Efficacy Through Diversity: The Role of HLA Polymorphism in Response to Checkpoint Blockade Immunotherapy

Diego Chowell, Ph.D. Postdoctoral Research Fellow, Timothy Chan Lab Memorial Sloan Kettering Cancer Center, New York, NY

Cancer Immune Responsiveness Workshop Session I: Germline Genetic Contributions to Immune Landscape San Francisco, May 14, 2018

Outline

- Background
- The role of neoantigens in recognizing a cancer as foreign
- Evidence for tumor mutational burden and response to immune checkpoint blockade (ICB)
- The role of germline HLA class I in immune recognition
- Germline HLA class I influences response to ICB
- Summary

Cancer is a genetic disease

P Nowell. Science (1976)

K Lipinski et al. Cell Trends in Cancer (2016)

Mutational heterogeneity in cancer

MS Lawrence et al. Nature (2013)

Mutational heterogeneity in a tumor creates new proteins that can potentially be recognized by the immune system, and provides a common denominator for immunotherapy

Different genomic alterations can create immunogenic neoantigens

Avoiding immune destruction is a hallmark of cancer

D Hanahan and R Weinberg. Cell (2011)

Targeting the immune system: Immune checkpoint blockade (ICB)

Checkpoint Inhibitors (PD-1/PD-L1) Have Opened Up Exciting New Treatment Pathways

...but the vast majority of patients have continued unmet medical need!

APPROVED

Indication	ORR (%)	No Response (%)
Melanoma	33.7	66.3
NSCLC	19.2	80.8
RCC	25.0	75.0
Bladder Ca.	14.8	85.2
Gastric	30.0	70.0
Pancreatic Ca.	17.0	83.0
	·	

The role of mutation load in response to immune checkpoint blockade

• An elevated number of mutations increases the probaility that a tumor will be recognized as foreign via presentation of neoantigens

Snyder A et al. N Engl J Med. 2014;371:2189-2199.
 Rizvi NA et al. Science. 2015;348:124-128.
 Le DT et al. N Engl J Med. 2015;372:2509-2520.
 Van Allen EM et al. Science. 2015;350:207-211.
 Hugo W et al. Cell. 2016;165:35-44.
 Carbone DP et al. N Engl J Med. 2017;376:2415-2426.

CD8⁺ T-cell targeting a neoepitope expands with response

WT: ASNA<u>P</u>SAAK MUT: ASNA<u>S</u>SAAK presented by HLA-A*11:01

Response rates across cancer types correlate with tumor mutation load

M Yarchoan et al. NEJM (2017)

How does the immune system recognize neoantigens?

Yarchoan et al. Nature Reviews Cancer (2017)

Not all neopeptides presented by HLA-Is can be recognized by T cells

2 alleles per HLA class I locus

Importance of HLA genetic diversity in a given individual

- Encode the MHC class I and II molecules
- Present self and foreign peptides to adaptive immune system
- HLA diversity is selected for over evolution
- High HLA diversity associated with better resistance against infectious diseases
- Specific HLA genes associated with exceptional resistance or susceptibility to certain pathogens (ie. HIV, malaria, etc.)

HLA class I allele diversity

In a given individual, multiple different HLA I alleles results in many different peptides bound (variations in peptide binding groove)

TCR-neoepitope-HLA

HLA-I polymorphism affects which peptides can bind and be presented to T cells

TLNAWVKVV

HLA-A*02:01

HLA groove

- Humans have HLA- A, B, C (polygenic)
- Many alleles of each HLA locus (polymorphic)
- Anchor chains depend on the MHC allele

HLA-B allele frequency across geographic regions

South and Central America

http://www.allelefrequencies.net/

Can the Germline HLA Influence Immune Recognition?

