SESSION II: Validation of Biomarkers ⁵⁴ Identification and Analysis

Co-Chairs:

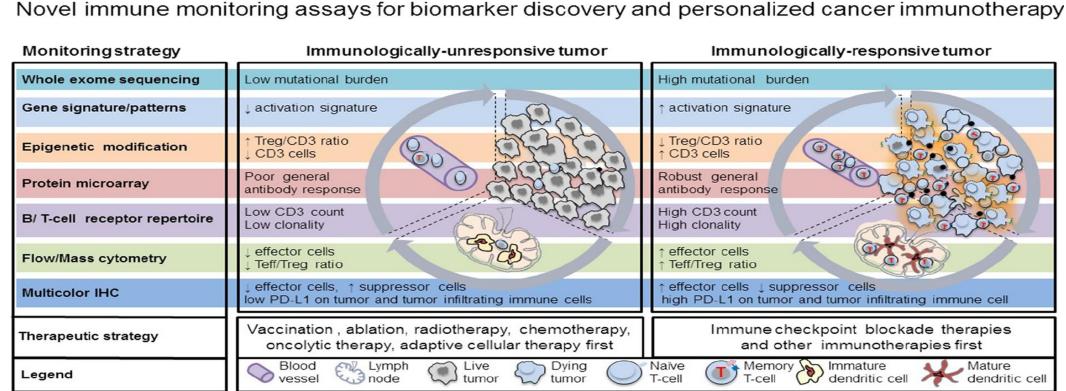
Bernard A. Fox, Earle A. Chiles Research Institute Sacha Gnjatic, Icahn School of Medicine at Mt Sinai

Society for Immunotherapy of Cancer

Identification, Validation & Analysis:

In 2018: Critical Elements for Developing Combination Immunotherapy

REVIEW


Open Access

Novel technologies and emerging biomarkers for personalized cancer immunotherapy

Jianda Yuan^{1*}, Priti S. Hegde², Raphael Clynes³, Periklis G. Foukas^{4,5}, Alexandre Harari⁴, Thomas O. Kleen⁶, Pia Kvistborg⁷, Cristina Maccalli⁸, Holden T. Maecker⁹, David B. Page¹⁰, Harlan Robins¹¹, Wenru Song¹², Edward C. Stack¹³, Ena Wang¹⁴, Theresa L. Whiteside¹⁵, Yingdong Zhao¹⁶, Heinz Zwierzina¹⁷, Lisa H. Butterfield¹⁸ and Bernard A. Fox^{10*}

SITC Immune Biomarkers Task Force

of Cancer

Yuan et al. Journal for ImmunoTherapy of Cancer (2016) 4:3 DOI 10.1186/s40425-016-0107-3

Journal for ImmunoTherapy

SITC Needs?

SITC Needs? • YOU!

Representatives of Working Groups in Immune Responsiveness TaskForce / May 14, 2018

Immunoscore Task Force: A SITC-Led Global Study

Bernard A. Fox, PhD

Harder Family Chair for Cancer Research Member and Chief, Laboratory of Molecular and Tumor Immunology Earle A. Chiles Research Institute Robert W. Franz Cancer Center Providence Portland Medical Center

CEO, UbiVac

Adjunct Faculty, Dept. Molec. Micro and Immunology, and Knight Cancer Institute, OHSU

Bernard A. Fox, PhD – COI Disclosures

Scientific Advisory Board (Advising/Consulting/Stock) Argos Bayer **Bristol-Myers Squibb CellDex Therapeutics** Definiens Janssen/Johnson & Johnson **Macrogenics** MedImmune/AstraZeneca PerkinElmer Peregrine PrimeVax, stock UbiVac, Co-founder/Managing Member **Research Support** Bayer **Bristol-Myers Squibb** Definiens Janssen/Johnson & Johnson **Macrogenics** MedImmune/AstraZeneca OncoSec PerkinElmer Quanterix Shimadzu Ventana/Roche Viralytics

Outline

- A brief history of Immune cell infiltrates into cancer
- Describe the immunoscore method
- Review the SITC-Led Immunoscore Study
- Perspective on next steps

1863 Virchow (1863) stated that the frequent presence of lymphatic cells in human tumors reflected the origin of cancer at sites of previous chronic inflammation. Virchow R: Die Krankhaften Geschwülste. 1863.

1872 Waldeyer et al. (1872) suggested that a local disturbance of connective tissue was an essential prelude to tumor growth.

Waldeyer HGW: Die Entwicklung der Karzinome. Virchows Arch Path Anat 1872, 55:67.

1907 Handley described that a "round cell infiltrate" indicated a regressive process in melanoma.

Handley WS. *The Lancet* 1907, 169:927–933.

1908 Wade et al. (1908) described a regressing transplanted canine sarcoma as "the tumor being borne away on a lymphocyte tide".

Wade H:. J Path Bact 1908, 12:384.

Immune cell infiltration: Common feature of many human solid tumors

1912 De Fano concluded from a study on murine tumor grafts that a peritumoral infiltration of lymphocytes and plasma cells was an expression of a defensive mechanism akin to immunity [5].

