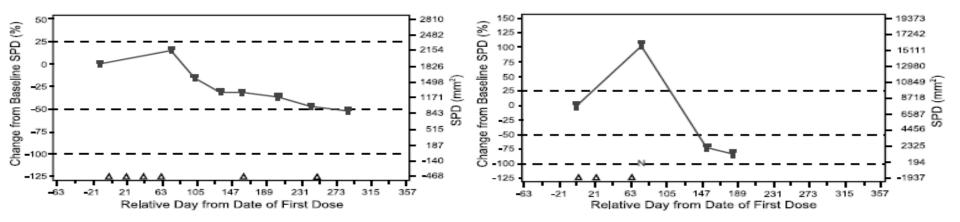
Luke et al, Oncologist 2013 Schadendorf et al, J Clin Oncol 2015 © 2017 Society for Immunotherapy of Cancer



Immune Related Response Criteria

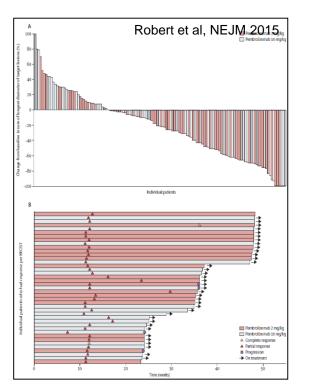
sitc

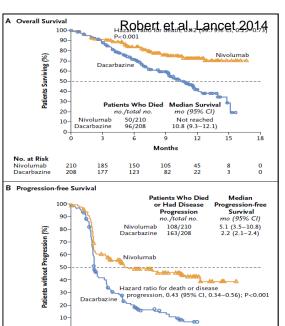
Society for Immunotherapy of Cance


ACC

Wolchok et al. Clin Can Res 2009

Immune Related Response Criteria


Wolchok et al. Clin Can Res 2009



Anti-PD1 in Melanoma

Anti-PD1 (pembrolizumab) *after* ipilimumab

Front-line anti-PD1 (nivolumab) vs. DTIC in Melanoma^(BRAF WT)

12

Months

57

12

No. at Risk

Nivolumab

Dacarbazine

210

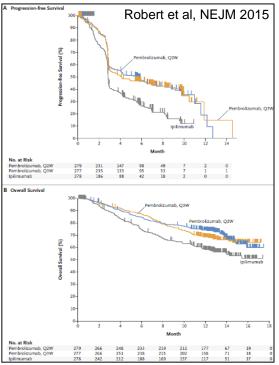
208

116

74

82

28


15

18

0

ō

Front-line anti-PD1 (pembrolizumab) vs. ipilimumab

Case #1: stage III→stage IV-M1a

TL, male patient in 30s

- Therapeutic lymph node dissection of left inguinal node on 1/2017 revealed 3+ stage III melanoma of unknown primary origin
 - Randomized to pembrolizumab on SWOG-1404 adjuvant trial
 - 6 cycles: no significant irAEs
- Relapse in L neck and R back soft tissue

Case #1: stage IV-M1a Oligometastatic M1a BRAFwt on adjuvant pembrolizumab

- Systemic therapy
 - Nivolumab
 - Pembrolizumab
 - Ipilimumab 3 mg/kg x 4
 - Nivolumab plus Ipilimumab
 - Targeted Rx based on nextgeneration sequencing
 - High-dose IL-2

- Lesional therapy
 - Talimogene laherparepvec
 - Radiotherapy

Best Therapies → Clinical Trials

- Tumor-infiltrating lymphocytes (TILs)
- Neoantigen vaccines
- Oncolytic virotherapy
- New/improved immune checkpoint blockers w/immunomodulators
 - of resistance (indoleamine dioxygenase inhibitors)
 - agonistic costimulatory antibodies (CD137, OX40)
 - hypofractionated or stereotactic radiotherapy
- Molecularly-focused treatment paradigms—all immunomodulatory
 - Metabolic reprogramming
 - Next generation sequencing→molecular drivers and/or modifiers

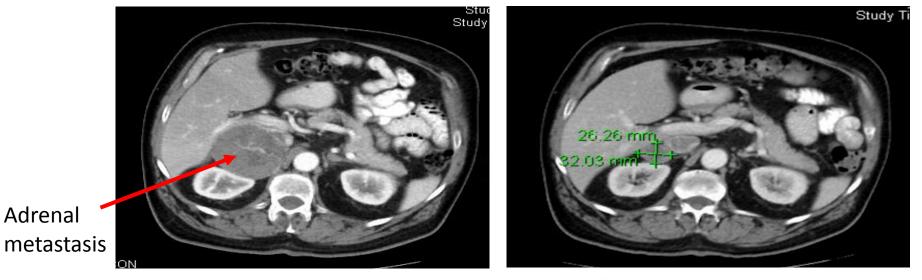
Case #2: same as #1, but BRAF^{V600}

Additional decision needed: MAPK inhibitor timing and choice

How I treated patient:

