

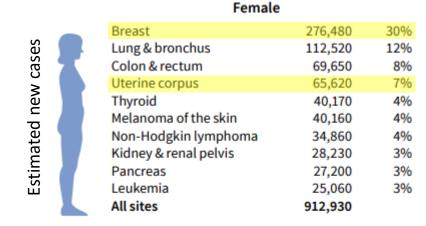
Immunotherapy for the Treatment of Breast Cancer

Nancy Chan, MD

Co-Leader of Breast Oncology/Rutgers Cancer Institute of New Jersey

Disclosures

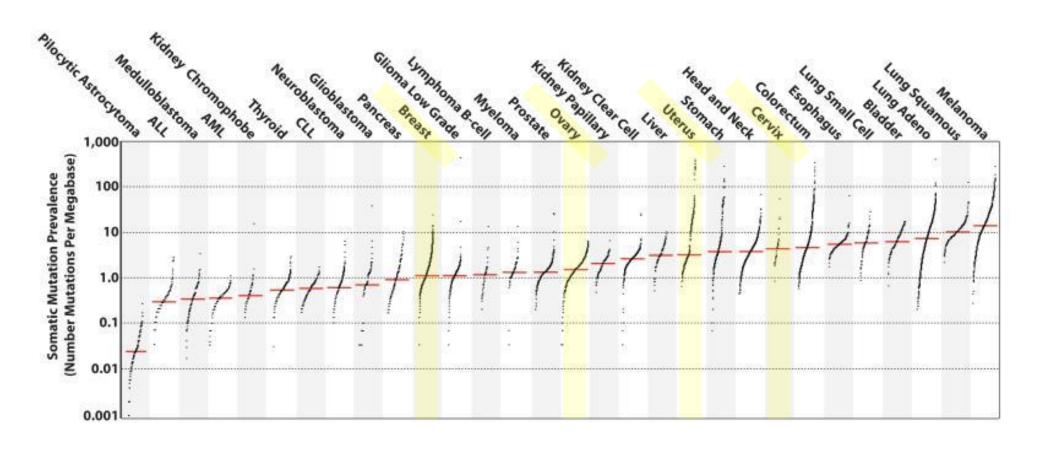
- No relevant financial relationships to disclose
- I will be discussing non-FDA approved indications during my presentation.



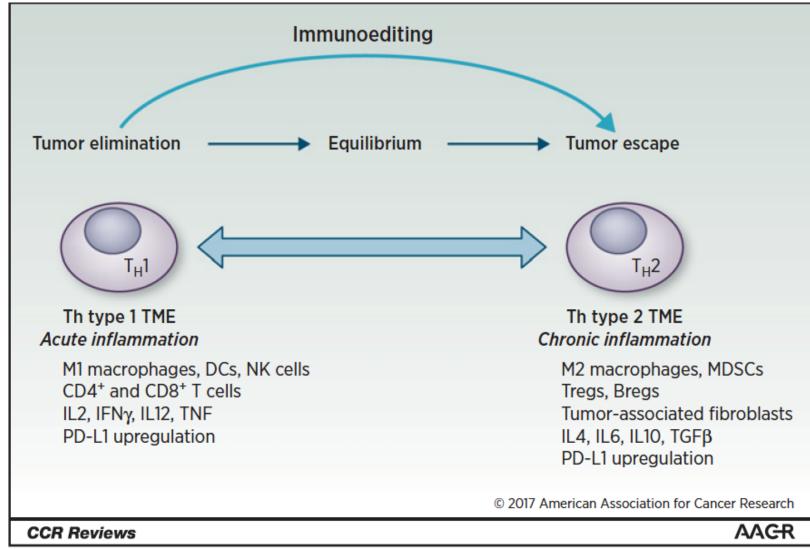
Immunotherapy in breast cancer

- Standard-of-care treatment usually involves surgery, endocrine therapy and/or HER2 directed therapy by subtype, chemotherapy, and radiation
- Application of immunotherapy is still in early stages

		remate		
		Lung & bronchus	63,220	22%
2		Breast	42,170	15%
놡	\mathbf{x}	Colon & rectum	24,570	9%
deaths		Pancreas	22,410	8%
		Ovary	13,940	5%
Estimated		Uterine corpus	12,590	4%
na		Liver & intrahepatic bile duct	10,140	4%
≓਼		Leukemia	9,680	3%
ES		Non-Hodgkin lymphoma	8,480	3%
		Brain & other nervous system	7,830	3%
		All sites	285,360	