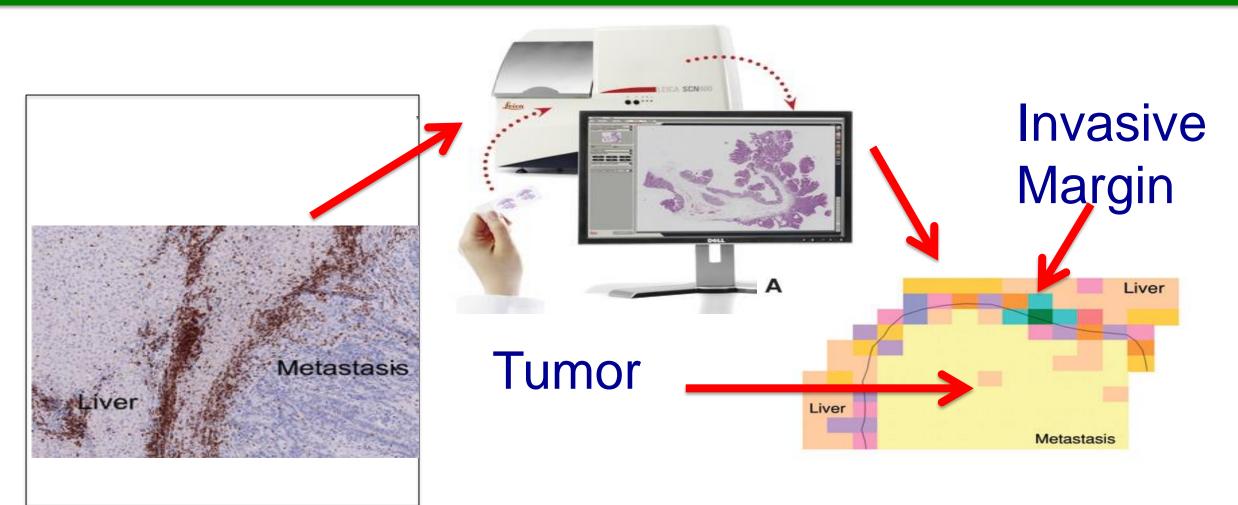
De Fano C. Fifth Sci Rep Imrp Cancer Res Fund 1912.

1920's MacCarty et al. weak associations of local immune response with improved prognosis

MacCarty WC, Mahle AE: J Lab Clin Med 1921, 6:473.

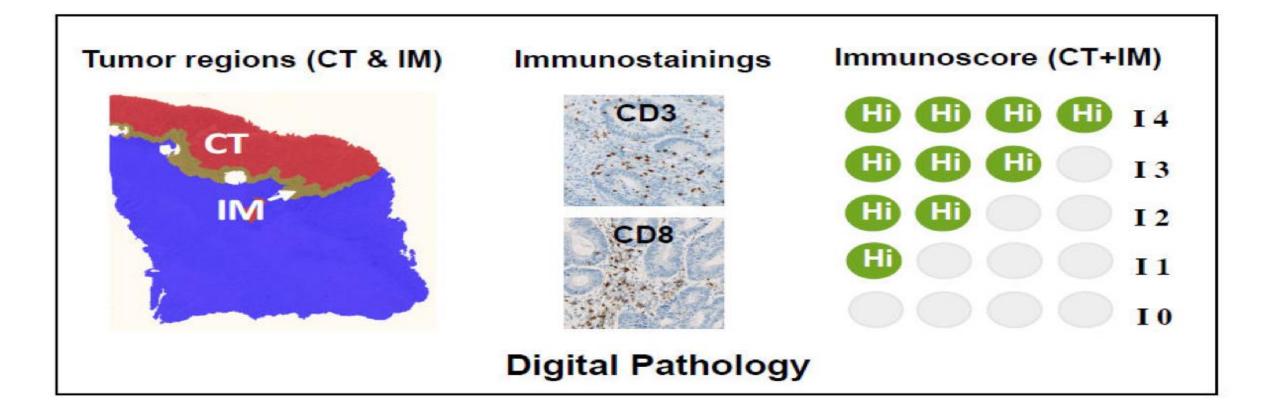
- 1920-1970s Strong affirmation in over 30 publications. Underwood JC: Br. J. Cancer 1974, **30**:538–548.
- 1980-1990s Positive correlation between density of immune infiltrate and prognosis /melanoma/ head and neck cancer/ breast cancer/ ovarian cancer/ colorectal/ mycosis fungoides.

Type, Density, and Location of Immune Cells Within Human Colorectal Tumors Predict Clinical Outcome

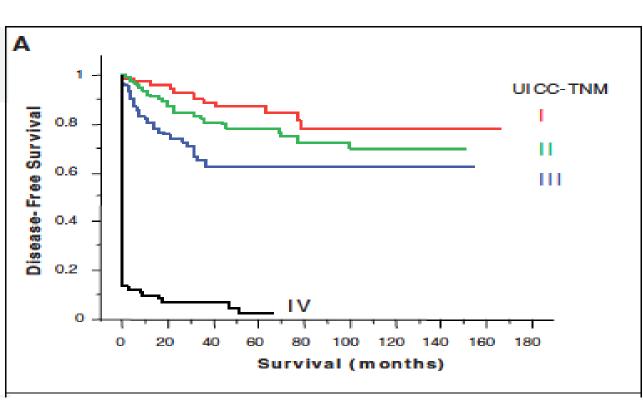

Jérôme Galon,¹*† Anne Costes,¹ Fatima Sanchez-Cabo,² Amos Kirilovsky,¹ Bernhard Mlecnik,² Christine Lagorce-Pagès,³ Marie Tosolini,¹ Matthieu Camus,¹ Anne Berger,⁴ Philippe Wind,⁴ Franck Zinzindohoué,⁵ Patrick Bruneval,⁶ Paul-Henri Cugnenc,⁵ Zlatko Trajanoski,² Wolf-Herman Fridman,^{1,7} Franck Pagès^{1,7}†

The role of the adaptive immune response in controlling the growth and recurrence of human tumors has been controversial. We characterized the tumor-infiltrating immune cells in large cohorts of human colorectal cancers by gene expression profiling and in situ immunohistochemical staining. Collectively, the immunological data (the type, density, and location of immune cells within the tumor samples) were found to be a better predictor of patient survival than the histopathological methods currently used to stage colorectal cancer. The results were validated in two additional patient populations. These data support the hypothesis that the adaptive immune response influences the behavior of human tumors. In situ analysis of tumor-infiltrating immune cells may therefore be a valuable prognostic tool in the treatment of colorectal cancer and possibly other malignancies.