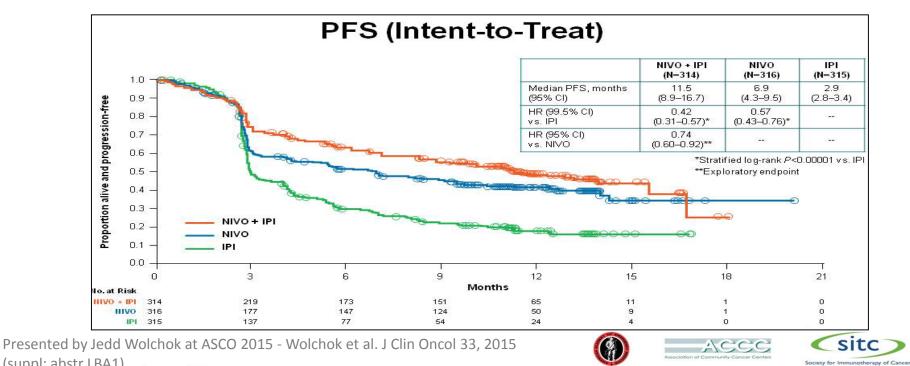
- Resected, sent tumor for research studies of tumor microenvironment
- Margins + at muscle—did not send for resection
- Ipilimumab at "adjuvant" dose of 10mg/kg with maintenance

Case #2: metastatic melanoma BRAFm from unknown primary


RN, male patient in 50s

- Presented 8/2015 with pleuropulmonary disease symptoms and large R adrenal BRAF^{V600E} metastasis
- Initial Therapy:
 - Dabrafenib and trametinib
 - Near CR x 18 months
 - Tolerated therapy with minimal side effects—mainly peripheral edema
- Progression in R adrenal but controlled in lung; new small asymptomatic brain metastasis
- Checkmate 209204
 - Nivolumab plus ipilimumab for metastatic melanoma to brain

Therapeutic effect—representative images (also had small brain metastasis \rightarrow CR)


Ipilumamab:

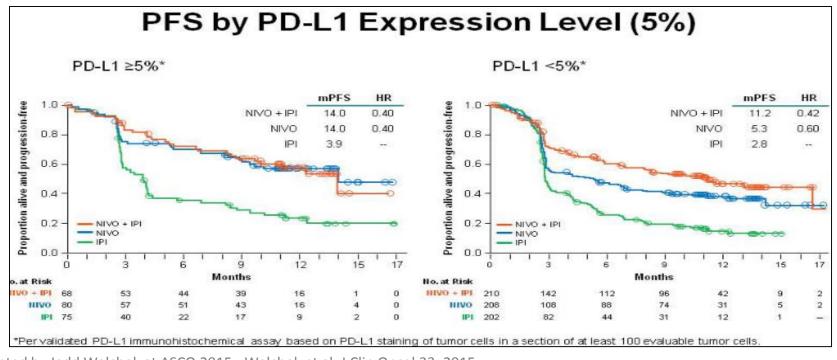
- CTLA-4

Nivolumab:

PD-1

Ipi+Nivo vs. Ipi or Nivo vs. Ipi in Melanoma

(suppl: abstr LBA1) 2017 Society for Immunotherapy of Cancer



Nivolumab:

PD-1

Ipi+Nivo vs. Ipi or Nivo vs. Ipi in Melanoma

Presented by Jedd Wolchok at ASCO 2015 - Wolchok et al. J Clin Oncol 33, 2015 (suppl: abstr LBA1)

Ipilumamab:

CTLA-4

PD-1

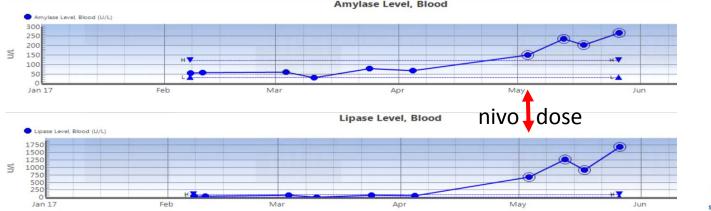
Ipi+Nivo vs. Ipi or Nivo vs. Ipi in Melanoma

	NIVO + IF	YI (N=313)	NIVO (N=313)		IPI (N=311)	
Patients Reporting Event, %	Any Grade	Grade 3–4	Any Grade	Grade 3–4	Any Grade	Grade 3–4
Treatment-related adverse event (AE)	95.5	55.0	82.1	16.3	86.2	27.3
Treatment-related AE leading to discontinuation	36.4	29.4	7.7	5.1	14.8	13.2
Treatment-related death*	0		0.3		0.3	

Presented by Jedd Wolchok at ASCO 2015 - Wolchok et al. J Clin Oncol 33, 2015 (suppl: abstr LBA1)