Fomale

Immunotherapy in breast and gynecologic cancers



Outline

- Breast cancer
 - Approvals
 - In the pipeline
 - Biomarkers and immunotherapy responsiveness

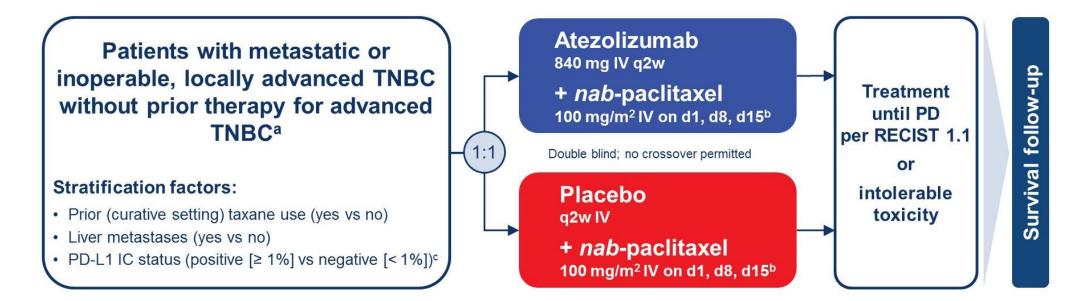
Outline

- Breast cancer
 - Approvals
 - In the pipeline
 - Biomarkers and immunotherapy responsiveness

Current approvals in breast cancer

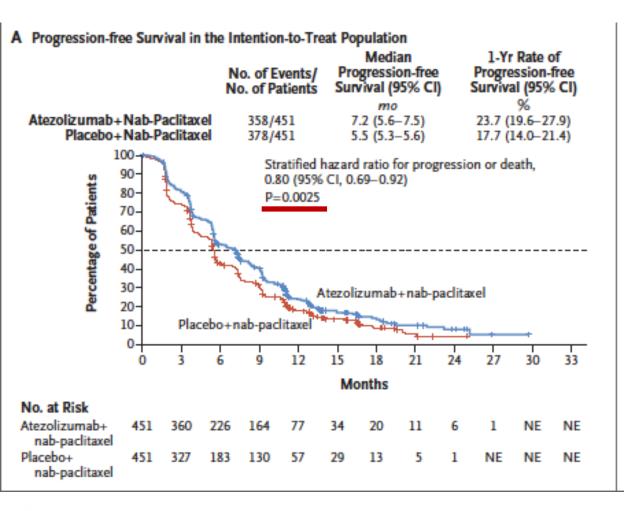
Checkpoint inhibitor	Approved	Indication	Dose	
Pembrolizumab	2017	MSI-H/dMMR advanced cancer with progression on previous treatment	200 mg Q3W or 400 mg Q6W	
Atezolizumab + nab-paclitaxel or paclitaxel protein-bound	2019	Advanced/Metastatic TNBC with PD-L1 ≥1% immune cells	840 mg atezolizumab Q2W + 100 mg/m² nab-paclitaxel on days 1, 8, 15	
Pembrolizumab	2020	TMB-high solid tumors with progression on prior treatment	200 mg Q3W or 400 mg Q6W	
Pembrolizumab + chemotherapy	2020	Locally recurrent/metastatic TNBC with PD-L1 CPS >10	200 mg Q3W or 400 mg Q6W	

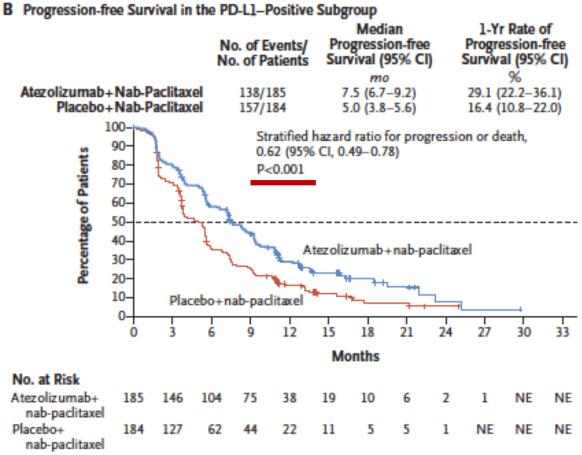
Antibody-drug conjugate	Approved	Indication	Dose	
Ado-trastuzumab emtansine	2019	Adjuvant treatment of HER2-positive early breast cancer	3.6 mg/kg Q3W	
Fam-trastuzumab deruxtecan-nxki	2019	Unresectable/metastatic HER2-positive breast cancer after 2+ HER2 regimens	5.4 mg/kg Q3W	
Sacituzumab govitecan	2020	Metastatic TNBC after two previous therapies	10mg/kg on D1&D8 of 21-day cycle	



