

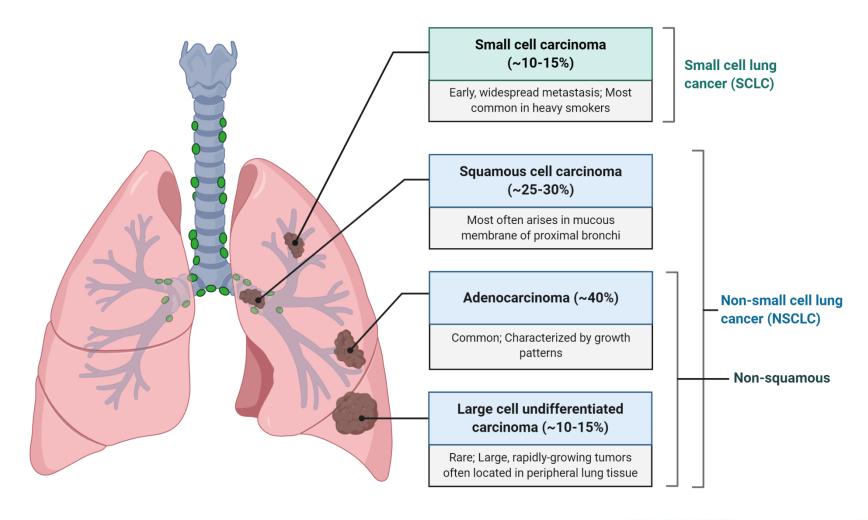
Immunotherapy for the Treatment of Lung Cancer

Liza C. Villaruz, MD

Associate Professor of Medicine
UPMC Hillman Cancer Center

Disclosures

- Contracted Research: Genentech, Astrazeneca, Exelixis, Rain, BMS, GSK
- I will be discussing non-FDA approved indications during my presentation.



Lung cancer

Treatment options for NSCLC

Local disease

- Surgery
- Stereotactic body radiation therapy
- Chemotherapy

Stage III unresectable disease

- Concurrent chemo-radiation
- Immunotherapy

Metastatic disease

- Chemotherapy
- Targeted therapies
- Immunotherapy
- Radiation therapy

Metastatic NSCLC treatment options overview

Drug type	Molecular format	Administration route	Example for NSCLC	Typical dosing regimen
Chemotherapy	Small molecule	Intravenous, occasionally oral	Nab-paclitaxel	100 mg/m ² on days 1, 8, 15 of 21-day cycle
Targeted therapy	Small molecule	Oral	Osimertinib (kinase inhibitor)	80 mg tablet once a day
Targeted antibody therapy	Antibody	Intravenous	Bevacizumab (VEGF-A inhibitor)	15 mg/kg Q3W
Immune checkpoint inhibitor	Antibody	Intravenous	Pembrolizumab (PD-1 inhibitor)	200 mg Q3W or 400 mg Q6W

Immune checkpoint inhibitors in lung cancer

Nivolumab

___ PD-1

Pembrolizumab

Atezolizumab

PD-L1

Durvalumab

PD-L1

Ipilimumab

CTLA-4

2016

Pembrolizumab: 1st line NSCLC $(PD-L1 \ge 50\%)$

2nd line NSCLC (PD-L1 ≥ 1%)

Atezolizumab:

2017

Pembrolizumab + Pemetrexed + Carboplatin: 1st line NSCLC

2018

Durvalumab: Stage III NSCLC (unresectable) s/p chemoradiation w/o 1st line PD-L1+ Stage progression

Nivolumab: 3rd line SCLC

Pembrolizumab + Carboplatin + (nab) Paclitaxel: 1st line Sq NSCLC

Atezolizumab + Bevacizumab + Carboplatin + Paclitaxel: 1st line Non-Sq NSCLC

2019

Atezolizumab + Etoposide/Platinum: 1st line ES-SCLC

Pembrolizumab: III NSCLC

Pembrolizumab: 3rd-line ES-SCLC

Durvalumab +

2020

Etoposide/Platinum: 1st line ES-SCLC

Nivolumab + ipilimumab: 1st line metastatic NSCLC with PD-L1 ≥1% and no EGFR/ALK mutations

Atezolizumab: 1st line metastatic NSCLC with PD-L1 ≥50% and no EGFR/ALK mutations

Nivolumab + ipilimumab + chemotherapy: 1st line NSCLC with no EGFR/ALK mutations

2015

NSCLC

Nivolumab:

Nivolumab:

2nd line Non-Sq

Pembrolizumab:

2nd line NSCLC

 $(PD-L1 \ge 50\%)$

2nd line Sq NSCLC

Pembrolizumab:

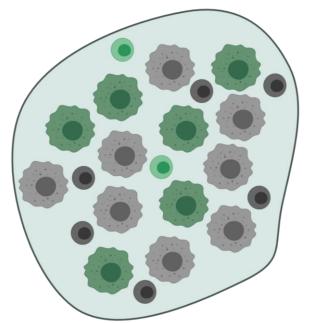
2nd line NSCLC

Outline

- Non-small cell lung cancer
 - Front-line PD-L1-selected and unselected
 - Later lines of treatment
 - Stage III
- Small cell lung cancer
- Future directions for lung cancer immunotherapy

