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Cancer Is a genetic disease
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Mutational heterogeneity in cancer
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Mutational heterogeneity in a tumor creates new proteins that
can potentially be recognized by the immune system, and
provides a common denominator for immunotherapy



Different genomic alterations can create
immunogenic neoantigens
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Avoiding immune destruction is a hallmark
of cancer
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Targeting the immune system:

Immune checkpoint blockade (ICB)

APPROVED

Checkpoint Inhibitors (PD-1/PD-L1) Have Opened Up
Exciting New Treatment Pathways

...but the vast majority of patients have continued
unmet medical need!

Indication ORR (%) No Response (%)

[ Melanoma 33.7 / 66.3 \
NSCLC 19.2 80.8

| Rec 25.0 75.0

. Bladder Ca. 14.8 85.2
Gastric 30.0 \ 70.0 /
Pancreatic Ca. 17.0 W



The role of mutation load in response to
immune checkpoint blockade

« An elevated number of mutations increases the probaility that a
tumor will be recognized as foreign via presentation of neoantigens
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CD8* T-cell targeting a neoepitope expands
with response
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Response rates across cancer types
correlate with tumor mutation load
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How does the immune system recognize
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Cell
membrane

Not all neopeptides presented by
HLA-Is can be recognized by T cells

Bzm

2 alleles per HLA class | locus
in each individual



Importance of HLA genetic diversity in a
given individual

Encode the MHC class | and |l molecules
Present self and foreign peptides to adaptive immune system
HLA diversity is selected for over evolution

High HLA diversity associated with better resistance against
infectious diseases

Specific HLA genes associated with exceptional resistance or
susceptibility to certain pathogens (ie. HIV, malaria, etc. )



HLA class | allele diversity
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In a given individual, multiple different HLA | alleles results in many different
peptides bound (variations in peptide binding groove)



TCR-neoepitope-HLA
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HLA-I polymorphism affects which peptides
can bind and be presented to T cells
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HLA-B allele frequency across geographic
regions
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Can the Germline HLA Influence
Immune Recognition?

peptide ligand

HLA loci are among the
most diverse in the
human genome




Overall Survival (%)

HLA class | heterozygosity associated with
improved survival after ICB
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HLA heterozygosity is associated with
higher TIL TCR repertoire clonality during
PD-1 blockade
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Effect of HLA class | homozygosity in
response after ICB
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HLA class | zygosity influences impact of
tumor mutation load
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Effect of germline HLA class | zygosity in
tumors with only high mutation load

Only tumors with high mutation load are considered here
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Somatic LOH of HLA abrogates the benefit
of HLA-I germline diversity
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Low HLA-I diversity affects response to ICB
in tumors with only high mutation load

Only tumors with high mutation load are considered here
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HLA class | supertypes are defined based on
similar peptide-anchor-binding specificities

HLA-A alleles AO1 AO2 AO03 A24

HLA-B alleles BO7 BOS B27 B44 B58 B62

®) ARTICLES

BMC Immunology Biotted ent nature,

medicine
Research article Open Access
HLA class | supertypes: a revised and updated classification
John Sidney!, Bjoern Peters!, Nicole Frahm?, Christian Brander? and . .
Alessandro Sette*! Advantage of rare HLA supertype in HIV disease

progression

Address: 1Division of Vaccine Discovery, The La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA and
2Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA . .
P Elizabeth Trachtenberg!’, Bette Korber®>7, Cristina Sollars', Thomas B Kepler®*, Peter T Hraber?,

Email: John Sidney - ]s\dney@hal org; Bjoern Peters - hpeters@han org Nicole Frahm - nfrahm@partners.org; Elizabeth Hayesl, Robert Punkhouserz", Michael Fugatez, James TheilerZ,Yen S Hsu!, Kevin Kunstman®,

Christian Brander - mgh.harvard.edu; dro Sette* - alex@liai.or . N "
. "8 Samuel Wu®, John Phair®, Henry Erlich!6 & Steven Wolinsky>
Corresponding author

The highly polymorphic human leukocyte antigen (HLA) class | help to ine the ificity and repertoire of the
immune response. The great diversity of these antigen-bi confers di i in ing to
Published: 22 January 2008 Received: |3 July 2007 pathogens, but presents a major obstacle to dnstmgulshmg HLA allele-specific effects. HLA class | supertypes provide a
. " Accepted: 22 January 2008 functional classification for the many different HLA alleles that overlap in their peptide-binding specificities. We analyzed the
BMC Immunology 2008, 9:1 - doi:10.1186/1471-2172-5-1 association of these discrete HLA supertypes with HIV disease progresslon rates in a population of HIV infected men. We found
This article is available from: http://www.biomedcentral.com/1471-2172/9/1 that HLA alone and in a strong dif in to HIV infection,

independent of the contribution of single HLA alleles that associate with progression of the disease. The correlation of the
frequency of the HLA supertypes with viral load suggests that HIV adapts to the most frequent alleles in the population, providing
a selective advantage for those individuals who express rare alleles.

© 2008 Sidney et al; licensee BioMed Central Ltd.



Discovery (Cohort 1)

Cohort 1: Patients with melanoma treated with anti-CTLA-4 (N = 164) or anti-PD-1 (N = 105)
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80

Identification of specific
alleles within the B44
supertype driving this

association

Essential differences in ligand presentation and T cell
epitope recognition among HLA molecules of the
HLA-B44 supertype

Nina Hillen', Gabor Mester’, Claudia Lemmel’, Andreas O. Weingzierl’,
Margret Miiller’, Dorothee Wernet?, Jorg Hennenlotter®, Arnulf Stensl®,
Hans-Georg Rammensee’ and Stefan Stevanovi¢"*

*  Only 3% of ligands are shared between the
different B44 members

* Even members of the same supertype are
expected to present a different peptide
repertoire

+  Therefore, it is imperative to identify specific
alleles within the B44 supertype driving the
association



Discovery (Cohort 1)

Cohort 1: Patients with melanoma treated with anti-CTLA-4 (N = 164) or anti-PD-1 (N = 105)
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Discovery (Cohort 1)

Cohort 1: Patients with melanoma treated with anti-CTLA-4 (N = 164) or anti-PD-1 (N = 105)
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Cohort 1: Patients with melanoma treated with either anti-CTLA-4 (N = 164) or
anti-PD-1 (N = 105)
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Validation (Cohort 2)

Cohort 2: Patients with melanoma treated with either anti-CTLA-4 (N = 36) or anti-PD-1 (N = 114)

3
Perform survival analysis in
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S N=44
S
o |
-§‘° N =106
=1
2o
g P =0.058
o) HR = 0.32 (0.09 — 1.1)
—— HLA-B*44 (-)
o ) —— HLA-B*44 (+)
0 10 20 30 40 50 60 70

Time (months)



Peptide motifs profiles of the HLA-B44 supertype
alleles

Amino acid mutation signatures in melanoma
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Summary

« Patient genotype diversity (at both the germline and
somatic level) as well as tumor genetic diversity are
critical contributors to the immune landscape and
response to checkpoint blockade immunotherapy

* Prospective analyses are necessary to further validate
these findings

* Further studies of large patient cohorts are required to
identify other specific HLA class | alleles associated
with repose after ICB therapy
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