HLA class I heterozygosity associated with improved survival after ICB

D. Chowell et al. Science (2017)

HLA heterozygosity is associated with higher TIL TCR repertoire clonality during PD-1 blockade

Effect of HLA class I homozygosity in response after ICB

HLA class I zygosity influences impact of tumor mutation load

D. Chowell et al. Science 2017

Effect of germline HLA class I zygosity in tumors with only high mutation load

Only tumors with high mutation load are considered here

Somatic LOH of HLA abrogates the benefit of HLA-I germline diversity

80

HLA-A, HLA-B, and HLA-C are all on chromosome 6

Heterozygous at all loci and without LOH

Heterozygous at all loci and with LOH in at least one locus

Low HLA-I diversity affects response to ICB in tumors with only high mutation load

Only tumors with high mutation load are considered here

- Only exomes are considered here for the LOH-HLA analysis
- High mutation load is defined as >113 mutations

HLA class I supertypes are defined based on similar peptide-anchor-binding specificities

The highly polymorphic human leukocyte antigen (HLA) class I molecules help to determine the specificity and repertoire of the immune response. The great diversity of these antigen-binding molecules confers differential advantages in responding to pathogens, but presents a major obstacle to distinguishing *HLA* allele—specific effects. HLA class I supertypes provide a functional classification for the many different *HLA* alleles that overlap in their peptide-binding specificities. We analyzed the association of these discrete *HLA* supertypes with HIV disease progression rates in a population of HIV-infected men. We found that HLA supertypes alone and in combination conferred a strong differential advantage in responding to HIV infection, independent of the contribution of singe *HLA* alleles that advants to the most frequent alleles in the population of the request indication of the set and the supertypes alleles.

Published: 22 January 2008

Received: 13 July 2007 Accepted: 22 January 2008

This article is available from: http://www.biomedcentral.com/1471-2172/9/1

© 2008 Sidney et al; licensee BioMed Central Ltd.

BMC Immunology 2008, 9:1 doi:10.1186/1471-2172-9-1

Discovery (Cohort 1)

Cohort 1: Patients with melanoma treated with anti-CTLA-4 (N = 164) or anti-PD-1 (N = 105)

 Therefore, it is imperative to identify specific alleles within the B44 supertype driving the association

Discovery (Cohort 1)

Cohort 1: Patients with melanoma treated with anti-CTLA-4 (N = 164) or anti-PD-1 (N = 105)

Discovery (Cohort 1)

Cohort 1: Patients with melanoma treated with anti-CTLA-4 (N = 164) or anti-PD-1 (N = 105)

HLA-B*18:01, HLAB*44:02, HLA-B*44:03, HLA-B*44:05, and HLAB*50:01 Cohort 1: Patients with melanoma treated with either anti-CTLA-4 (N = 164) or anti-PD-1 (N = 105)

HLA-B*18:01, HLAB*44:02, HLA-B*44:03, HLA-B*44:05, and HLAB*50:01

Validation (Cohort 2)

Cohort 2: Patients with melanoma treated with either anti-CTLA-4 (N = 36) or anti-PD-1 (N = 114)

Peptide motifs profiles of the HLA-B44 supertype alleles

Amino acid mutation signatures in melanoma

Glycine (G) > Glutamic acid (E)

То

Summary

- Patient genotype diversity (at both the germline and somatic level) as well as tumor genetic diversity are critical contributors to the immune landscape and response to checkpoint blockade immunotherapy
- Prospective analyses are necessary to further validate these findings
- Further studies of large patient cohorts are required to identify other specific HLA class I alleles associated with repose after ICB therapy

Acknowledgements

Collaborators outside MSK

Naiyer Rizvi (Columbia)
Ed Garon (UCLA)
Ruhong Zhou and Jeff
Weber (IBM Thomas J.
Watson Research Center)
David Requena
(Rockefeller U)
Alex Desrichard

Chan Lab

Timothy Chan, MD, PhD Raj Mandal, MD Yongxing Gong, PhD Luc Morris, MD David Kuo, MS Raghu Srivastava, PhD Ian Ganly, MD/PhD Yiyu Dong, PhD Vladimir Marakov, MD Sviatoslav Kendall Jenny Sims, PhD Wei Wu Robbie Samstein, MD/PhD Ken Lee, PhD Chirag Krishna Jonathan Havel, PhD Nadeem Riaz, MD Yuxiang Wang, PhD Ari Hakimi, MD Sara Haddock Xiaoxiao Ma PhD Erich Sabio PhD

Collaborators at MSK

- •David B. Solit
- •Michael Berger
- •Ahmet Zehir
- David M. Hyman
- Marc Ladanyi
- Jedd Wolchok
- •Matt Hellmann
- Alex Snyder (Chan Lab grad)