Immunotherapy for first-line treatment of metastatic NSCLC

Drug	Indication	Dose
Pembrolizumab	1 st line metastatic NSCLC with PD-L1 TPS ≥ 1% and no EGFR/ALK mutations	200 mg Q3W or 400 mg Q6W
Atezolizumab	1 st line metastatic NSCLC with PD-L1 ≥ 50% of tumor cells or ≥ 10% of immune cells with no EGFR/ALK mutations	840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W
Nivolumab + ipilimumab	1 st line metastatic NSCLC with PD-L1 ≥1% and no EGFR/ALK mutations	Nivolumab 3 mg/kg Q2W + ipilimumab 1 mg/kg Q6W
Nivolumab + ipilimumab + platinum- doublet chemotherapy	1st line metastatic NSCLC with no EGFR/ALK mutations	Nivolumab 360 mg Q3W + ipilimumab 1 mg/kg Q6W + 2 cycles of chemotherapy
Pembrolizumab + pemetrexed + platinum	1 st line metastatic non-squamous NSCLC with no EGFR/ALK mutations	200 mg Q3W or 400 mg Q6W
Pembrolizumab + carboplatin + paclitaxel/nab-paclitaxel	1 st line metastatic squamous NSCLC	200 mg Q3W or 400 mg Q6W
Atezolizumab + bevacizumab + paclitaxel + carboplatin	1 st line metastatic non-squamous NSCLC with no EGFR/ALK mutations	For 4-6 cycles: atezolizumab 1200 mg Q3W + chemotherapy + bevacizumab; Maintenance: 840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W
Atezolizumab + nab-paclitaxel + carboplatin	1 st line metastatic non-squamous NSCLC with no EGFR/ALK mutations	For 4-6 cycles: atezolizumab 1200 mg Q3W + chemotherapy Maintenance: 840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W



Brief aside: PD-L1 TPS vs CPS

$$TPS = \frac{\text{\# of PD-L1 positive tumor cells}}{number of viable tumor cells} \times 100$$

$$CPS = \frac{\# \ of \ PD-L1 \ positive \ cells \ (tumor \ cells, lymphocytes, macrophages)}{total \ number \ of \ tumor \ and \ immune \ cells} \times 100$$

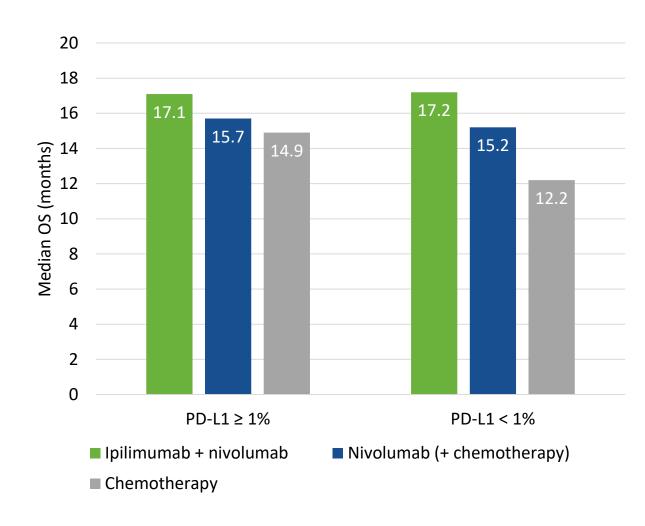
- PD-L1-positive immune cell
- PD-L1-negative immune cell
- PD-L1-positive tumor cell
- PD-L1-negative tumor cell

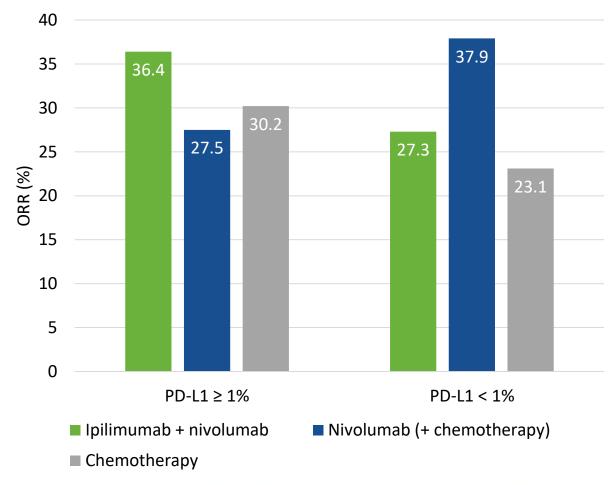
$$TPS = \frac{6 \text{ positive tumor cells}}{14 \text{ total tumor cells}} \times 100 = 43$$

$$CPS = \frac{6 \text{ positive tumor cells} + 2 \text{ positive immune cells}}{22 \text{ total cells}} \times 100 = 36$$