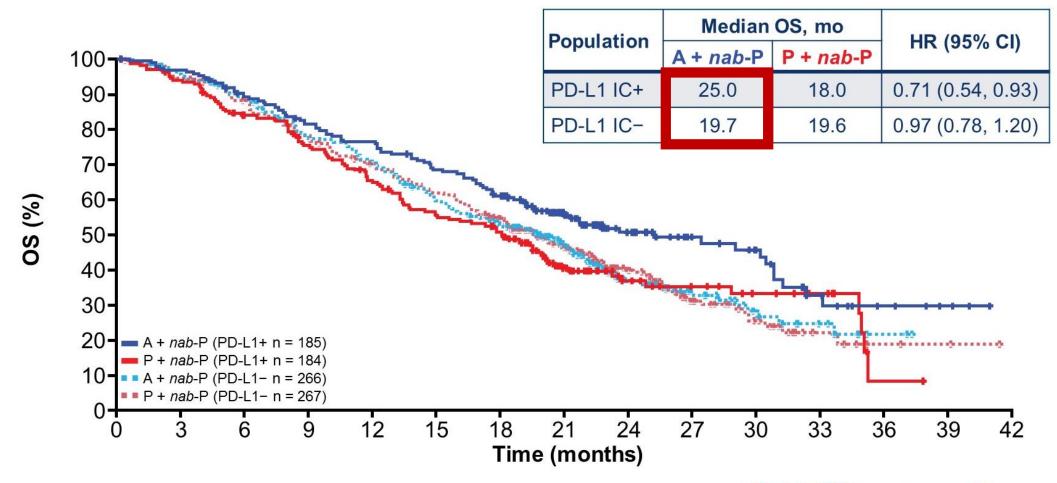
IMpassion130

- Co-primary endpoints in ITT and PD-L1 IC+: PFS and OS^d
- Pre-specified hierarchical testing of OS in ITT and, if significant, in PD-L1 IC+ patients
- In both treatment arms, 41% of patients were PD-L1 IC+

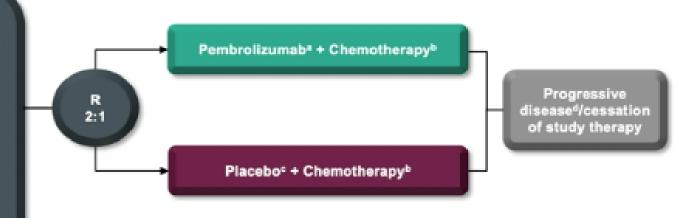




Significant improvement in PFS



IMpassion130: PD-L1+ TNBC



KEYNOTE-355 Study Design (NCT02819518)

Key Eligibility Criteria

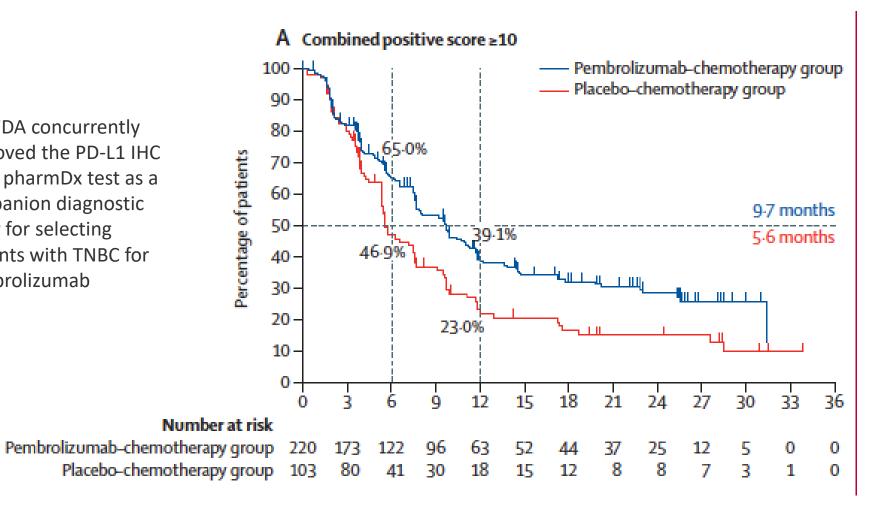
- Age ≥18 years
- Central determination of TNBC and PD-L1 expression
- · Previously untreated locally recurrent inoperable or metastatic TNBC
- Completion of treatment with curative intent ≥6 months prior to first disease recurrence
- ECOG performance status 0 or 1
- Life expectancy ≥12 weeks from randomization
- Adequate organ function
- · No systemic steroids
- · No active CNS metastases
- No active autoimmune disease

