

Immunotherapy for the Treatment of GU Malignancies

Eric A. Singer, MD, MA
Assistant Professor Surgery
Section of Urologic Oncology
Robert Wood Johnson Medical School

eric.singer@rutgers.edu

Disclosures

• None

Disclosures

Learning Objectives

- Discuss current treatment strategies for kidney cancer, prostate cancer, and bladder cancer
- Review the role of immunotherapy in the management of genitourinary malignancies
- Discuss selected immunotherapy clinical trials at CINJ

Principles of Immunotherapy

- Based on immune system's ability to recognize and destroy cancer cells
 - Potential for long-term results (durable responses)
 - Lack of typical drug resistance
 - Auto-immune toxicities (different from conventional drugs)
- Effective tumor immunotherapy treatments are designed to:
 - Promote cancer-immunity cycle
 - Block immune suppression of tumors

Principles of Immunotherapy

- Based on immune system's ability to recognize and destroy cancer cells
 - Potential for long-term results (durable responses)
 - Lack of typical drug resistance
 - Auto-immune toxicities (different from conventional drugs)
- Effective tumor immunotherapy treatments are designed to:
 - Promote cancer-immunity cycle
 - Block immune suppression of tumors

Renal Cell Carcinoma

Advanced RCC

53 y.o. man with a 20x20cm kidney tumor.

Advanced RCC

24 y.o. man with bulky retroperitoneal lymphadenopathy

Advanced RCC

56 y.o. woman with extensive liver mets

- Approximately 61,560 new cases diagnosed and an estimated 14,080 deaths in U.S. in 2015 (Siegel et al. CA Can J Clin 2015)
 - 7th and 10th most common malignancy in men and women, respectively
- Americans face a diagnosis of renal malignancy at a rate of approximately 1 in 67 over the course of their lifetime (Altekruse et al. *SEER* 2009)

National Cancer Database

RCC stage distribution by diagnosis year

National Cancer Database

RCC stage distribution by diagnosis year

National Cancer Database

RCC 5-year survival by AJCC stage

National Cancer Database

RCC 5-year survival by AJCC stage

VHL Gene Complex

VHL Gene Complex

Targeted Therapies for Kidney Cancer

Evolving therapeutic targets in renal cell carcinoma Singer et al.

Table 2. Key phase 3 trials of FDA-approved targeted therapies for advanced renal cell carcinoma							
Therapy	Target	Treatment line	Comparison arm	Primary endpoint			
Sunitinib [5]	VEGFR	Firstline	IFN-α	PFS			
Temsirolimus [6]	mTOR	Firstline	IFN-α	OS			
Bevacizumab + IFN- α (AVOREN) [7]	VEGF	Firstline	Placebo $+$ IFN- α	OS			
Bevacizumab + IFN- α (CALGB) [8]	VEGF	Firstline	IFN-α	OS			
Sorafenib [9]	VEGFR	Cytokine failure	Placebo	OS			
Everolimus [10]	mTOR	VEGFR failure	Placebo	PFS			
Pazopanib [11]	VEGFR	Firstline or cytokine failure	Placebo	PFS			
Axitinib [12]	VEGFR	Secondline	Sorafenib	PFS			

IFN, interferon; mTOR, mammalian target of rapamycin; OS, overall survival; PFS, progression-free survival; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor. Modified from [13].

Targeted Therapies for Kidney Cancer

Evolving therapeutic targets in renal cell carcinoma Singer et al.

Table 2. Key phase 3 trials of FDA-approved targeted therapies for advanced renal cell carcinoma						
Therapy	Target	Treatment line	Comparison arm	Primary endpoint		
Sunitinib [5]	→ VEGFR	Firstline	IFN-α	PFS		
Temsirolimus [6]	mTOR	Firstline	IFN-α	OS		
Bevacizumab + IFN- α (AVOREN) [7]	VEGF	Firstline	$Placebo + IFN\text{-}\alpha$	OS		
Bevacizumab + IFN- α (CALGB) [8]	VEGF	Firstline	IFN-α	OS		
Sorafenib [9]	VEGFR	Cytokine failure	Placebo	OS		
Everolimus [10]	mTOR	VEGFR failure	Placebo	PFS		
Pazopanib [11]	VEGFR	Firstline or cytokine failure	Placebo	PFS		
Axitinib [12]	→ VEGFR	Secondline	Sorafenib	PFS		

IFN, interferon; mTOR, mammalian target of rapamycin; OS, overall survival; PFS, progression-free survival; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor. Modified from [13].