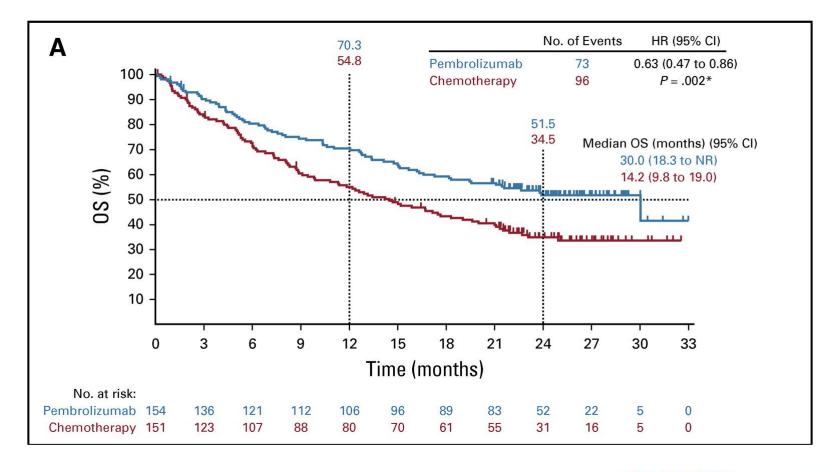
Treatment Naïve Regimens: Competing Strategies in NSCLC by biomarker status

PD-L1-selected	PD-L1-unselected
Nivolumab + ipilimumab CheckMate 227	Nivolumab + ipilimumab + platinum-doublet CheckMate 9LA
Pembrolizumab KEYNOTE-024, -042	Pembrolizumab + chemotherapy KEYNOTE-189, -407
Atezolizumab <i>IMpower110</i>	Atezolizumab + bevacizumab + chemotherapy IMpower150
	Atezolizumab + chemotherapy Impower130

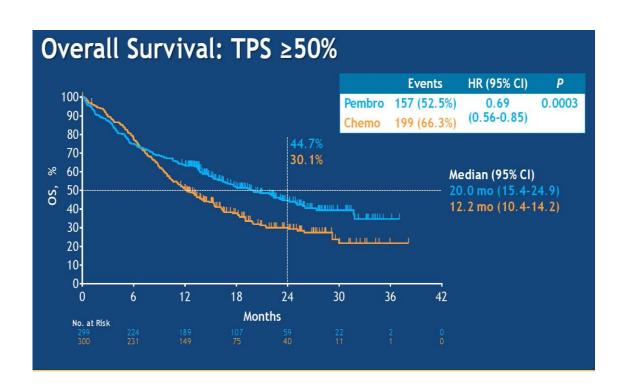


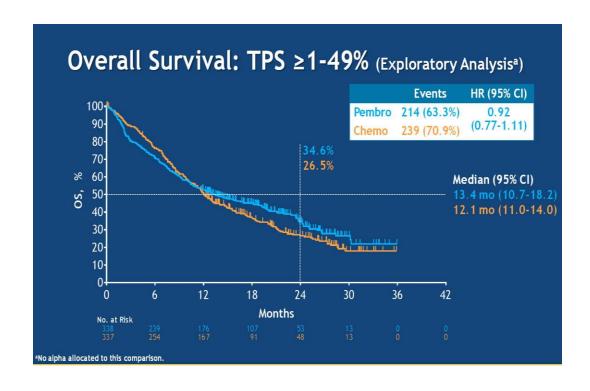


CheckMate 227: Ipilimumab + nivolumab vs chemotherapy for 1L NSCLC



KEYNOTE-024: Pembrolizumab vs. Chemotherapy for PD-L1 ≥ 50% NSCLC

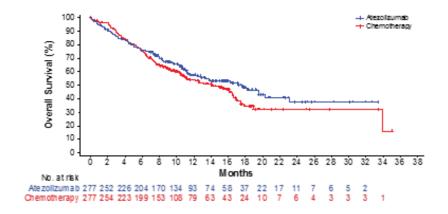




KEYNOTE-042: Pembrolizumab vs. Chemotherapy for PD-L1 ≥ 1% NSCLC

Survival benefit seemed to be driven by the TPS ≥ 50% subset with little benefit witnessed in the subset TPS = 1 - 49%




IMpower110: Atezolizumab vs chemotherapy in 1L NSCLC

SP142 (TC3 or IC3-WT)^a

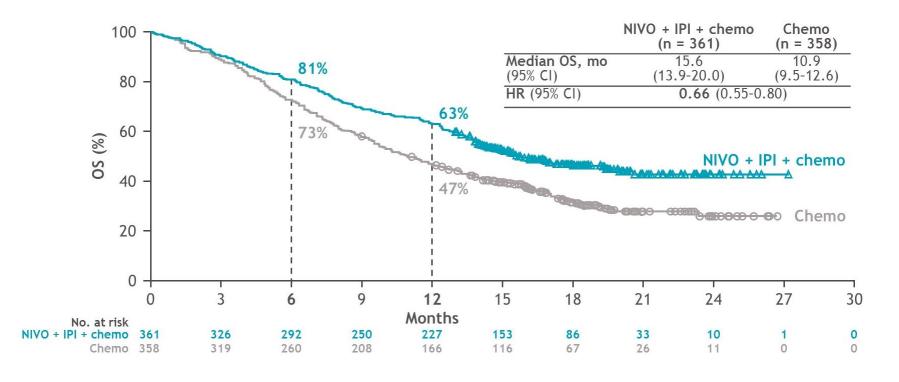
	Atezo (n = 107)	Chemo (n = 98)
mOS, mo	20.2	13.1
HR ^b (95% CI)	0. ((0.40,	