Stratification Factors:

- Chemotherapy on study (taxane vs gemcitabine/carboplatin)
- PD-L1 tumor expression (CPS ≥1 vs CPS <1)
- · Prior treatment with same class chemotherapy in the neoadiuvant or adjuvant setting (ves vs no)

*Pembrolizumab 200 mg intravenous (IV) every 3 weeks (Q3W)
*Chemotherapy dosing regimens are as follows:
Nab-paclitaxel 100 mg/m² IV on days 1, 8, and 15 every 28 days
Paclitaxel 90 mg/m² IV on days 1, 8, and 15 every 28 days Gemcitabine 1000 mg/m²/carboplatin AUC 2 on days 1 and 8 every 21 days

⁴Treatment may be continued until confirmation of progressive disease CNS-central nervous system; ECOG=Eastern Cooperative Oncology Group; PD-L1=programmed death ligand 1; R=randomized; TNBC=triple-negative breast cancer

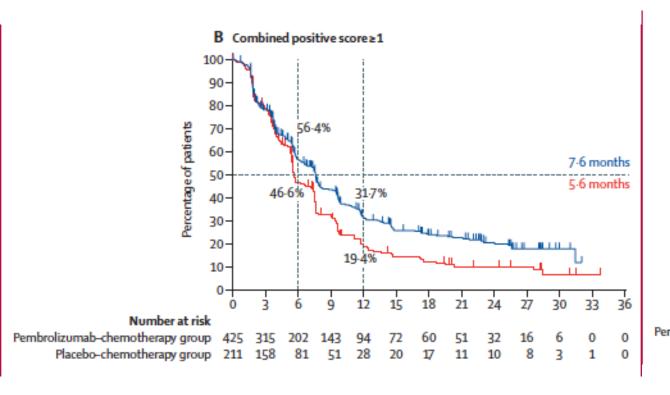


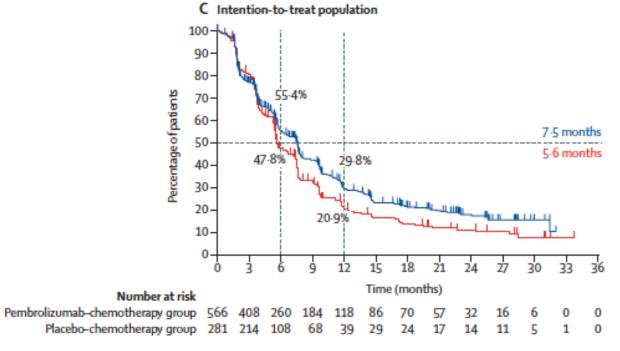
PFS Benefit in CPS>10

The FDA concurrently approved the PD-L1 IHC 22C3 pharmDx test as a companion diagnostic assay for selecting patients with TNBC for pembrolizumab

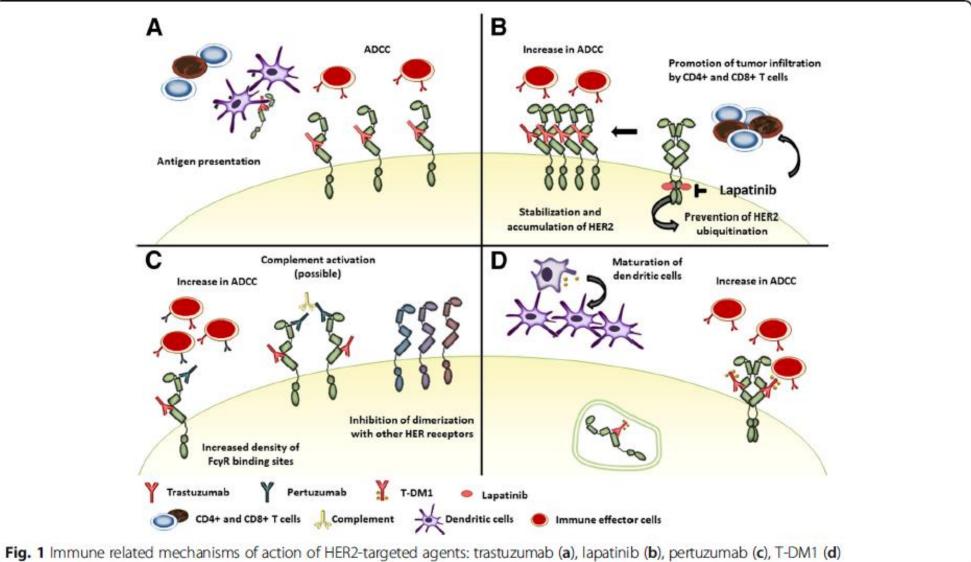
Hazard ratio [HR] for progression or death, 0.65, 95% CI 0.49-0.86; one-sided p=0.0012 [primary objective met]).