Case #2: Questions raised

- 1. Was it appropriate to start with MAPKi? <u>Unknown</u>
- 2. Should he have received combination with immunotherapy Unknown
- 3. Is it best to switch to immunotherapy early, or at best response to MAPKi? <u>UNKNOWN</u>
- 4. Why did he have such a sustained response to MAPKi? <u>Immunomodulation?</u>
- 5. Is nivolumab plus ipilimumab the optimal immunotherapy in June 2017? PROBABLY
- 6. Should PD-L1 expression have been checked? <u>Maybe...but many issues remain</u>
- 7. How long to continue Rx? <u>UNKNOWN/1 yr?</u>



Diarrhea from ipilimumab/nivolumab combination responded to steroid; Ipilimumab dropped after 2 cycles, in part because pt was traveling to Poland (QoL)

Nivolumab dosed at 1 mg/kg in cycles 3 and 4—should it have been increased?

Pt developed chemical pancreatitis, initially without Sx, now with mild abdominal pain—enzymes rising despite skipping last dose nivolumab→steroid? [US not diagnostic, CT is negative, pt continues to work, eat, perform ADLs normally

ADVANCES IN Cancer Introverall Response Rate in Patient Subgroups

	ORR (Patients)		Unweighted ORR difference vs IPI	
Total population	57.6% (314)		38.6 (31.3-45.2)	
BRAF	43.7% (316)		24.6 (17.5-31.4)	
DKAP	53 3% (212)		35.6 (26.8-43.6)	
same silber	46.8% (218)		29.1 (20.5-37.1)	
	66.7% (102)		44.7 (31.5-55.6)	
Mutant	36.7% (98)		14.7 (2.0-26.8)	
M Stage		!		
M1c	51.4% (185)		36.5 (27.3-44.9)	
11122	38.6% (184)		23.8 (14.9-32.2)	
Baseline LDH				
≤ULN	65.3% (199)		40.6 (31.1-48.9)	
2000	51.5% (196)	_	26.8 (17.3-35.6)	
>ULN	44.7% (114)		35.2 (24.1-45.2)	
	07.01 (07)		20.0 (10.0-50.7)	
>2× ULN	37.8% (37)		37.8 (20.0-53.9)	
	21.6% (37)		21.6 (6.3-37.2)	_
	57.4% (94)		39.5 (25.8-51.0)	
≥65 and <75	48 1% (79)		30.1 (16.0-42.8)	
≥75	54.3% (35)		27.0 (5.3-45.8)	
2/5	43.6% (39)		- 16.3 (-4.1-35.2)	_
		NIVO or NIVO+IPI better	IPI better	NIVO+I

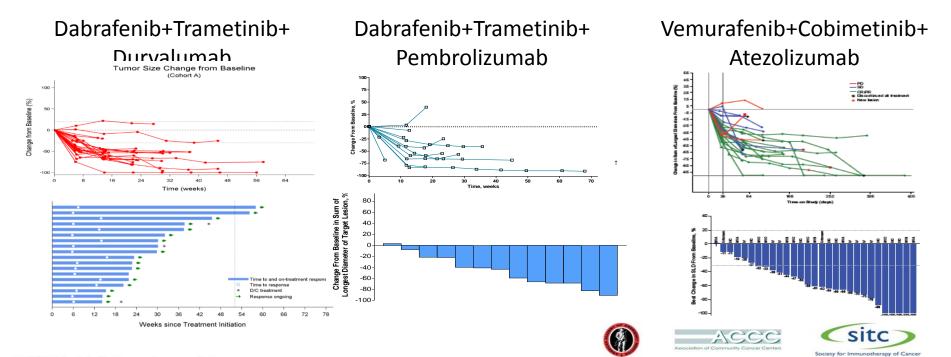
Society for Immunotherapy of Cancer

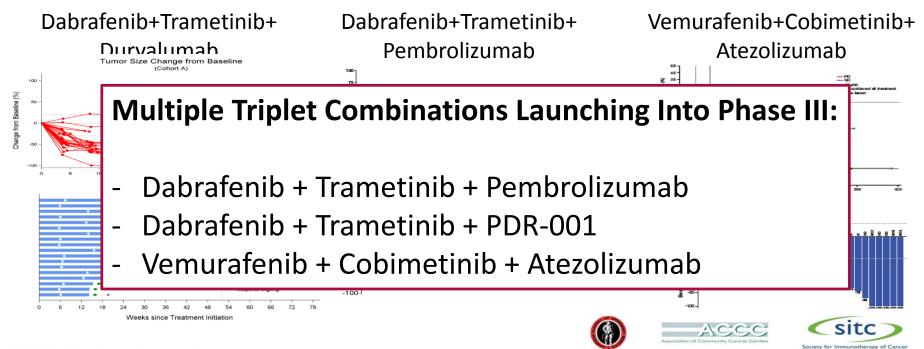
NIVO

ACCC

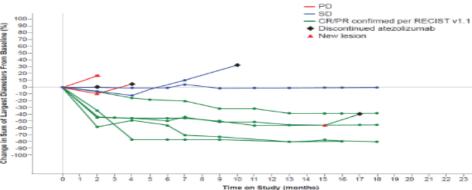
On-Going Phase III Trials in Melanoma

- BRAFi + MEKi + anti PD-(L)1
- MEKi + anti PD-(L)1
- Indolamine Dioxygenase inhibitors (IDOi) + anti PD-(L)1
- Talimogene laharparepvec (TVEC) + anti **PD(L)1**