SP142 (TC1/2/3 or IC1/2/3-WT)^a

	Atezo (n = 277)	Chemo (n = 277)
mOS, mo	17.5	14.1
HR⁵	0.83	
(95% CI)	(0.65, 1.07)	

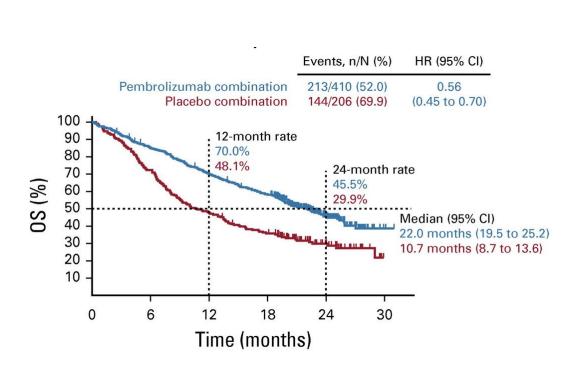
TC3	TC ≥ 50% IC ≥ 10%
TC2/3	TC ≥ 5%
IC2/3	IC ≥ 5%
TC1/2/3	TC ≥1%
IC1/2/3	IC <u>></u> 1%

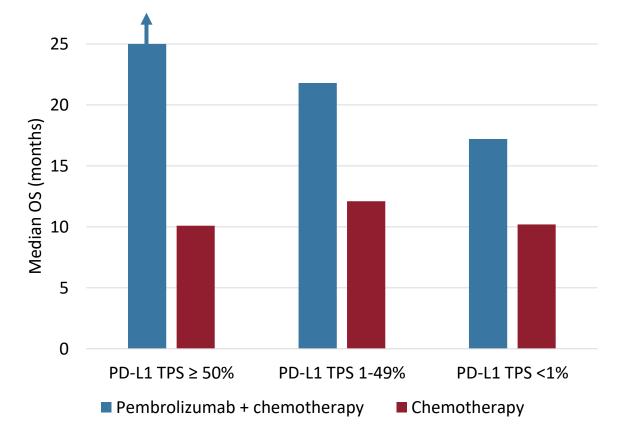
Treatments <u>not</u> reliant on PD-L1 expression



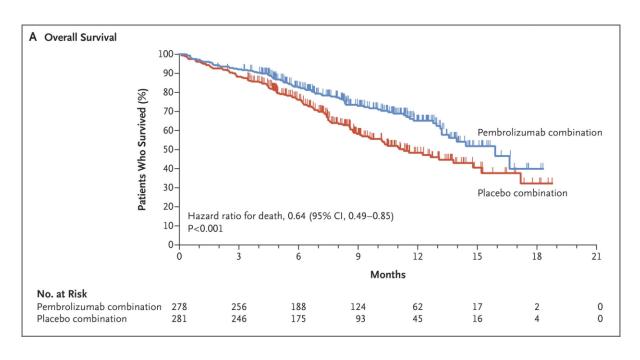
CheckMate 9LA: Nivolumab/Ipilimumab + limited chemo

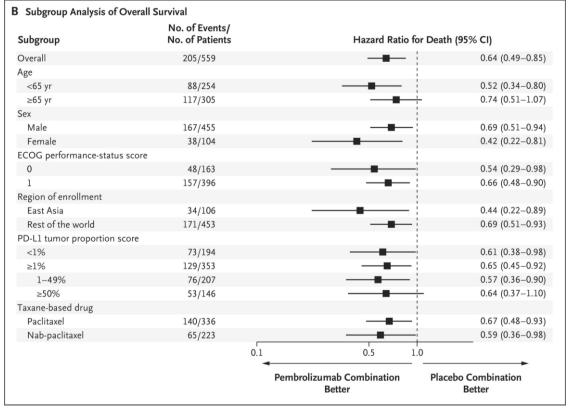
	NIVO + IPI + chemo (n = 361)	Chemo (n = 358)
ORR, n (%)	138 (38)	89 (25)
Odds ratio (95% CI)	1.9 (1.4-2.6)	
BOR, n (%) CR PR SD	8 (2) 130 (36) 164 (45)	4 (1) 85 (24) 185 (52)
PD	32 (9)	45 (13)
DCR, n (%)	302 (84)	274 (76)