Cortes J. et al *Lancet* 2020; 396: 1817–28





CPS ≥1 and ITT:

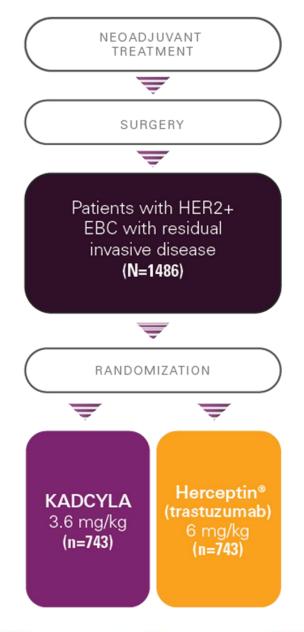


Immune Effects of HER2 directed therapy

T-DM1 in adjuvant setting

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812


FEBRUARY 14, 2019

VOL. 380 NO. 7

Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer

G. von Minckwitz, C.-S. Huang, M.S. Mano, S. Loibl, E.P. Mamounas, M. Untch, N. Wolmark, P. Rastogi, A. Schneeweiss, A. Redondo, H.H. Fischer, W. Jacot, A.K. Conlin, C. Arce-Salinas, I.L. Wapnir, C. Jackisch, M.P. DiGiovanna, P.A. Fasching, J.P. Crown, P. Wülfing, Z. Shao, E. Rota Caremoli, H. Wu, L.H. Lam, D. Tesarowski, M. Smitt, H. Douthwaite, S.M. Singel, and C.E. Geyer, Jr., for the KATHERINE Investigators*

N Engl J Med 2019;380:617-28. DOI: 10.1056/NEJMoa1814017



3 year iDFS improvement of 11%

Outline

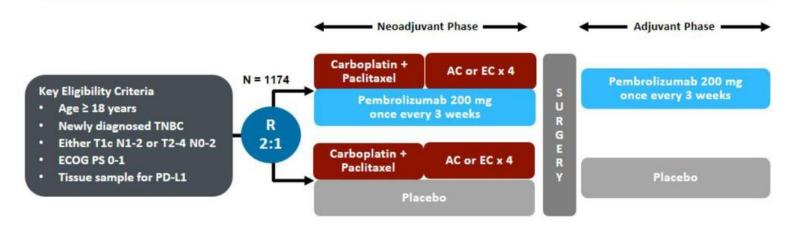
- Breast cancer
 - Approvals
 - In the pipeline
 - Biomarkers and immunotherapy responsiveness
- Gynecologic cancers
 - Approvals
 - In the pipeline

Clinical trials in TNBC

Trial	Treatment arm(s)	Patient selection criteria	n	ORR	Median PFS (months)	Median OS (months)
IMpassion130	Atezolizumab + nab-paclitaxel* *FDA-approved	Metastatic TNBC without prior therapy	902	ITT: 56.0% PD-L1+: 58.9%	ITT: 7.2 PD-L1+: 7.5	ITT: 21.3 PD-L1+: 25.0
	Placebo + nab-paclitaxel			ITT: 45.9% PD-L1+: 42.6%	ITT: 5.5 PD-L1+: 5.0	ITT: 17.6 PD-L1+: 15.5
KEYNOTE-086	Pembrolizumab	A: Metastatic TNBC at 2 nd line or greater	170	5.3% CR: 1.2%	2.0	9.0
		B: PD-L1+ metastatic TNBC without prior therapy	84	21.4% CR: 4.7%	2.1	18.0
IMMU-132-01	Sacituzumab govitecan-hziy* (Anti-Trop-2)	Advanced TNBC with at least 2 prior therapies	108	33.3%	5.5	13.0
KEYNOTE-355	Pembrolizumab + chemotherapy	Locally recurrent inoperable or metastatic	566		ITT: 7.5 CPS >10: 9.7	
	Placebo + chemotherapy	TNBC without prior therapy	281		ITT: 5.6 CPS >10: 5.6	
KEYNOTE-522	Neoadjuvant pembrolizumab + paclitaxel/carboplatin, adjuvant pembrolizumab	Stage II or III TNBC without prior therapy	1174	Pathological complete response rates: ITT: 64.8% vs 51.2% PD-L1+: 68.9% vs 54.9% PD-L1-: 45.3% vs 30.3%		
	Neoadjuvant placebo + paclitaxel/carboplatin, adjuvant placebo					