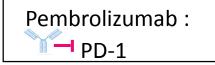


Target-Immuno Triplets: BRAF + MEK + PD1/L1


Target-Immuno Triplets: BRAF + MEK + PD1/L1

MEK inhibitor + PDL-1 for BRAFwt Melanoma Phase I Cobimetinib + Atezolizumab

BRAF WT (n = 10)

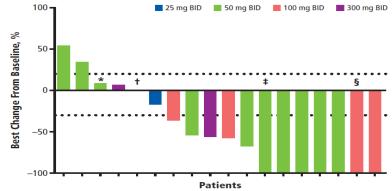


Median safety follow-up, mo (range) 14.0 mo (2.4-20.2) All grade treatment-related AEs 22 (100%) Grade 3-4 treatment-related AEs 13 (59%) Grade 3-4 atezolizumab-related AEs 8 (36%) Grade 3-4 cobimetinib-related AEs 10 (45%) AEs leading to treatment dose modification/interruption 14 (64%) Treatment-related SAEs^a 4 (18%) Treatment discontinuation^b 3 (14%) Cobimetinib discontinuation 3 (14%) All treatment discontinuation 1 (5%)

Phase III Study of Cobimetinib + Atezolizumab versus Pembrolizumab in Patients with Untreated BRAFV600 Wild-Type Melanoma

PROTOCOL NUMBER: CO39722

N = 22, n (%)


IDO inhibitor epacadostat + pembrolizumab

Indoleamine Dioxygenase-1 (IDO1)
 IDO1 is a heme-containing monomeric oxidoreductase that metabolizes tryptophan to kynurenine
L-Tryptophan Tryptophan Hydroxylas

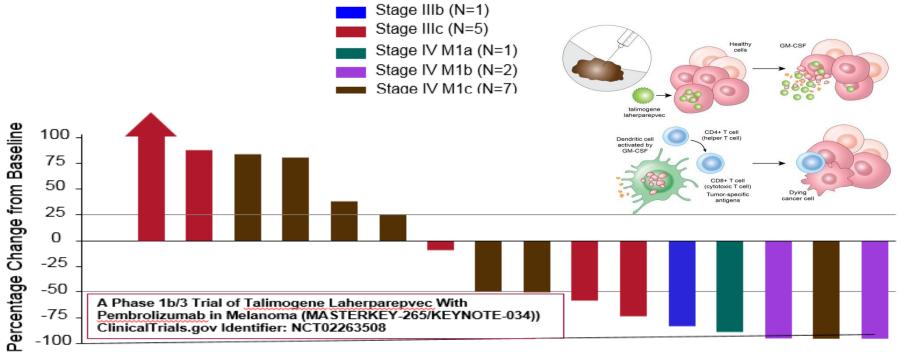
A Phase 3 Study of Pembrolizumab + Epacadostat or Placebo in Subjects With Unresectable or Metastatic Melanoma (Keynote-252 / ECHO-301) ClinicalTrials.gov Identifier: NCT02752074

Phase 1/2 Study of **Epacadostat** (INCB024360) + **Pembrolizumab** in

Patients With Melanoma

RECIST response = 58%, no increase in toxicity from pembrolizumab alone

Beatty et al. ASCO (2012) Abstract 2500[^] Gangadhar et al. ESMO 2016



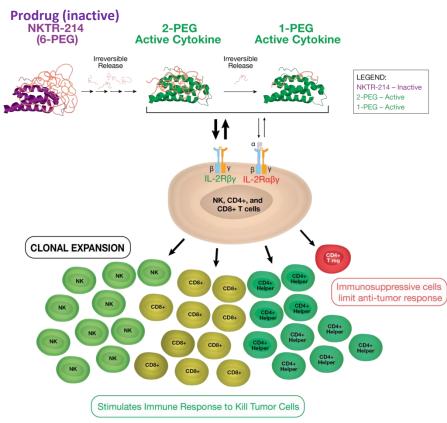
T-Vec + Pembrolizumab in Stage IIIB-IV Melanoma