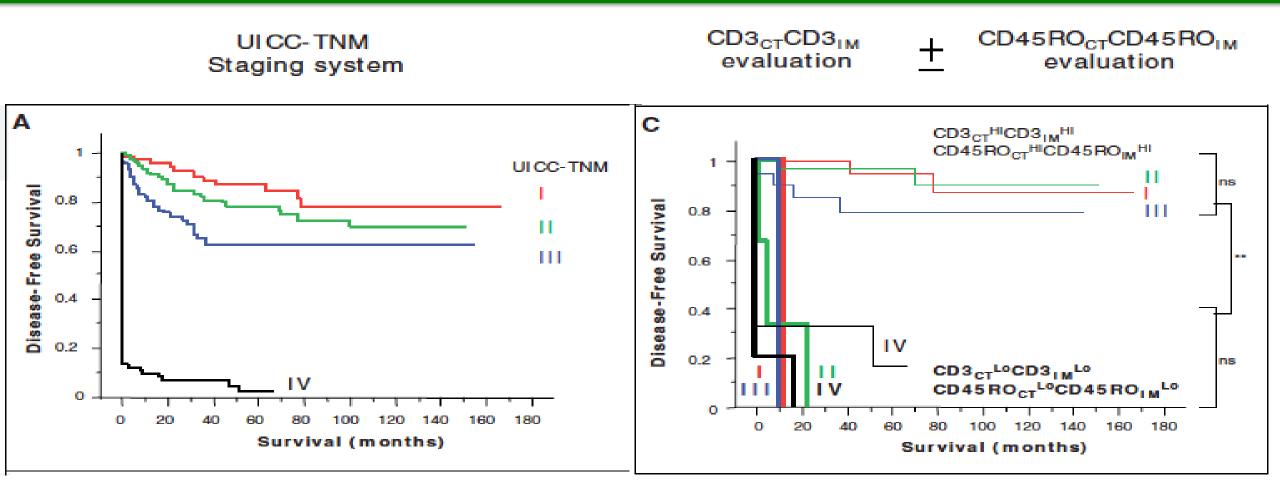
29 SEPTEMBER 2006 VOL 313 SCIENCE


Digital imaging and objective assessment of immune infiltrates

Halama N, et al. Can Res 71:5670 2011


Immunoscore Definition:

Disease-Free Survival of Colon Cancer Cohort (Paris)


UICC-TNM Staging system

29 SEPTEMBER 2006 VOL 313 SCIENCE

Coordinated adaptive immune response more than tumor invasion predicts outcome.

29 SEPTEMBER 2006 VOL 313 SCIENCE

JOURNAL OF CLINICAL ONCOLOGY

TNM Staging in Colorectal Cancer: T Is for T Cell and M Is for Memory

Elizabeth K. Broussard and Mary L. Disis, Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, WA

Galon et al. Journal of Translational Medicine 2012, 10:1 http://www.translational-medicine.com/content/10/1/1

JOURNAL OF TRANSLATIONAL MEDICINE

EDITORIAL

Open Access

The Immune Score as a New Possible Approach for the Classification of Cancer

Jérôme Galon^{1,2,3,4,5*}, Franck Pagès^{1,2,3,4}, Francesco M Marincola^{5,6}, Magdalena Thurin⁷, Giorgio Trinchieri⁸, Bernard A Fox^{5,9,10}, Thomas F Gajewski^{5,11} and Paolo A Ascierto^{12,13}

SITC Immunoscore Taskforce

sitc

Cancer classification using the Immunoscore: a worldwide task force

Jérôme Galon^{1,2,3,4,5*}, Franck Pagès^{1,2,3,4}, Francesco M Marincola^{5,6}, Helen K Angell^{1,2,3}, Magdalena Thurin⁷, Alessandro Lugli⁸, Inti Zlobec⁸, Anne Berger⁴, Carlo Bifulco⁹, Gerardo Botti¹⁰, Fabiana Tatangelo¹⁰, Cedrik M Britten¹¹, Sebastian Kreiter¹¹, Lotfi Chouchane¹², Paolo Delrio¹³, Hartmann Arndt¹⁴, Martin Asslaber¹⁵, Michele Maio¹⁶, Giuseppe V Masucci¹⁷, Martin Mihm¹⁸, Fernando Vidal-Vanaclocha¹⁹, James P Allison²⁰, Sacha Gnjatic²⁰, Leif Hakansson²¹, Christoph Huber¹¹, Harpreet Singh-Jasuja²², Christian Ottensmeier²³, Heinz Zwierzina²⁴, Luigi Laghi²⁵, Fabio Grizzi²⁵, Pamela S Ohashi²⁶, Patricia A Shaw²⁷, Blaise A Clarke²⁷, Bradly G Wouters²⁷, Yutaka Kawakami²⁸, Shoichi Hazama²⁹, Kiyotaka Okuno³⁰, Ena Wang⁶, Jill O'Donnell-Tormey³¹, Christine Lagorce³², Graham Pawelec³³, Michael I Nishimura³⁴, Robert Hawkins³⁵, Réjean Lapointe³⁶, Andreas Lundqvist³⁷, Samir N Khleif³⁸, Shuji Ogino³⁹, Peter Gibbs⁴⁰, Paul Waring⁴¹, Noriyuki Sato⁴², Toshihiko Torigoe⁴², Kyogo Itoh⁴³, Prabhu S Patel⁴⁴, Shilin N Shukla⁴⁴, Richard Palmqvist⁴⁵, Iris D Nagtegaal⁴⁶, Yili Wang⁴⁷, Corrado D'Arrigo⁴⁸, Scott Kopetz⁴⁹, Frank A Sinicrope⁵⁰, Giorgio Trinchieri⁵¹, Thomas F Gajewski^{5,52}, Paolo A Ascierto^{53,54} and Bernard A Fox^{5,55,56}