Clinical trials in HR+ or HER2+ breast cancer

Trial	Treatment arm(s)	Patient selection criteria	n	ORR	Median PFS (months)	Median OS (months)
KEYNOTE-028	Pembrolizumab	ER+/HER2-, PD-L1+ breast cancer	25	12.0% CR: 0%	1.8	8.6
KEYNOTE- 014/PANACEA	Pembrolizumab + trastuzumab	HER2+ breast cancer with progression on trastuzumab	58	PD-L1+: 15% CR: 4% PD-L1-: 0%		
KATE2	Atezolizumab + trastuzumab emtansine	HER2+ advanced breast cancer with previous trastuzumab and a taxane	133	ITT: 45% PD-L1+: 54%	ITT: 8.2 PD-L1+: 8.5	ITT 1-year: 89.1% PD-L1+: 94.3%
	Trastuzumab emtansine		69	ITT: 43% PD-L1+: 33%	ITT: 6.8 PD-L1+: 4.1	ITT 1-year: 89.0% PD-L1+: 87.9%
KATHERINE	Trastuzumab emanstine* (Anti-HER2)	HER2-positive early breast cancer after neoadjuvant therapy	148 6	3-year invasive disease-free survival: 88.3% vs. 77.0%		
DESTINY- Breast01	Trastuzumab deruxtecan*	HER2-positive metastatic breast cancer after trastuzumab emanstine	184	60.9%	16.4	NR



KEYNOTE 522:Neoadjuvant Study

KEYNOTE-522

Confirming Benefit of Pembrolizumab-Containing Neoadjuvant Therapy

Stratification Factors:

- Nodal status (+ vs -)
- Tumor size (T1/T2 vs T3/T4)
- Carboplatin schedule (once weekly vs once every 3 weeks)

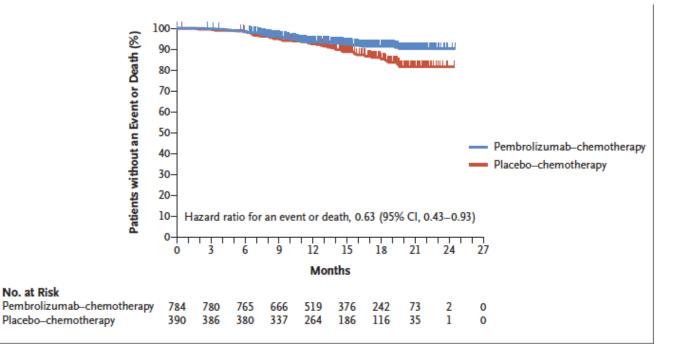


Figure 2. Kaplan-Meier Estimates of Event-free Survival, According to Trial Group in the Intention-to-Treat Population. Tick marks indicate data censored at the last time the patient was known to be alive and without an event (disease progression that precludes definitive surgery; local or distant recurrence or a second primary tumor; or death from any cause). The hazard ratio and confidence interval were analyzed with the use of a Cox regression model with treatment as a covariate stratified according to the randomization stratification factors of nodal status (positive or negative), tumor size (T1 to T2 or T3 to T4), and frequency of carboplatin administration (once weekly or once every 3 weeks).

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Pembrolizumab for Early Triple-Negative Breast Cancer

P. Schmid, J. Cortes, L. Pusztai, H. McArthur, S. Kümmel, J. Bergh, C. Denkert, Y.H. Park, R. Hui, N. Harbeck, M. Takahashi, T. Foukakis, P.A. Fasching, F. Cardoso, M. Untch, L. Jia, V. Karantza, J. Zhao, G. Aktan, R. Dent, and J. O'Shaughnessy, for the KEYNOTE-522 Investigators*

pCR: **64.8%** (pembro-chemo) vs. **51.2%** (placebo-chemo)

After a median follow-up of 15.5 months EFS events occurred in:

- 58 of 784 patients (7.4%) in the pembro-chemo group
- 46 of 390 patients (11.8%) in the placebo chemo group
- (hazard ratio, 0.63; 95% CI, 0.43 to 0.93).