RECIST response = 46%, no increase in toxicity from pembrolizumab alone

Long et al. SMR 2015 © 2017 Society for Immunotherapy of Cancer

Future Combinations

SITC

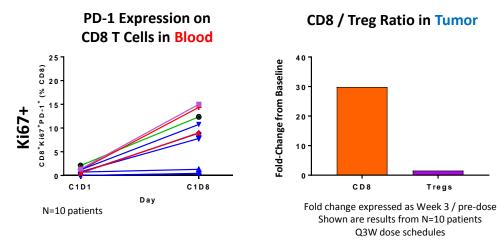

Pivot-02: Preliminary safety, efficacy and biomarker results from dose escalation of the Phase 1/2 study of CD-122-biased agonist NKTR-214 plus nivolumab in patients with locally advanced/metastatic melanoma, renal cell carcinoma and non-small cell lung cancer

ClinicalTrials.gov Identifier: NCT02983045

Adi Diab¹, Nizar Tannir¹, Daniel Cho², Vali Papadimitrakopoulou¹, Chantale Bernatchez¹, Cara Haymaker¹, Salah Eddine Bentebibel¹, Brendan Curti³, Michael Wong¹, Scott Tykodi⁴, Igor Puzanov⁵, Ira Smalberg⁵, Ivan Gergel⁶, Mary Tagliaferri⁶, Jonathan Zalevsky⁶, Ute Hoch⁶, Sandra Aung⁶, Michael Imperiale⁶, Wendy Clemens⁷, Harriet Kluger⁸, Michael Hurwitz⁸, Patrick Hwu¹, Mario Sznol⁸

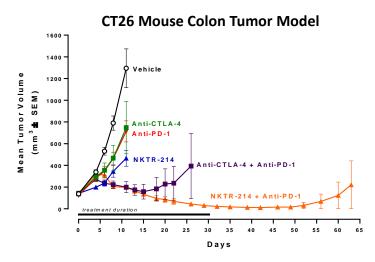
¹The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²NYU Medical Oncology Associates, New York, NY; ³Providence Cancer Center and Earle A. Chiles Research Institute, Portland, OR, USA; ⁴University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ⁵Roswell Park Cancer Institute, Buffalo, NY, USA; ⁶Nektar Therapeutics, San Francisco, CA, USA; ⁷Bristol-Myers Squibb, New York, NY, USA; ⁸Yale School of Medicine, New Haven, CT, USA

NKTR-214 Background: Harnessing the IL-2 Pathway to Increase TILs



- NKTR-214 prodrug design with sustained signaling
- Q2W or Q3W Dosing
- Mitigation of rapid immune stimulation to achieve safe, outpatient regimen
- Biased signaling preferentially activates and expands effector T cells and NK cells over Tregs in the tumor microenvironment
- Increases proliferation of TILs and PD-1 expression on effector T cells in the tumor microenvironment

Clinical and Preclinical Rationale for Combination of NKTR-214 + Anti-PD-1


.

NKTR-214 Monotherapy Clinical Trial²

- Blood: Increase in newly proliferating (Ki67+) PD-1+ CD8 T cells
- Tumor: Increase in total T cells, NK and CD8+ T cells with no increase in Tregs, increase in newly proliferating (Ki67+) PD-1+ CD8 T cells

NKTR-214 + Anti-PD-1 Preclinical Data¹

NKTR-214 dosed 0.8 mg/kg q9dx3, anti-PD-1 or anti-CTLA-4 dosed 200ug or 100ug 2x/week respectively.

PIVOT-02 Dose Escalation

Patients

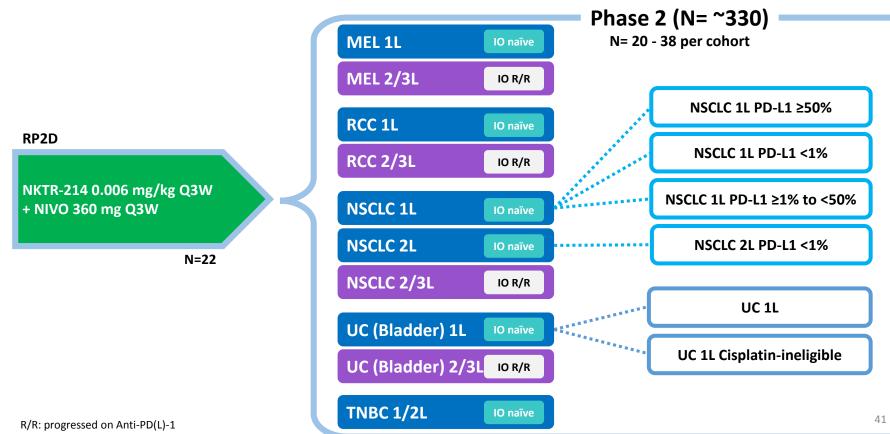
IO Treatment-Naïve

Phase 1b (N=38) NKTR-214 0.006 mg/kg Q3W NIVO 240 mg Q2W N= • MEL 1L (with known BRAF status) (N=11) RP2D 4 NKTR-214 0.003 mg/kg Q2W • NSCLC 1L, 2L (EGFR & ALK WT) (N=5) NKTR-214 0.006 mg/kg Q3W + NIVO 360 mg Q3W NIVO 240 mg Q2W N=3 N=22 NKTR-214 0.006 mg/kg Q2W MAD NIVO 240 mg Q2W N= 3 NKTR-214 0.009 mg/kg Q3W NKTR-214 0.006 mg/kg Q3W + NIVO 360 mg Q3W N= N= NIVO 360 mg Q3W 3