Paris, France Portland, OR, USA Bern, Switzerland Houston, TX, USA Graz, Austria Rochester, MN, USA Erlangen, Germany Toronto, ON, Canada Madrid, Spain Melbourne, Australia Immuno Naples, Italy Ahmedabad, India Score ★ Siena, Italy Sapporo, Japan Milan, Italy Tokyo, Japan Umea, Sweden Xi'an, China Galon et al. Journal of Translational Medicine 2012, 10:205 Doha, Qatar Stockholm, Sweden Dorchester, UK Nijmegen, Netherlands

SITC Organized

- Logistical and infrastructure support
- Brought World Immunotherapy Council (WIC) Together / Support

Sitc

- Organized meetings with major pharma to try and raise \$
- Provided platforms for Updates
 - Taskforce Meetings
 - Publications: JTM, JITC
 - Annual Meeting Update to Membership

SITC Immunoscore Validation Project

Toronto, Canada

University of Toronto, Princess Margaret Hospital Michael H. Roehrl, Prashant Bavi, Pamela S. Ohashi, Julia Y. Wang, Linh T. Nguyen, SeongJun Han, Heather L. MacGregor, Sara Hafezi-Bakhtiari, Bradly G. Wouters

Nijmegen, Netherlands Radboud University Nijmegen Medical Center Iris D. Nagtegaal, Elisa Vink-Borger

Brussels, Belgium

Institut Roi Albert II, Cliniques universitaires St-Luc, Université Catholique de Louvain Marc Van den Eynde, Anne Jouret-Mourin, Jean-Pascal Machiels

Paris, France Institut National del la Santé et de la

Recerche Médicale (INSERM)

Jérôme Galon, Franck Pagès, Tessa Fredriksen, Florence Marliot, Lucie Lafontaine, Bénédicte Buttard, Sarah Church, Pauline Maby, Helen Angell, Mihaela Angelova, Angela Vasaturo, Bernhard Mlecnik, Gabriela Bindea, Anne Berger, Christine Lagorce

Milan, Italy

Humanitas Clinical and Research Center, Rozzano Fabio Grizzi, Luigi Laghi

Rochester, Minnesota, USA

Mayo Clinic Daniel J. Sargent, Fang-Shu Ou, Jeffrey Meyers, Qian Shi

Bern, Switzerland

University of Bern Alessandro Lugli, Inti Zlobec, Tilman Rau

Erlangen, Germany

University Erlangen-Nürnberg Amdt Hartmann, Carol Geppert, Tilman Rau

Stockholm, Sweden

Karolinska Institutet, Karolinska University Giuseppe V. Masucci, Emilia K. Andersson

Sapporo, Japan

Sapporo Medical University Toshihiko Torigoe, Noriyuki Sato, Tomohisa Furuhata, Ichiro Takemasa

Ube, Japan

Yamaguchi University Graduate School of Medicine Shoichi Hazama, Nobuaki Suzuki, Hiroaki Nagano

Prague, Czech Republic

Charles University and General University Hospital Eva Zavadova, Michal Vocka, Jan Spacek, and Lubos Petruzelka

Naples, Italy

Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione G. Pascale Paolo A. Ascierto, Gerardo Botti, Fabiana Tatangelo, Paolo Delrio, Gennaro Cilberto

Xi'an, China –

Institute for Cancer Research, Xi'an Jiaotong University Yili Wang, Guanjun Zhang

Kurume, Japan

Kurume University School of Medicine Kyogo Itoh

Osaka-Sayama, Japan

Kinki University Kiyotaka Okuno

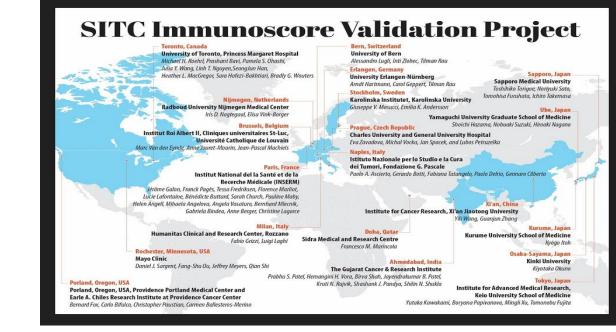
Tokyo, Japan

Institute for Advanced Medical Research, Keio University School of Medicine Yutaka Kawakami, Boryana Papivanova, Mingli Xu, Tomonobu Fujita