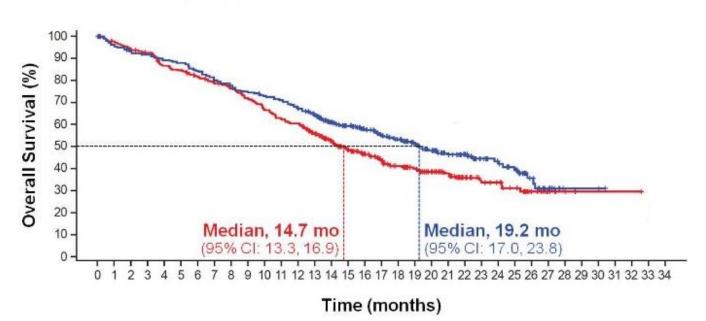


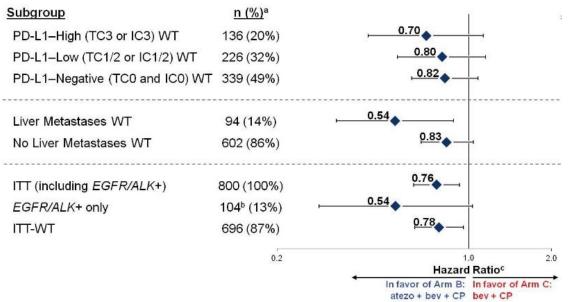
KEYNOTE-189: Pembrolizumab/chemotherapy vs Chemotherapy Alone for Advanced Non-Squamous NSCLC





KEYNOTE-407: Pembrolizumab/Chemotherapy vs Chemotherapy Alone for Advanced Squamous-Cell NSCLC

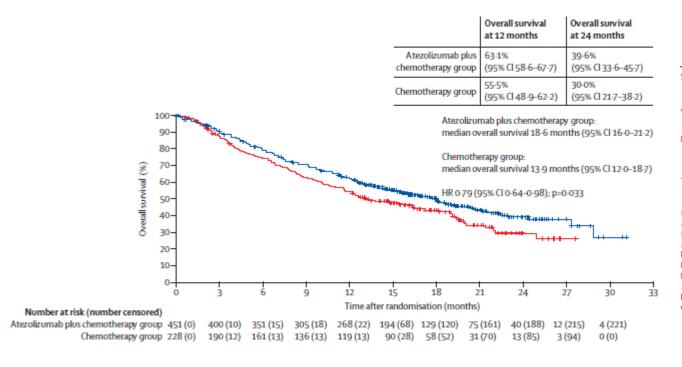


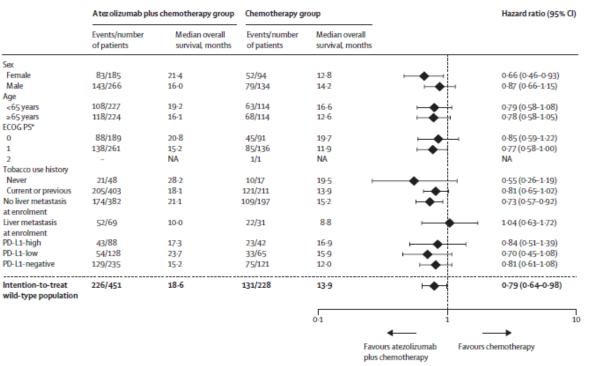


IMpower150: Atezolizumab/Carboplatin/ Paclitaxel/Bevacizumab vs Carboplatin/Paclitaxel/ Bevacizumab in Advanced Non-Squamous NSCLC

Landmark OS, %	Arm B: atezo + bev + CP	Arm C: bev + CP
12-month	67%	61%
18-month	53%	41%
24-month	43%	34%

HR^a, 0.78 (95% CI: 0.64, 0.96) P = 0.0164 Median follow-up: ~20 mo





IMpower130: Atezolizumab + chemo vs chemo alone for non-squamous NSCLC

Immunotherapy for relapsed/refractory NSCLC

Drug	Indication	Dose
Nivolumab	Metastatic squamous or non- squamous NSCLC with progression after chemotherapy (2 nd line)	240 mg Q2W or 480 mg Q4W
Pembrolizumab	Metastatic NSCLC with progression after chemotherapy and PD-L1 ≥ 1%	200 mg Q3W or 400 mg Q6W
Atezolizumab	Metastatic NSCLC with progression after Pt-chemotherapy and targeted therapy if EGFR/ALK mutation-positive	840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W