5 drugs targeting VEGF/VEGFR2 drugs targeting mTOR

Targeted Therapies for Kidney Cancer

Evolving therapeutic targets in renal cell carcinoma Singer et al.

Table 2. Key phase 3 trials of FDA-approved targeted therapies for advanced renal cell carcinoma							
Therapy	Target	Treatment line	Comparison arm	Primary endpoint			
Sunitinib [5]	VEGFR	Firstline	IFN-α	PFS			
Temsirolimus [6]	mTOR	Firstline	IFN-α	OS			
Bevacizumab + IFN- α (AVOREN) [7]	VEGF	Firstline	Placebo $+$ IFN- α	OS			
Bevacizumab + IFN-α (CALGB) [8]	VEGF	Firstline	IFN-α	OS			
Sorafenib [9]	VEGFR	Cytokine failure	Placebo	OS			
Everolimus [10]	mTOR	VEGFR failure	Placebo	PFS			
Pazopanib [11]	VEGFR	Firstline or cytokine failure	Placebo	PFS			
Axitinib [12]	VEGFR	Secondline	Sorafenib	PFS			

IFN, interferon; mTOR, mammalian target of rapamycin; OS, overall survival; PFS, progression-free survival; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor. Modified from [13].

Bevacizumab = monoclonal antibody against VEGF

- High-dose IL-2 is a highly morbid but potentially curative treatment for carefully selected patients with metastatic renal cell carcinoma (mRCC)
- Targeted therapies (TT) have revolutionized the treatment of mRCC in the past decade and have largely replaced immunotherapy such as high-dose interleukin-2 (HD IL-2)
- We evaluated trends in HD IL-2 use for mRCC in the TT era

- Weighted sample representing an estimate of patients undergoing HD IL-2 treatment for mRCC from 2004 to 2012
 - Premier Hospital Database, a nationally representative hospital discharge database
- Assessed temporal trends in patient, disease, and hospital characteristics stratifying by era
 - Pre-TT uptake: 2004-2006; Uptake: 2007-2009; Post-uptake: 2010-2012
 - Fitted multivariable regression models, accounting for clustering and weighting, to identify predictors of HD IL-2 treatment toxicity and tolerability.

- An estimated 2351 patients received HD IL-2 for mRCC in the United States from 2004 through 2012
- HD IL-2 use decreased from 2004 to 2008
- HD IL-2 became increasingly concentrated in academic centers, from 24% of treatments in 2004 to 89.5% in 2012
- Most HD IL-2 patients were men (75.3%), Caucasian (70.7%), aged <60 (59.6%), had lung metastases (60.9%), and were otherwise healthy (64.7% Charlson comorbidity index=0)

High-Dose IL-2 Utilization for Kidney Cancer

High-Dose IL-2 Utilization for Kidney Cancer

- Toxicities were common, with 53.4%, 33.0%, and 7.1% requiring vasopressors, ICU admission, and hemodialysis respectively
- Factors associated with increased toxicities on multivariable analyses included being unmarried, male, and having multiple metastatic sites
- African Americans and patients with single metastatic sites were less likely to receive >1 treatment cycles

- HD IL-2 is used infrequently for mRCC in the United States
- Patients selected for treatment are relatively young and healthy
- Despite strict patient selection, toxicities are common
- HD IL-2 use has been increasingly restricted to academic centers since 2004, posing a possible barrier to patient access

Resurgence of Immunotherapy for RCC

- Rare CR with TT
- Development of checkpoint inhibitors
 - Anti-PD-1 antibody that restores T-cell immune activity

Nivolumab for Metastatic RCC: Results of a Randomized Phase II Trial

- 168 subjects with *previously treated clear cell mRCC*
 - VEGF/VEGFR
- Randomly assigned to nivolumab 0.3, 2, or 10 mg/Kg IV q3 weeks
 - PD-1 checkpoint inhibitor
- Endpoints:
 - Primary: evaluate dose-response relationship (PFS)
 - Secondary: objective response rate (ORR), overall survival (OS), and safety

Nivolumab for Metastatic RCC: Results of a Randomized Phase II Trial

Nivolumab for Metastatic RCC: Results of a Randomized Phase II Trial

- No dose-dependent relationship for PFS.
- Median PFS of 4.2 months (10mg/Kg)

- Median OS was 18.2 months, 25.5 months, and 24.7 months, respectively
- Greater than OS reported in pivotal phase III TT trials