Porland, Oregon, USA

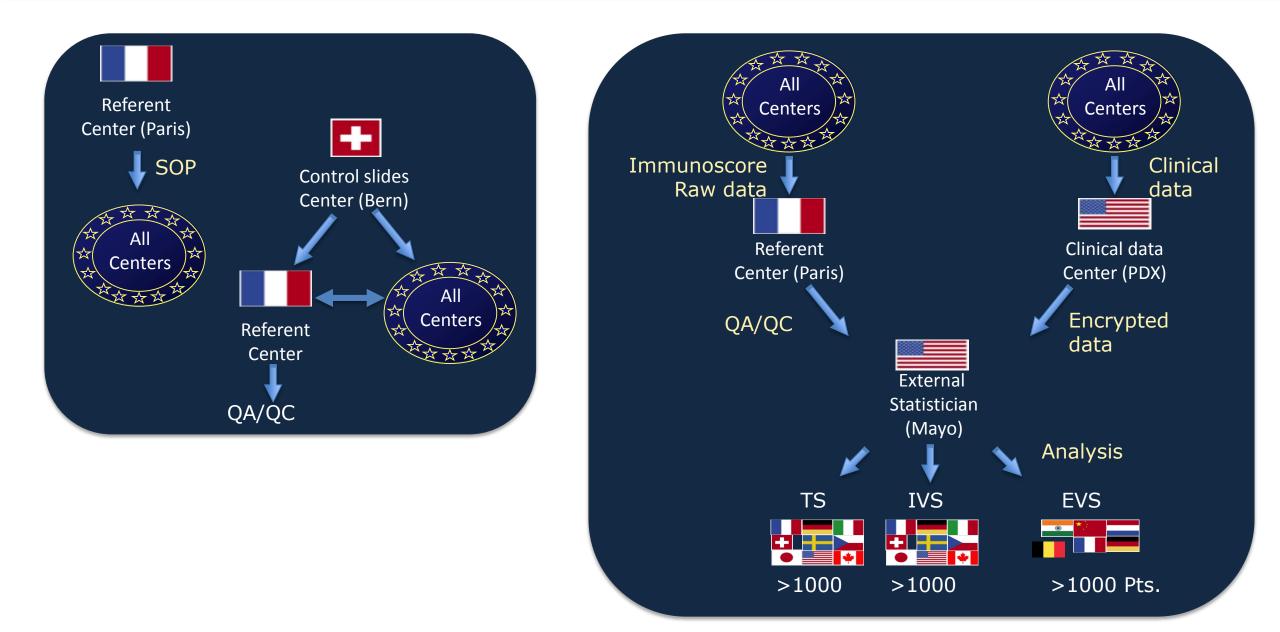
Porland, Oregon, USA, Providence Portland Medical Center and Earle A. Chiles Research Institute at Providence Cancer Center Bernard Fox, Carlo Bifulco, Christopher Paustian, Carmen Ballesteros-Merino Sidra Medical and Research Centre Francesco M. Marincola

Ahmedabad, India


The Gujarat Cancer & Research Institute

Doha, Qatar

Prabhu S. Patel, Hemangini H. Vora, Birva Shah, Jayendrakumar B. Patel, Kruti N. Rajvik, Shashank J. Pandya, Shilin N. Shukla

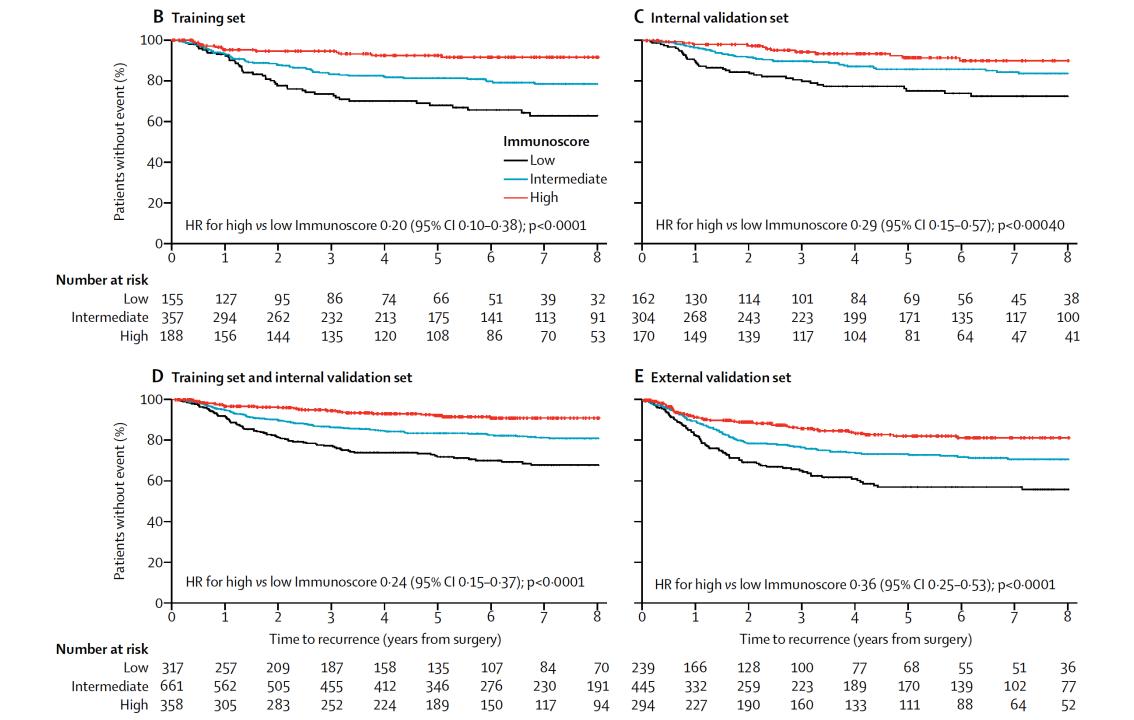

Population Diversity

- Genetic / Ancestry Differences
- HLA Haplotypes
 - Varied capabilities to present peptides
- Microbiome
 - Different microbes may influence