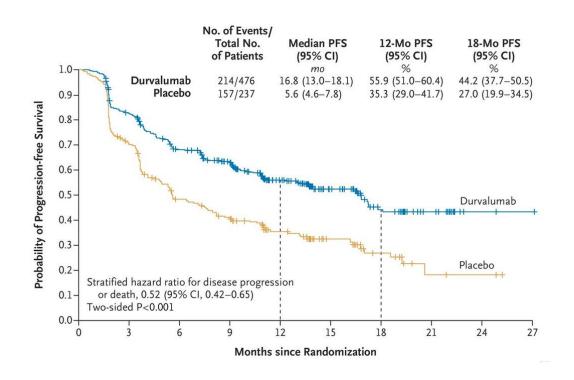
Second-line use of ICIs in NSCLC

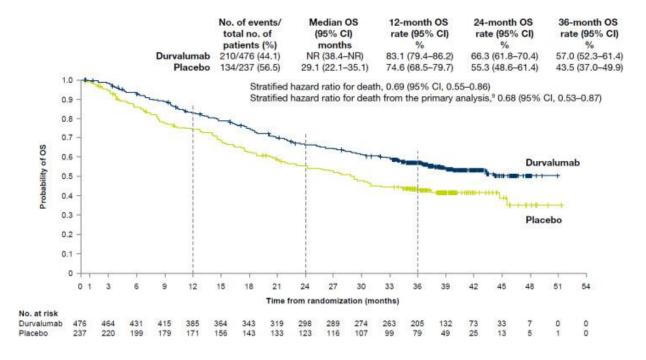
Study	Treatment arms	ORR	Median PFS (months)	Median OS (months)
CheckMate 017 and	Nivolumab	19%	2.56	11.1
CheckMate 057	Docetaxel	11%	3.52	8.1
KEYNOTE-010	Pembrolizumab	18%	4.0	12.7
(PD-L1 TPS ≥ 1%)	Docetaxel	9%	4.0	8.5
OAK	Atezolizumab	14%	2.8	13.8
OAK	Docetaxel	13%	4.0	9.6

Vokes, Ann Oncol 2018. Herbst, Lancet 2016. Fehrenbacker, J Thorac Oncol 2018.

Immunotherapy for stage III NSCLC

Drug	Indication	Dose
Durvalumab	Stage III NSCLC, ineligible for surgery and without progression after chemoradiation	10 mg/kg Q2W
Pembrolizumab	1 st line stage III NSCLC (not candidate for resection or definitive chemoradiation) with PD-L1 TPS ≥ 1%	200 mg Q3W or 400 mg Q6W

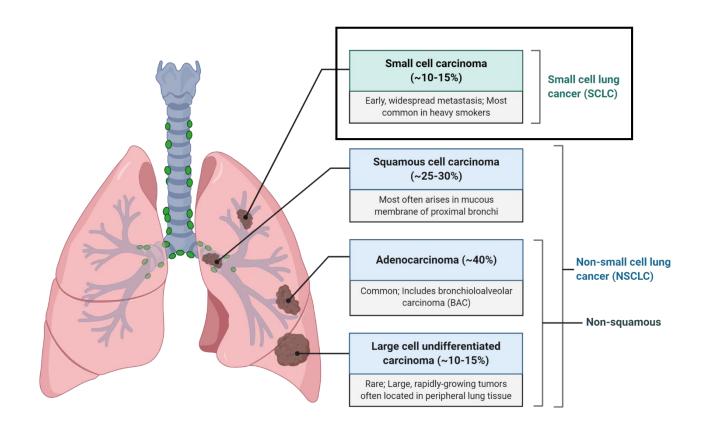




PACIFIC: durvalumab consolidation therapy for stage III NSCLC

Outline

- Non-small cell lung cancer
 - Front-line PD-L1-selected and unselected
 - Later lines of treatment
 - Stage III
- Small cell lung cancer
- Future directions for lung cancer immunotherapy

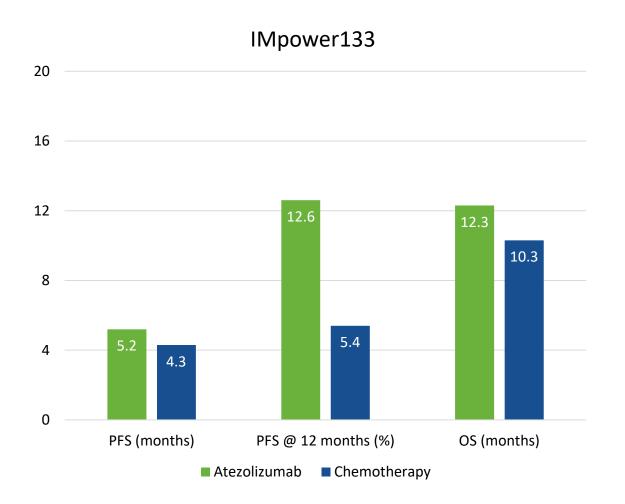


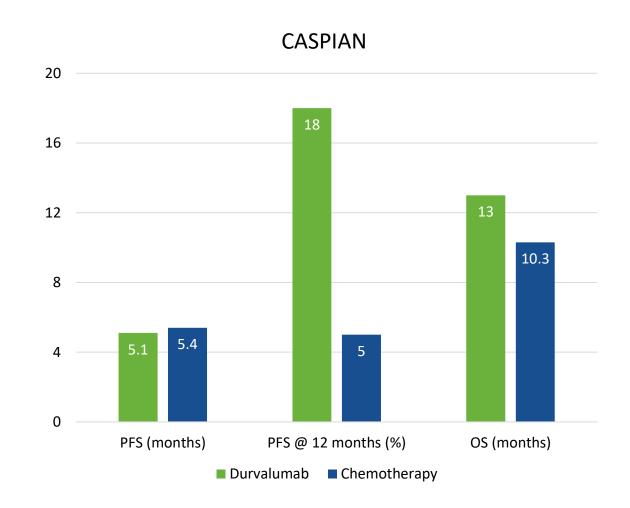
Small cell lung cancer

- Median survival 1-2 years after diagnosis
- Until recently, only one FDA-approved 2nd line option: topotecan – DOR: 3.3 months
- Recent approvals of immunotherapies mark the first progress in decades