- 34 subjects with *previously treated advanced RCC*
 - At least 1 but not more than 5 prior systemic therapies
- Nivolumab 1 or 10 mg/Kg IV twice per week for up to 96 weeks
 - Subjects re-imaged after each 8 week treatment cycle up to 12 cycles
- Subjects received nivolumab until CR, unacceptable toxicty, or PD

Median OS 22.4 months

Median PFS 7.3 months

PD-1 Blockade Therapy in Renal Cell Carcinoma: Current Studies and Future Promises

Table 3
Current trials focused on PD-1/PD-L1 blocking agents (www.clinicaltrials.gov). CTLA-4 = cytotoxic T-lymphocyte-associated protein 4; DC = dendritic cell; IDO1 = indoleamine 2,3-dioxygenase 1; IFN- α = interferon- α ; LAG3 = lymphocyte-activation gene 3; RCC = metastatic renal cell carcinoma; PD-1 = programmed death-1; PD-L1 = programmed death ligand-1.

Target	Trial ID number	Phase	Description
PD-1	NCT01472081	I	In combination with ipilimumab at different doses in previously treated mRCC patients
	NCT01844505	III	vs. everolimus in mRCC patients who have received prior anti-angiogenic therapy
	NCT01358721	I	Characterization of peripheral immune cells, soluble factors, tumor immune infiltrates and markers in mRCC patients treated with nivolumab
	NCT02231749	III	In combination with ipilimumab vs. sunitinib in previously untreated mRCC patients
	NCT02210117	II	In combination with ipilimumab vs nivolumab plus bevacizumab as neoadjuvant therapy in mRCC patients eligible for cytoreductive nephrectomy
	NCT01968109	I	Anti-LAG-3 BMS-986016 With or without nivolumab in patients with advanced solid tumors including RCC
Pembrolizumab PD-1	NCT02212730	I	Alone as neoadjuvant therapy in participants undergoing RCC tumor resection
	NCT02178722	I/II	in combination with the inhibitor of IDO1 INCB024360 in patients with advanced solid tumors including RCC
	NCT02014636	I/II	In combination with pazopanib in treatment naïve subjects with advanced RCC
	NCT02133742	Í	In combination with axitinib in previously untreated mRCC patients
	NCT02089685	I/II	In combination with ipilimumab or IFN-α in patients with advanced melanoma or RCC
	NCT02179918	ľ	In combination with PF-05082566, a 4-1BB agonist monoclonal antibody in patients with solid tumors
PD-1	NCT01441765	II	Alone or in conjunction with DC/RCC fusion cell vaccine in mRCC patients
PD-L1	NCT01375842	I	Patients with advanced solid tumors including RCC
	NCT01984242	II	In combination with bevacizumab vs. sunitinib as first-line therapy in patients with mRCC
	NCT01988896	I	In combination with MEK inhibitor cobimetinib in patients with advanced solid tumors including RCC
	NCT02174172	I	In combination with ipilimumab or IFN- α in patients with advanced solid tumors including RCC
PD-L1	NCT02118337	I	In combination with anti-PD-1 MEDI0680 in patients with advanced solid tumors including RCC
	NCT01975831	I	In combination with anti-CTLA-4 Tremelimumab in patients with advanced solid tumors including RCC
	PD-1 PD-1 PD-1 PD-L1	number PD-1 NCT01472081 NCT01844505 NCT01358721 NCT02231749 NCT02210117 NCT01968109 PD-1 NCT02212730 NCT02178722 NCT02014636 NCT02133742 NCT02089685 NCT02179918 PD-1 NCT01441765 PD-L1 NCT01375842 NCT01984242 NCT01988896 NCT02174172 PD-L1 NCT02118337	NCT01472081 I NCT01844505 III NCT01358721 I NCT02231749 III NCT02210117 II NCT02210117 II NCT02212730 I NCT02178722 I/II NCT0214636 I/II NCT02133742 I NCT02089685 I/II NCT02179918 I PD-1 NCT01441765 II PD-L1 NCT01375842 I NCT01984242 II NCT01988896 I NCT02174172 I PD-L1 NCT02174172 I PD-L1 NCT02118337 I

BTCRC-GU14-003:

Phase Ib and Phase II Studies of anti-PD-1 Antibody MK-3475 in Combination with Bevacizumab for the Treatment of Metastatic Renal Cell Carcinoma

Teaming up to fight cancer

Arkadiusz Z. Dudek, MD, PhD University of Illinois at Chicago

Member Institutions

- University of Illinois
- Indiana University
- University of Iowa
- University of Michigan
- Michigan State University
- University of Minnesota

- University of Nebraska
- Northwestern University
- Penn State University
- Purdue University
- Rutgers, The State
 University of New Jersey
- University of Wisconsin

Background

- Tumor microenvironment may impact the efficacy of these immunotherapies and there is an interaction between immune response and tumor angiogenesis
- Anti-PD1 MK-3475 has demonstrated response in Kidney Cancer
- Bevacizumab has been approved for treatment of Kidney Cancer.