No. at Risk

ALLIANCE CALGB 40603: Addition of caroboplatin led to pCR 54% v 41%; P .0029

The use of neoadjuvant platinum with taxane for treatment of early stage TNBC improve pCR rate, but toxicity limits dosing of carboplatin

In Arm 3 (taxol/carbo/ddAC arm)

- 56% in the carbo arm had Grade 3-4 neutropenia
- 20% had Grade 3-4 thrombocytopenia
- 10 pts had febrile neutropenia

J Clin Oncol 33:13-21.

DOI: 10.1200/JCO.2014.57.0572

	Arm One: Control (%)		Arm Three: Control + Carbo (%)	
Leukopenia	12	13	13	25
Neutropenia	22	27	56	67
Thrombocytopenia	4	3	20	26
Hemoglobin	0	2	4	5
Febrile neutropenia	7	9	12	24
Nausea	4	4	3	8
Vomiting	2	2	2	4
Mucositis	2	0	1	4
Diarrhea	0	3	2	3
Hypertension	2	12	0	10 *
ALT elevation	0	3	0	3
Hypokalemia	3	1	6	2
Peripheral neuropathy	2	6	7	4
Fatigue	10	12	10	20
Pain	3	6	3	11

NOTE. Bold font indicates significant difference in incidence compared with other treatment arms. Early surgical complications requiring intervention \pm bevacizumab: 9% versus 5%; delayed surgical complications requiring intervention \pm bevacizumab: 4% versus 1%.

Abbreviations: Bev, bevacizumab; Carbo, carboplatin.

^{*}One treatment-related fatality.

Neoadjuvant chemotherapy regimens in TNBC

- ISPY2 demonstrated addition of pembrolizumab improves pCR rate:
 - pCR 60% in pembro-chemo (P+C) arm vs 20% in standard chemo (C) alone arm
 - Standard chemo: 12 weekly pacliaxel →AC (q2-3 wks)

KEYNOTE-522

- pCR: 64.8% in the pembro—chemo group vs. 51.2% in chemo alone group
- Toxicity: treatment-related AE ≥ grade 3: 78.0% in (P+C) and 73.0% in chemotherapy group
- febrile neutropenia: 14.6% (P+C) and 12.1% (C)
- discontinuation of any trial drug: 23.3% (P+C), 12.3% (C)

Outline

- Breast cancer
 - Approvals
 - In the pipeline
 - Biomarkers and immunotherapy responsiveness
- Gynecologic cancers
 - Approvals
 - In the pipeline

Biomarkers and immunotherapy responsiveness in breast cancers

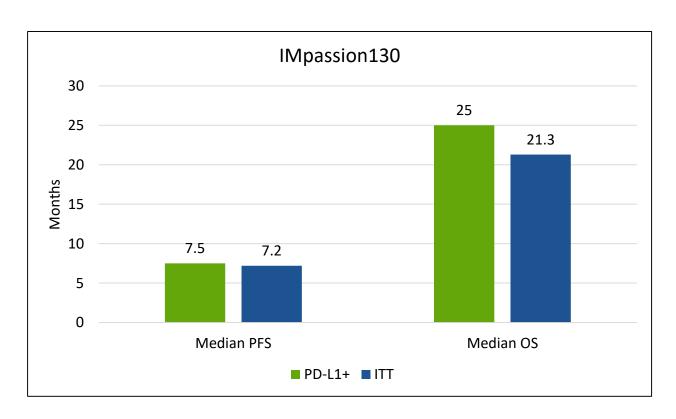
- <u>Potential</u> markers of responsiveness include:
 - PD-L1
 - Tumor infiltrating lymphocytes
 - Mutational signatures

ADDITIONAL TARGETED THERAPIES AND ASSOCIATED BIOMARKER TESTING FOR RECURRENT OR STAGE IV (M1) DISEASE

FDA-approved biomarkers only include:

- PD-L1+ by SP142
- TMB 10 or more
- MSI high

Biomarkers Associated with FDA-Approved Therapies							
Breast Cancer Subtype	Biomarker	Detection	FDA-Approved Agents	NCCN Category of Evidence	NCCN Category of Preference		
Any ^a	BRCA1 mutation BRCA2 mutation	Germline sequencing	Olaparib	Category 1	Preferred		
			Talazoparib	Category 1	Preferred		
HR-positive/ HER2-negative ^b	PIK3CA mutation	PCR (blood or tissue block if blood negative), molecular panel testing	Alpelisib + fulvestrant ^d	Category 1	Preferred second- line therapy		
HR-negative/ HER2-negative ^c	PD-L1 expression • Threshold for positivity: ≥1% on tumor- infiltrating immune cells	IHC	Atezolizumab + albumin-bound paclitaxel	Category 2A	Preferred		
Any	NTRK fusion	FISH, NGS, PCR (tissue block)	Larotrectinib ^e	Category 2A	Useful in certain circumstances ^e		
			Entrectinib ^e	Category 2A	Useful in certain circumstances ^e		
Any	MSI-H/dMMR	IHC, PCR (tissue block)	Pembrolizumab ^f	Category 2A	Useful in certain circumstances ^f		

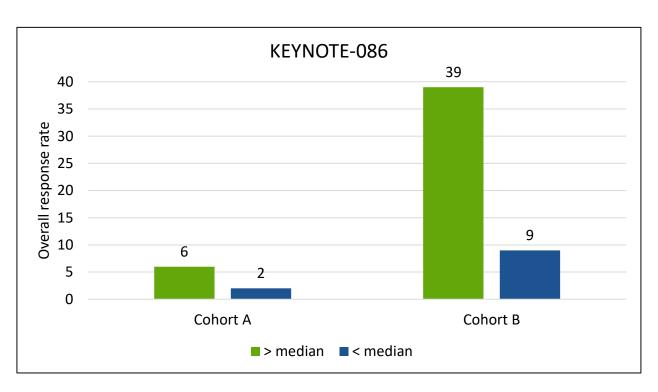


Biomarkers and immunotherapy responsiveness in breast cancers

- Potential markers of responsiveness include:
 - PD-L1
 - Tumor infiltrating lymphocytes
 - Mutational signatures

Here, patients with PD-L1 on ≥ 1% of tumorinfiltrating immune cells had improved outcomes on atezolizumab + chemotherapy compared to the general population (OS HR 0.62 vs 0.84)

However, PD-L1 expression does not always correlate with response to all ICIs.



Biomarkers and immunotherapy responsiveness in breast cancers

- Potential markers of responsiveness include:
 - PD-L1
 - Tumor infiltrating lymphocytes
 - Mutational signatures

Here, patients with a tumor infiltrating lymphocyte level greater than the median level had improved outcomes when treated with pembrolizumab, particularly in the front-line setting (cohort B).

*Not an FDA-approved biomarker for treatment selection

Biomarkers and immunotherapy responsiveness in breast cancers

 Potential markers of responsiveness include: Most immunogenic ↑↑↑ CD8**TNBC** • PD-L1 ↑↑↑ immune infiltrate 个个个 PD-L1 HRD low/allele- Tumor infiltrating lymphocytes specific LOH- Mutational signatures Immunogenic negative 个个 CD8 HR+ ↑↑ immune infiltrate BRCA1/2-个个 PD-L1 deficient breast Pembrolizumab is also **Immunogenic** cancers approved for MSI-个个 CD8 **TNBC** H/TMB-H tumors ↑↑ immune infiltrate HRD high/allele-个个 PD-L1 specific LOH-*BRCA/HRD not FDA-Least immunogenic positive approved biomarkers for √ CD8 HR+

Kraya, Clin Cancer Res 2019.

#LearnACI

HRD = homologous recombination deficiency; LOH = loss of heterozygosity

↓ immune infiltrate

↓ PD-L1

immunotherapies

Conclusions

• Immunotherapy in breast cancers is expanding rapidly

Immunotherapy in breast cancer shows promise in certain subtypes

Case Studies

Case Study 1

65 y.o. woman with de novo stage 4 TNBC with metastatic disease to the bone, liver, and lung presents for initial consultation. She has not received any treatment in the metastatic setting.

- 1. What is the first step in evaluating her disease to determine the 1st line therapy?
 - A. Initiate chemotherapy with Gemcitabine plus carboplatin
 - B. Biopsy metastatic site and send off for PD-L1 IHC
 - C. Initiate radiation to the liver lesions
 - D. Initiate endocrine therapy with tamoxifen
- 2. The patient initiates 1st line therapy, on her first restaging scan at 3 months, she has achieved PR. She feels well and continues on current therapy. What are the routine labs for patients like her?
 - A. CBC with diff
 - B. CMP
 - C. TFTs
 - D. All of the above
- 3. Her TSH on routine labs was found to be elevated at 10, she is asymptomatic, what is the next step?
 - A. Admit patient to the hospital
 - B. Do nothing
 - C. Begin levothyroxine
 - D. All of the above