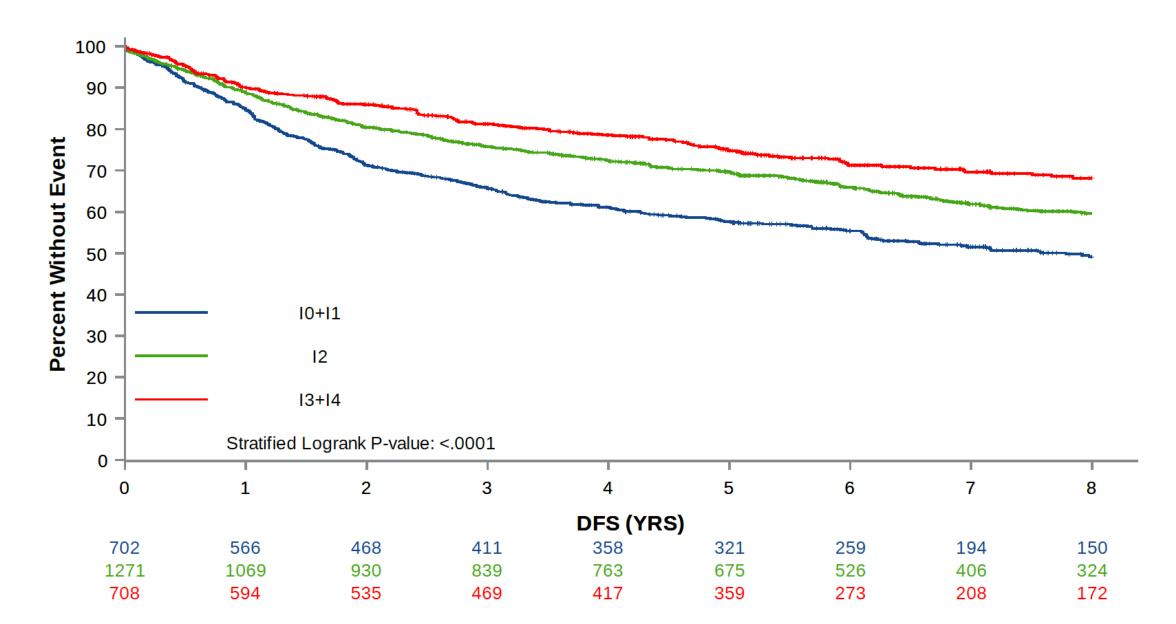
SITC- Led Immunoscore Consortium Study design

Patient population and clinical characteristics

Inclusion criteria:


- Colon Cancer
- Stages I/II/III (T1-T4, N0-N2, M0)
- No neo-adjuvant treatments
- clinical data and follow-up

Exclusion criteria:


- Rectum cancer (n=255)
- Stage IV (M1) (n=81)
- Neo-adjuvant treatments (n=6)
- Missing Clinical data (n=45)
- Missing follow-up (n=127)
- Staining intensity <152 (n=86)
- Missing/incomplete biomarker data (n=490) ------ 2667 patients

analyzed after QC and exclusion following a pre-defined statistical analysis workplan

3855 patients

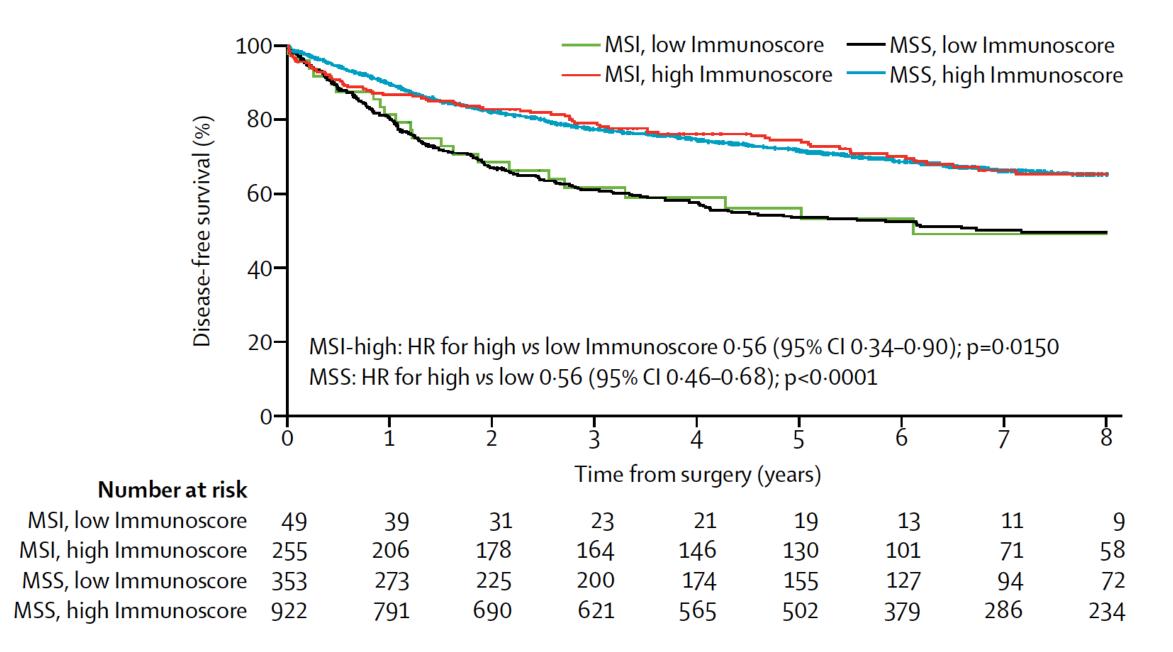
Training set, Internal and External Validations