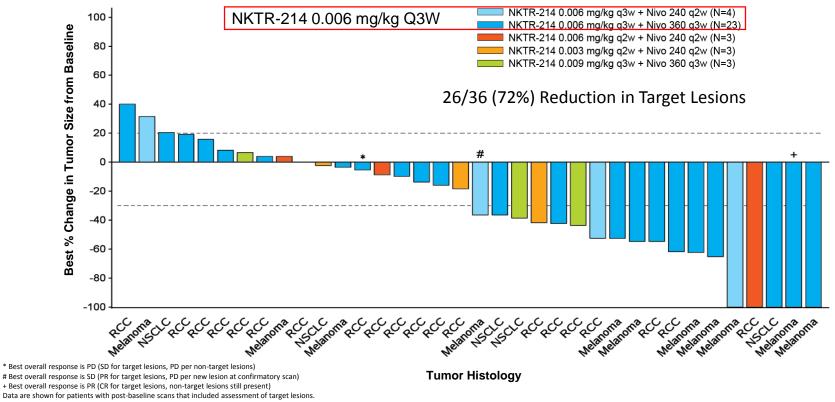
3

40

Dose Limiting Toxicities (N=2)


• Confirmed locally advanced or metastatic solid tumors

- Measurable disease per RECIST 1.1
- FCOG 0 or 1


• RCC 1L, 2L (N=22)

- Adequate organ function
- Fresh biopsy and archival tissue

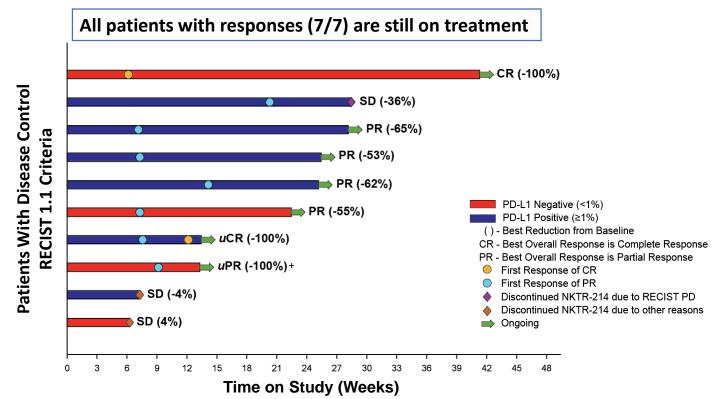
PIVOT-02 Dose Expansion Underway in 13 Cohorts

PIVOT-02: Best Percent Change in Target Lesions by Tumor Type and Dose (n=36)

42

Two patients not included in the figure: one patient discontinued from study due to clinical progression before the first post-baseline tumor assessment and one patient on treatment does not have a post-baseline scan.

Stage IV Treatment-Naïve Melanoma Patients (N=11)

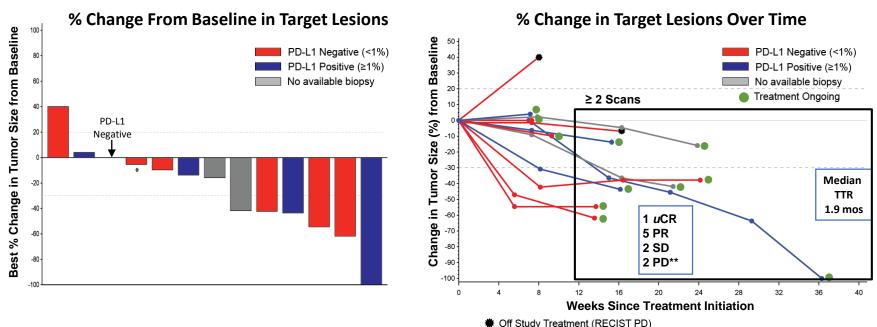

Best Overall Response by RECIST*: ORR=7/11 (64%); DCR=10/11 (91%) Best Overall Response by irRECIST: ORR=8/11 (73%); DCR=10/11 (91%)