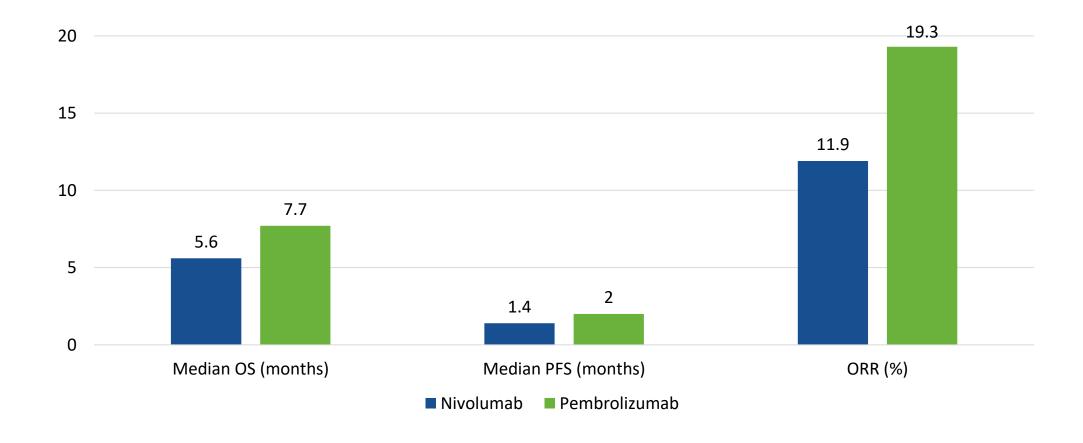
Approved checkpoint inhibitors in SCLC

Drug	Indication	Dose
Nivolumab	Metastatic small cell lung cancer with progression on Pt-chemotherapy and one other therapy (3 rd line)	240 mg Q2W
Pembrolizumab	Metastatic small cell lung cancer with progression on Pt-chemotherapy and one other therapy (3 rd line)	200 mg Q3W
Atezolizumab + carboplatin + etoposide	1 st line extensive stage SCLC	For 4 cycles: atezolizumab 1200 mg + carboplatin + etoposide Q3W Maintenance: 840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W
Durvalumab + etoposide + carboplatin/cisplatin	1 st line extensive stage SCLC	For 4 cycles: 1500 mg durvalumab Q3W + chemotherapy; Maintenance: 1500 mg durvalumab Q4W





Front-line ICIs in SCLC

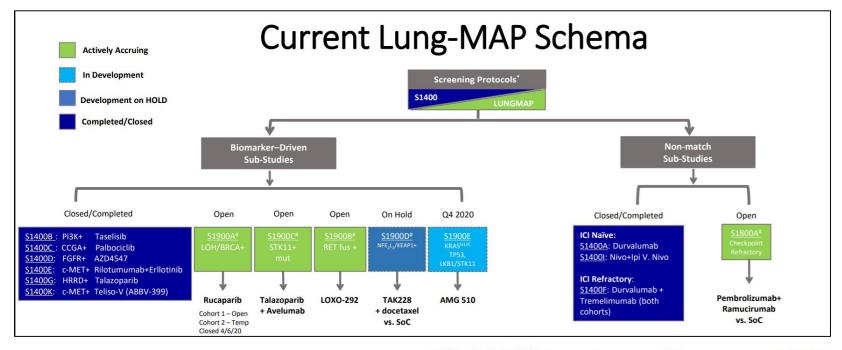


Later-line ICIs in SCLC

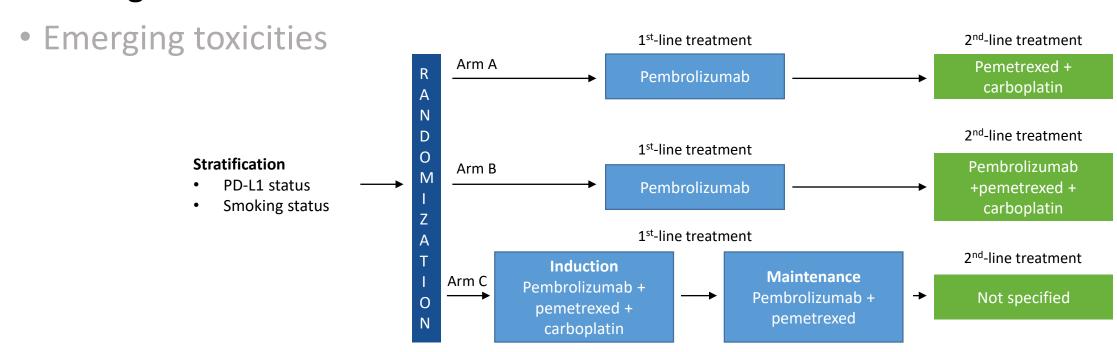
Outline

- Non-small cell lung cancer
 - Front-line PD-L1-selected and unselected
 - Later lines of treatment
 - Stage III
- Small cell lung cancer
- Future directions for lung cancer immunotherapy