3-level Immunoscore Derived From TS+IVS, Training+IV+EV+Japan/China Dataset adjusting for MSI status

	TTR Model (314/1562)*	-,		DFS Model (590/1562)	*		OS Model (491/1562)*		
	Hazard Ratio (95% CI)	P-value	C-Index (95% CI)	Hazard Ratio (95% CI)	P-value	C-Index (95% CI)	Hazard Ratio (95% CI)	P-value	C-Index (95% Cl)
Unadjusted Stratified Cox Mod	lei		0.62 (0.56-0.68)			0.58 (0.54-0.63)			0.58 (0.53-0.63)
Immunoscore, 3-level (CD3/CD	08 CT/IM)	<.0001 ¹			<.0001 ¹			<.0001 ¹	
12 vs I0+11	0.447 (0.349-0.572)	<.0001 ²		0.588 (0.487-0.710)	<.0001 ²		0.617 (0.503-0.757)	<.0001 ²	
13+14 vs 10+11	0.239 (0.168-0.341)	<.0001²		0.429 (0.338-0.545)	<.0001²		0.496 (0.384-0.640)	<.0001²	
Multivariable Stratified Cox Mo	del		0.74 (0.67-0.80)			0.66 (0.61-0.71)			0.64 (0.58-0.69)
Immunoscore, 3-level (CD3/CD	08 CT/IM)	<.0001 ¹			<.0001 ¹			<.0001 ¹	
12 vs 10+11	0.488 (0.381-0.626)	<.0001 ²		0.622 (0.515-0.753)	<.0001 ²		0.654 (0.532-0.805)	<.0001 ²	
13+14 vs 10+11	0.328 (0.229-0.472)	<.0001 ²		0.511 (0.401-0.652)	<.0001 ²		0.558 (0.429-0.726)	<.0001 ²	
Gender		0.0696 ¹			0.0894 ¹			0.13551	
Female vs Male	0.811 (0.646-1.017)	0.0696 ²		0.867 (0.735-1.022)	0.0894 ²		0.872 (0.728-1.044)	0.1355 ²	
T-stage (Grouped T4 Version)		<.0001 ¹			<.0001 ¹			0.0059 ¹	
T2 vs T1	1.611 (0.551-4.710)	0.3839 ²		1.491 (0.778-2.860)	0.2289 ²		1.636 (0.800-3.345)	0.1774 ²	
T3 vs T1	2.707 (0.994-7.371)	0.0514 ²		2.084 (1.133-3.833)	0.0182 ²		2.088 (1.065-4.096)	0.0322 ²	
T4 vs T1	4.991 (1.803-13.818)	0.0020 ²		2.850 (1.518-5.351)	0.0011 ²		2.657 (1.322-5.339)	0.0061 ²	
N-stage		<.00011			<.00011			<.00011	
N1 vs N0	1.943 (1.477-2.555)	<.0001 ²		1.563 (1.274-1.918)	<.0001 ²		1.327 (1.056-1.667)	0.0150 ²	
N2 vs N0	3.118 (2.315-4.200)	<.0001 ²		2.272 (1.793-2.879)	<.0001 ²		1.992 (1.530-2.594)	<.0001 ²	
MSI Status (Derived)		0.0064 ¹			0.6677 ¹			0.6107 ¹	
dMMR vs pMMR	0.608 (0.425-0.870)	0.0064 ²		0.953 (0.767-1.185)	0.6677 ²		1.063 (0.841-1.343)	0.6107 ²	
Age	0.999 (0.995-1.003)	0.56951		1.001 (1.000-1.002)	0.20231		1.002 (1.000-1.003)	0.01431	

* (Events/Total); ¹Stratified type 3 Wald p-value; ²Stratified covariate Wald p-value; Stratified by center city, adjusted by MSI status; d/p MMR: deficient/proficient Miss Match Repair

Summary of Results:


- The primary objective (significance of Immunoscore 2 categories (High/Low) significant for TTR) was pre-specified in the statistical workplan and was reached. (P<0.0001) differences for TTR, DFS and OS.
- Multivariable analyses showed that Immunoscore adds substantial power to discriminate cohorts with varied survival characteristics beyond that provided by established prognostic variables.
- Immunoscore's association to outcomes was independent of the patient's age, gender, T-stage, and N-stage (P< 0.0001).
- Immunoscore high and low in 3 categories for TTR was validated for North America, Asia and Europe (significant (P<0.05).