% Change From Baseline in Target Lesions % Change in Target Lesions Over Time 100 100 Best % Change in Tumor Size from Baseline Change in Tumor Size (%) from Baseline PD-L1 Negative (<1%) 80 PD-L1 Negative (<1%) 80 PD-L1 Positive (≥1%) PD-L1 Positive (≥1%) 60 60 Treatment Ongoing 40 20 20 --20 -20 Median -40 TTR -40 1.7 mos -60 -60 -80 -80 -100 -100 Ω 12 16 20 24 28 32 36 Weeks Since Treatment Initiation Off Study Treatment (RECIST PD) ★ Off Study Treatment (Other)

Horizontal dotted lines indicate the thresholds for PD and response according to RECIST (version 1.1) criteria. # Best Overall Response is SD (PR for target lesions, PD per new lesion on confirmatory scan) + Best Overall response is PR (CR for target lesions, non-target lesions still present) *One patient in ORR calculation has unconfirmed PR.

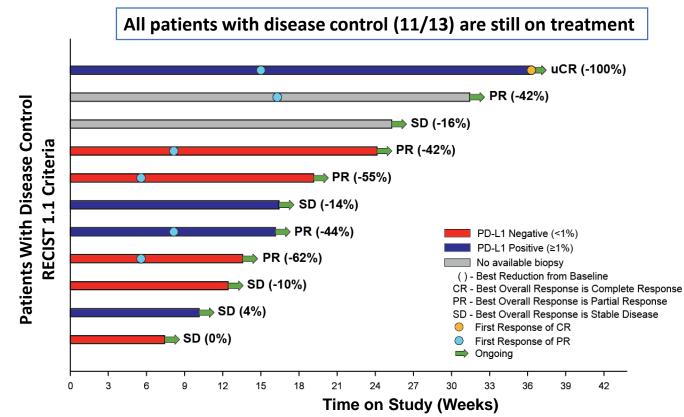
Time to and Duration of Response

Stage IV Treatment-Naïve Melanoma

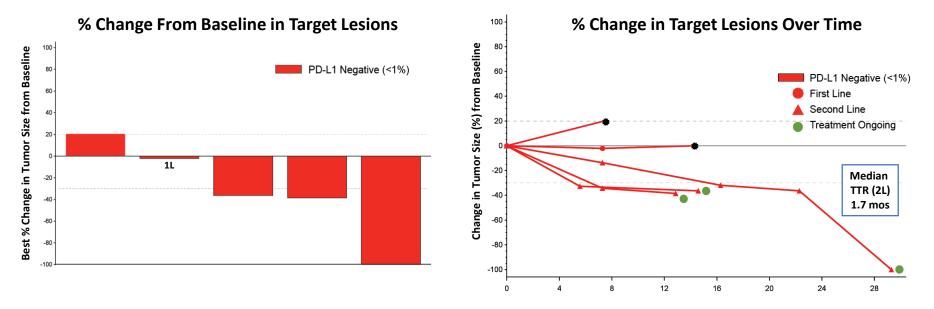


Stage IV Treatment-Naïve 1L Renal Cell Carcinoma (N=13) Efficacy-evaluable patients with ≥1 or ≥2 post baseline scans

Best ORR by RECIST ≥1 post baseline scan: ORR=6/13 (46%); DCR=11/13 (85%) % Change From Baseline in Target Lesions % Change in Target Lesions Over Time Best % Change in Tumor Size from Baseline 100 -Tumor Size (%) from Baseline 50 -PD-L1 Negative (<1%) PD-L1 Negative (<1%) 80 -40 -PD-L1 Positive (≥1%) PD-L1 Positive (≥1%) 30 60 No available biopsy No available biopsy 20 Treatment Ongoing 10 40 PD-L1 20 Negative -20 -30 Median -20 -40 TTR -50 -40 1.9 mos Change in -60 -70 -60 -80 -80 -90 -100 -100 20 24 0 4 12 16 28 32 36 40 Weeks Since Treatment Initiation Off Study Treatment (RECIST PD)


Stage IV Treatment-Naïve 1L Renal Cell Carcinoma (N=13) Efficacy-evaluable patients with ≥1 or ≥2 post baseline scans

Best ORR by RECIST ≥1 post baseline scan: ORR=6/13 (46%); DCR=11/13 (85%) Best ORR by RECIST ≥2 post baseline scans: ORR=6/10 (60%); DCR=8/10 (80%)


Time to and Duration of Response

Stage IV Treatment-Naïve Renal Cell Carcinoma 1L (CR, PR or SD)

Stage IV IO-Naïve PD-L1 Negative NSCLC (1L and 2L)

Best Overall Response by RECIST (2L): ORR=3/4 (75%); DCR=3/4 (75%) Best Overall Response by RECIST (1L and 2L): ORR=3/5 (60%); DCR=3/5 (60%)

Weeks Since Treatment Initiation

Horizontal dotted lines indicate the thresholds for PD and response according to RECIST (version 1.1) criteria.