Background

- Lower doses of an anti-VEGF receptor 2 (VEGFR2) antibody treatment enhanced the anti-cancer efficacy of a vaccine therapy in a model of immune tolerant breast CA
 - Demonstrated improvement in tumor vascularization
 - Polarized tumor associated macrophages from an immunosuppressive (M2-like) to an immune-stimulatory (M1-like) phenotype
 - Which facilitated recruitment of activated CD8 (+) T cells and improved tumor infiltration

Background

- rh-endostatin, an antiangiogenic, improved the anti-cancer effect of adoptive Cytokine-induced killer (CIK) cells against lung carcinoma.
 - The proposed mechanism was a synergistic therapeutic effect in which endostatin contributed to structural normalization of tumor vasculature
 - Endostatin augmented homing of the CIK cells and subsequently intratumoral CD3(+) T lymphocytes
 - Addition of an anti-angiogenic agent normalized vasculature, reduced hypoxia, and altered the tumor microenvironment to enhance tumor infiltration by transferred CIK cells and T-lymphocytes

Hypothesis

• Dudek et al. hypothesize that through the strategy of adding the anti-VEGF agent bevacizumab to the anti-PD1 agent (MK-3475) we will enhance tumor infiltration by T-lymphocytes, enhancing the clinical activity of PD-1 in renal cell cancer

Phase II SCHEMA

BTCRC-GU14-003

Phase II Objectives

Primary Objective:

• Determine the activity of the combination of MK-3475 and bevacizumab as a first line therapy for subjects with treatment naïve metastatic clear cell RCC as assessed by response rates (complete or partial response) (RR) based on RECIST 1.1.

Secondary Objectives:

- Characterize AE's of MK-3475 in combination with bevacizumab in subjects with treatment-naïve metastatic RCC.
- Evaluate clinical benefit RR (complete, partial response, or stable disease) of MK-3475 in combination with bevacizumab in subjects with treatment-naïve metastatic RCC.
- Measure PFS using RECIST 1.1 at 6 months in subjects with treatment-naïve metastatic RCC treated with MK-3475 in combination with bevacizumab.
- Measure OS at 2 years in subjects with treatment-naïve metastatic RCC treated with MK-3475 in combination with bevacizumab.

Correlatives

- Evaluate PD-L1 expression of archived tumor tissue and correlate to clinical response
- Assess tumor vascular density of archived tumor tissue and correlate to clinical response.
- Assess CD4(+) and CD8(+) T-cell infiltration of archived tumor tissue and correlate to clinical response.
- Assess number of circulating cancer cells at baseline and during treatment and correlate to clinical response
- Measure soluble PD-L1 level at baseline and during treatment and correlate to clinical response.
- Measure VEGFc at baseline and during treatment and correlate to clinical response.
- Samples for future studies

Prostate Cancer

Therapeutic Cancer Vaccines

- Designed to generate a targeted anti-tumor immune response
- Associated with minimal toxicities
- May have delayed effects relative to standard cytotoxic therapies
- May have impact beyond the period of administration

Sipuleucel-T

Sipuleucel-T

First Cancer Vaccine Approved by the US FDA

Sipuleucel-T

First Cancer Vaccine Approved by the US FDA

Pox Viral-Based Vaccines

Pox Viral-Based Vaccines

PSA-Tricom "Off the Shelf"

PSA-TRICOM Significantly Extended Overall Survival

How can vaccines improve survival without impacting time to progression?

How can vaccines improve survival without impacting time to progression?

Earlier Vaccine Use May Have Greater Impact on Clinical Outcomes

Earlier Vaccine Use May Have Greater Impact on Clinical Outcomes

Vaccines in *Combination* with Other Therapies May Improve Time To Progression

Bladder Cancer

Bladder Cancer

- Incidence:
 - 4th most common cancer in men
 - 12th most common cancer in women
 - 74,000 new cases and 16,000 deaths in 2015 alone
- Represents 7% of all cancers and 3% of all cancer deaths
- Recurrence and routine surveillance/treatment make bladder cancer *most expensive malignancy to treat* from diagnosis to death (\$187,241/patient in 2001)

Siegel et al. CA Cancer J Clin 2014.