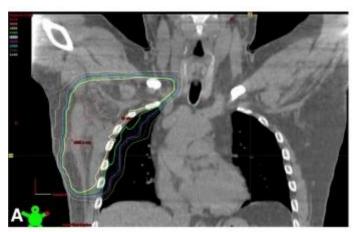
- Biomarker-driven treatment
- Timing of different treatments and combinations
- Emerging toxicities

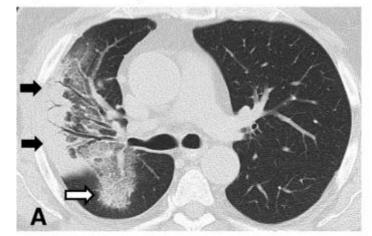


- Biomarker-driven treatment
- Timing of different treatments and combinations
- Emerging toxicities



- Biomarker-driven treatment
- Timing of different treatments and combinations






- Biomarker-driven treatment
- Timing of different treatments and combinations
- Emerging toxicities radiation and ICIs

Axillary radiation treatment field from September-October 2017 demonstrating overlap with peripheral lung.

Chest CT performed 5 months after completing right axillary radiotherapy (March 2018) and 1.5 months after initiating nivolumab therapy

Conclusions

- NSCLC has been a proving ground for checkpoint inhibitors
- Many front-line options available for NSCLC
- Clear-cut biomarkers still lacking
- SCLC is beginning to benefit from immune checkpoint inhibitor treatments

Resources

Brahmer et al. Journal for ImmunoTherapy of Cancer (2018) 6:75 https://doi.org/10.1186/s40425-018-0382-2

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of non-small cell lung cancer (NSCLC)

Julie R. Brahmer¹, Ramaswamy Govindan², Robert A. Anders³, Scott J. Antonia⁴, Sarah Sagorsky⁵, Marianne J. Davies⁶, Steven M. Dubinett⁷, Andrea Ferris⁸, Leena Gandhi⁹, Edward B. Garon¹⁰, Matthew D. Hellmann¹¹, Fred R. Hirsch¹², Shakuntala Malik¹³, Joel W. Neal¹⁴, Vassiliki A. Papadimitrakopoulou¹⁵, David L. Rimm¹⁶, Lawrence H. Schwartz¹⁷, Boris Sepesi¹⁸, Beow Yong Yeap¹⁹, Naiyer A. Rizvi²⁰ and Roy S. Herbst^{21*}

Case Studies

• A 71 year old male with a 60 pack-year history of smoking (quit 6 years ago) presents for a low-dose screening CT. This demonstrates a large heterogeneous enhancing nodal mass in the subcarinal region. An EBUS with cervical mediastinoscopy demonstrates metastatic adenocarcinoma of the subcarinal node. A subsequent brain MRI did not demonstrate any evidence of intracranial disease and a PET/CT did not demonstrate extra-thoracic disease. He is diagnosed with TON2MO adenocarcinoma of the lung. He completes a course of definitive chemoradiotherapy with weekly carboplatin/paclitaxel and thoracic radiotherapy to 60 Gy.

What is the next step in treatment after completion of chemoradiotherapy?

A. Place the patient on clinical and radiographic surveillance and order a CT in 3 months.

B. Place the patient on durvalumab for a total of 1 year of therapy.

• The answer is B. In patients with stage III NSCLC, treatment with durvalumab after the conclusion of definitive chemoradiotherapy is associated with significant improvement in PFS and OS compared with placebo.

• A 67-year-old female with a 50 pack-year current smoking history presents for a CT angiogram as part of a w/u for a AAA. This demonstrates a 2.2 cm spiculated mass of the left upper lobe with hilar and mediastinal lymphadenopathy. She has no disease related symptoms and clinically feels well. An MRI demonstrates no evidence of intracranial disease. A PET/CT demonstrates FDG avidity of the lung mass, mediastinal and hilar nodes with additional concern for a left adrenal nodule. A CT guided biopsy of the LUL mass demonstrates NSCLC of adenocarcinoma histology.

What is the next step in the management of this patient?

A. Immediate initiation of chemotherapy combined with PD-1 directed therapy.

B. Request completion of genomic studies and a PD-L1 TPS.

 The answer is B. Many of the registrational phase III clinical trials evaluating the role of 1st line immunotherapy in the treatment of NSCLC excluded patients with EGFR and ALK driven NSCLC. Selection of treatment in the 1st line setting should be made after completion of molecular studies whenever possible.

• Subsequent PD-L1 testing and molecular testing demonstrates a PD-L1 TPS score of 60% with an underlying KRAS G12C mutation.

What is the best treatment going forward?

A. Carboplatin, pemetrexed and pembrolizumab

B. Pembrolizumab monotherapy

• Both answers are correct. In patients whose tumors express a high level of PD-L1, pembrolizumab monotherapy is superior to chemotherapy. Carboplatin, pemetrexed and pembrolizumab is superior to chemotherapy alone, regardless of PD-L1 TPS. In patients with limited disease burden and limited disease related symptoms, it is reasonable to initiate immunotherapy monotherapy. Questions regarding optimal subsequent therapy in this setting are the subject of ongoing studies.