Best Overall Response by RECIST 1.1 as of November 2, 2017

Patients	Stage IV Treatment- Naïve Melanoma (N=11)	Stage IV Treatment-Naïve 1L RCC (N=14)				
		Patients with at least one or more scans	Patients with at least two or more scans or PD**	2L RCC (N=8)	1L NSCLC (N=1)	2L NSCLC (N=4)
Total Evaluable	11	13	10	7	1	4
ORR (CR+PR)	7 (64%) +	6 (46%)	6 (60%)	1 (14%)	0 (0)	3 (75%)
CR	2 (18%)	1 (8%)#	1 (10%)#	0	0	1 (25%)#
PR	5 (45%)	5 (38%)	5 (50%)	1 (14%)	0	2 (50%)
SD	3 (27%)	5 (38%)	2 (20%)	6 (86%)	1 (100%)	0
DCR (CR+PR+SD)	10 (91%)	11 (85%)	8 (80%)	7 (100%)	1 (100%)	3 (75%)
PD	1	2	2	0	0	1

CR, complete response; DCR, disease control rate; ORR, objective response rate; PR, partial response; PD, progressive disease; SD, stable disease

+ CR is waiting to be confirmed for 1 of 2 patients with CR; one patient in calculation has uPR.

PR for patient confirmed. CR is waiting to be confirmed.

** Patients with at least 2 post-baseline scans or progressed on 1st post-baseline scan.

Treatment-Related AEs

Preferred Term ^[1]	Total (N=38)	NKTR-214 0.006 q3w + Nivo 360 (N=25)	NKTR-214 0.006 q3w + Nivo 240 (N=4)	NKTR -214 0.006 q2w + Nivo 240 (N=3)	NKTR-214 0.003 q2w + Nivo 240 (N=3)	NKTR-214 0.009 q3w + Nivo 360 (N=3)	
Grade 3 or 4	4 (10.5%)	1 (4.0%)	1 (25.0%)	0	0	2 (66.7%)	
Acidosis	1 (2.6%)	0	0	0	0	1 (33.3%)◊	
Arthralgia	1 (2.6%)	0	1 (25.0%)	0	0	0	
Diarrhea	1 (2.6%)	0	0	0	0	1 (33.3%)◊	
Hyperglycemia	1 (2.6%)	0	0	0	0	1 (33.3%)◊	
Hyperthyroidism	1 (2.6%)	0	0	0	0	1 (33.3%)◊	
Hyponatraemia	1 (2.6%)	1 (4.0%)	0	0	0	0	
Hypotension	1 (2.6%)	0	0	0	0	1 (33.3%)	
Syncope	1 (2.6%)	1 (4.0%)	0	0	0	0	
Grade 1&2 (>25%)							i I
Fatigue	28 (73.7%)	17 (68.0%)	4 (100.0%)	2 (66.7%)	3 (100.0%)	2 (66.7%)	I
Flu Like Symptoms**	26 (68.4%)	15 (60.0%)	3 (75.0%)	3 (100.0%)	2 (66.7%)	3 (100.0%)	
Rash*	23 (60.5%)	13 (52.0%)	4 (100.0%)	1 (33.3%)	2 (66.7%)	3 (100.0%)	1
Pruritus	16 (42.1%)	8 (32.0%)	2 (50.0%)	2 (66.7%)	2 (66.7%)	2 (66.7%)	1
Headache	14 (36.8%)	8 (32.0%)	3 (75.0%)	1 (33.3%)	1 (33.3%)	1 (33.3%)	
Nausea	14 (36.8%)	8 (32.0%)	3 (75.0%)	1 (33.3%)	0	2 (66.7%)	
Diarrhea	12 (31.6%)	8 (32.0%)	2 (50.0%)	0	1 (33.3%)	1 (33.3%)	
Arthralgia	11 (28.9%)	6 (24.0%)	3 (75.0%)	1 (33.3%)	0	1 (33.3%)	
) Palizeciaeased Appetriteunde	each 1 0f (261.32%) using	highest g Bad(e12.0%)	3 (75.0%)	2 (66.7%)	0	2 (66.7%)	

 No study discontinuations due to TRAEs

- No treatmentrelated deaths
- No G3/4
 immunemediated AEs at
 RP2D and lower

*Rash includes the following MedDRA preferred terms: Rash, rash erythematous, rash macular and rash maculo-popular; ** Fiu-like symptoms includes the following MedDRA preferred terms: influenza-like illness, pyrexia, and chills. ◊ AEs occurred in same patient, patient was dose reduced to NKTR-214 0.003 mg/kg + nivo 360 mg q3w and patient continues on treatment with ongoing confirmed PR

Conclusions

- Immunotherapy is standard of care in melanoma
- Likely first and second line in most patients
- Understanding mechanisms of action important
- Manage side effects, understand long-term benefit
- Immunotherapy combinations are likely the future for melanoma and likely all cancers!