No Therapeutic Advance in Last Two Decades 5-Yr Survival Rates Poor in Advanced Disease

New FDA-Approved Drugs in GU Cancers

All Races African American Galsky et al. Clinical Advances in Hematology & Oncology 2013.

No Therapeutic Advance in Last Two Decades 5-Yr Survival Rates Poor in Advanced Disease

New FDA-Approved Drugs in GU Cancers

Siegel et al. CA Cancer J Clin 2014. Galsky et al. Clinical Advances in Hematology & Oncology 2013.

28 27 28

100100100 100100100

80 70 60

50 40 30

20

African American

PANVAC PROTOCOL

Rationale and Background

- HG NMIBC (Ta, T1, and/or CIS) is managed by BCG but still with ~35% initial failure rate after induction course in terms of progression and/or recurrence.
- Although 20-35% of cases that fail an initial course can benefit from a second induction course, patients best served by radical cystectomy if continue to fail to respond.
- Radical cystectomy is potentially morbid and so <u>unmet clinical</u> <u>need</u> for patients that still have NMIBC that fails to respond to BCG.

Rationale and Background

- BCG works by unclear immunologic mechanism:
 - Athymic animals only respond to BCG when T cells administered
 - BCG-induced macrophage cytotoxicity important and promoted by Th1 immune system (TNF-a, IFN-y, IL-12, IL-18) and inhibited by Th2 immune system (IL-4, IL-10) and Tregs
 - T cell infiltration important as degree of infiltration (CD3, CD4, and CD8) with immune cells is greater in patients with a complete response to BCG

Pox Vector Vaccine: PANVAC

Pox Vector Vaccine: PANVAC

Rationale for PANVAC

- Pox viral vector-based vaccine than can induce CD4 and CD8 antigen-specific immune response against *MUC-1* and *CEA*
 - Also contains 3 co-stimulatory molecules (Tri-Com)
 - Excellent safety record in other tumors
 - Administered subcutaneously
- MUC-1 expression in up to 93% bladder tumors
- **CEA** expressed in 76% of HG tumors and 59% of T1 bladder tumors
- Postulate that this drug may enhance an immune response in HG tumors that have not responded to BCG

Hypotheses/Objectives

• Primary:

 PANVAC will augment BCG-induced cytotoxic T lymphocyte response against bladder cancer cells expressing MUC-1 and/or CEA when given with BCG and will result in greater 12 month RFS than BCG alone in patients who failed to respond to at least 1 previous induction course of BCG

• Secondary:

 PANVAC+BCG will have greater **PFS** and greater **immune response** than BCG alone

Schema

Eligibility

- Adults with histologically confirmed high grade (Ta, T1, and/or CIS) UC of bladder who "failed" at least one induction course of BCG (either progressed and/or recurred)
- Patients who fail ≥1 induction course of BCG have been offered radical cystectomy and either refuse or are not surgical candidates for cystectomy
- ECOG PS 0-2

Immune Correlates

- Biopsy (compared day 0 and week 17 tissue) IHC for:
 - CEA and MUC-1
 - CD4, CD8, and Tregs (by DS for Foxp3 and CD4)
 - Myeloid derived suppressor cells (MDSC)
- PBMCs and sera at 4 time points (week 0 (prior to vaccination), week 3 (prior to BCG), week 8 (prior to last BCG), and week 17 (end of treatment):
 - Flow cytometry for 23 markers (e.g. CD4, CD8, Tregs, MDSCs, and NK)
 - In HLA-A2 allele patients, ELISPOT for CD8 T-cell responses for CEA and MUC-1 and cascade antigen Brachyury
 - If sufficient sample available, CD4 specific responses to CEA will be measured
 - Study sera for Ab to CEA
- Urine
 - Check levels of urinary cytokines at week 3 and week 5 to assess cytokine production in response to BCG and PANVAC therapy
- PPD
 - See if any correlation with immunologic response

Conclusions

- Immunotherapy continues to be an area of active investigation for GU malignancies
- Multimodal therapy is most likely to provide the greatest benefit to the largest number of patients
- Clinicians will need to become comfortable with new types of therapies and the management of their toxicities
- Referral to/participation in clinical trials remains critical

Acknowledgements

- James Gully, MD, PhD (NCI)
- Ravi Madan, MD (NCI)
- Piyush Agarwal, MD (NCI)
- Arkadiusz Dudek, MD, PhD (UIC)

Future Directions

• CINJ Clinical Trials:

http://cinj.org/clinical-trials/index

http://cinj.org/

Questions?

"If we knew what we were doing it wouldn't be research."

Thank You!