MSI – Microsatellite Instable Colon Cancers

- Highly mutated cancers
 - -Large number of neoantigens
 - Increased response to checkpoint blockade
 - -FDA approved use of anti-PD-1 for all MSI high cancers

MSI / MSS – Immunoscore Predicts Outcome

- Immunoscore's association to outcomes was independent of the patient's microsatellite instability (MSI) status (*P*< 0.0001).
- Immune surveillance: Is real
 - Questions:
 - Inflammed signature distributed across range of mutated/nonmutated tumors
 - Immunity against overexpressed non-mutated "self" epitopes?
- Evidence in support of T cells against non-mutated epitopes
 - Parkhurst MR, et al., Mol. Ther 2011 Colon CA
 - Gee MH et al., Cell 2018 Colon CA
 - Tripathi et al., PNAS 2016 NSCLC

Is the Immunoscore Ready for Prime Time?

Is the Immunoscore Ready for Prime Time?

Clinical Implications:

- Basis for the first standardized immune-based assay for the classification of cancer
- Stratification of patients on clinical trials ANY TRIAL?
- Sets stage for clinical trials exploring adjuvant therapy in stage II colon cancer patients with a low Immunoscore
 - NCI Colon Cancer Vaccine Study?
- Role for clinical trial evaluating whether chemotherapy versus reducing the duration of the adjuvant chemotherapy or watchful waiting, plus or minus immunotherapy, might provide benefit for this cohort of patients.

Trial Design Developed By: Daniel J. Sargent, PhD

08/22/1970 - 09/22/2016

- Research was in the area of oncology clinical trials
- Led multiple international groups including; -ACCENT in adjuvant colon cancer,
 - Prospective IDEA in colon cancer
- In 2014, Dr. Sargent was awarded a \$37.7 million, 5year grant by the NCI to lead the Alliance for Clinical Trials in Oncology Statistics and Data Center, at the Mayo Clinic
- Published extensively in colorectal cancer treatment, optimal clinical trial design and endpoints, and prognostic and predictive biomarkers.

Fang-Shu Ou, PhD Oncology Statistics Mayo Clinic

Review Session ASCO 2016

Immunoscore: Future Plans

- SITC and the Scientific Community
 - Immunoscore: TCGA-Like Image database of the 9000 images
 - Possible Multiplex Images?

- Next Pathology Taskforce to address "Hurdles" to multiplex
 - Accademics
 - Industry
 - Govt

Thanks (2) Worldwide Consortium Centers

Galon lab.

INSERM, Cordeliers Research Center, Paris, France

Franck Pagès, Tessa Fredriksen, Florence Marliot, Lucie Lafontaine, Bénédicte Buttard, Sarah Church, Pauline Maby, Helen Angell, Mihaela Angelova, Angela Vasaturo, Bernhard Mlecnik, Gabriela Bindea

Department of Pathology, Providence Portland Medical Center, Portland, OR, USA

Carlo Bifulco

Laboratory of Molecular and Tumor Immunology, Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Portland, OR, USA Bernard Fox

Princess Margaret Hospital, University Health Network, Department of Pathology, Toronto, ON, Canada Pamela S. Ohashi, Michael Roehrl, Prashant Bavi, Sara Hafezi-Bakhtiari, Bradly G. Wouters, Linh Nguyen

Department of Pathology and Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G.Pascale" Naples-Italy Paolo A Ascierto, Gerardo Botti, Fabiana Tatangelo, Paolo Delrio, Gennaro Cilberto

Humanitas Clinical and Research Center, Rozzano, Milan, Italy Fabio Grizzi, Luigi Laghi

Institute of Pathology, University of Bern, Bern, Switzerland Alessandro Lugli, Inti Zlobec, Tilman Rau

Research Branch, Sidra Medical and Research Centre, Doha, Qatar Francesco M. Marincola

Institut Roi Albert II, Department of Medical Oncology Cliniques universitaires St-Luc,

Université Catholique de Louvain, Brussels, Belgium Marc Van den Eynde, Jean-Pierre Machiels

Department of Pathology, University of Erlangen, Erlangen, Germany

Arndt Hartmann, Tilman Rau, Carol Geppert Pathology Department, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands Iris D. Nagtegaal, Elisa Vink-Borger

Department of Oncology-Pathology, Karolinska Institutet, Karolinska University, Stockholm, Sweden Giuseppe V. Masucci, Emilia K. Andersson

Department of Oncology, Medical School and general hospital, Prague, Czech Republic Eva Zavadova, Michal Vocka

*. A			
	-		

Institute for Cancer Research, Center of Translational medicine, Xi'an Jiaotong university, Xian, China Yili Wang

The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad, India

Prabhu S. Patel, Shilin N. Shukla Institute for Advanced Medical Re

Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan Yutaka Kawakami, Shoichi Hazama, Kiyotaka Okuno, Kyogo Itoh, Boryana Papivanova Department of Pathology, Sapporo Medical

Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan Toshihiko Torigoe, Noriyuki Sato

Society for ImmunoTherapy of Cancer Bernard Fox, Francesco Marincola, Howard Kaufman, Lisa Butterfield, Tara Withington, Chelsey Meier

Support (moral) from the World Immunotherapy Council (WIC), and support from societies including, EATI, BDA, CCIC, CIC, CRI, CIMT, CSCO, TIBT, DTIWP, ESCII, NIBIT, JACI, NCV-network, PIVAC, ATTACK, TVACT...

	_	_			
			_		
-	_		_	_	
-	_	_	-	_	

Independent external statisticians Cancer Center Statistics, Mayo Clinic, Rochester, MN, USA Daniel Sargent, Fang-Shu Ou, Jeffrey Meyers

