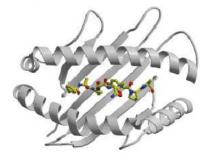
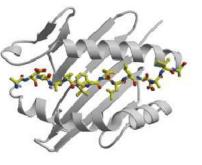
## The PD-1/PD-L1 Pathway as a Target in Tumor Immunotherapy

Scott S. Tykodi, MD, PhD December 14, 2013





Fred Hutchinson Cancer Research Center UW Medicine Seattle Children's

# **Learning Objectives**

- Review the biology of the PD-1 / PD-L1 pathway as it relates to tumor immunity
- Review safety and efficacy data for the lead therapeutic blocking antibodies targeting PD-1 and PD-L1
  - Anti-PD-1 (nivolumab)
  - Anti-PD-L1 (MPDL3280A)
- Discuss available evidence for on-target mechanism of action and biomarker development.

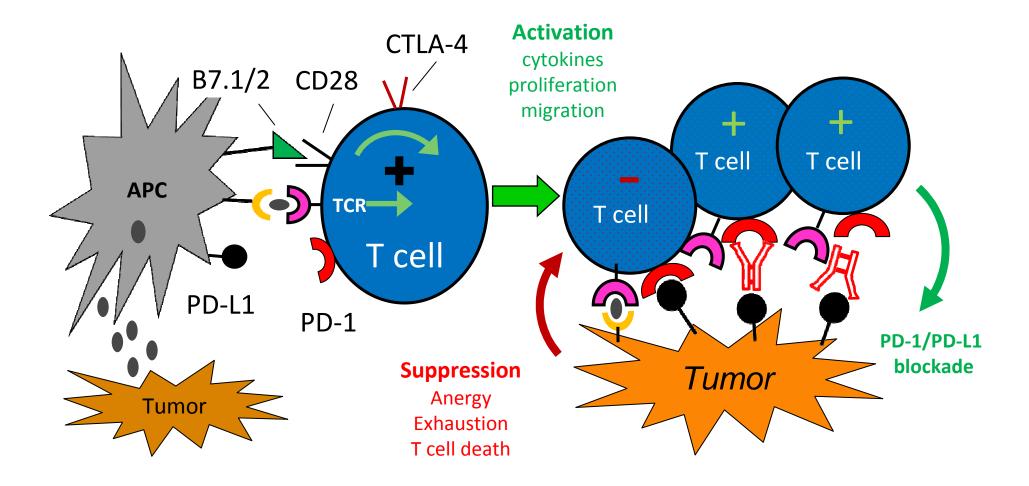
## T Cell Specificity: TCR Recognition of HLA + Antigenic Peptide





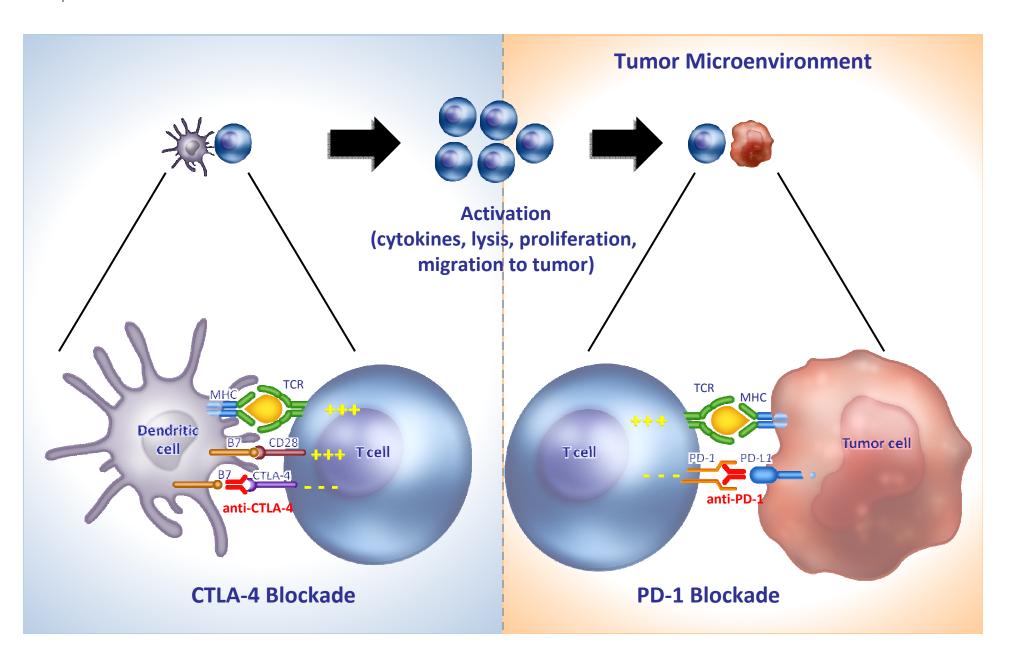
**HLA Class I** 

#### HLA Class II

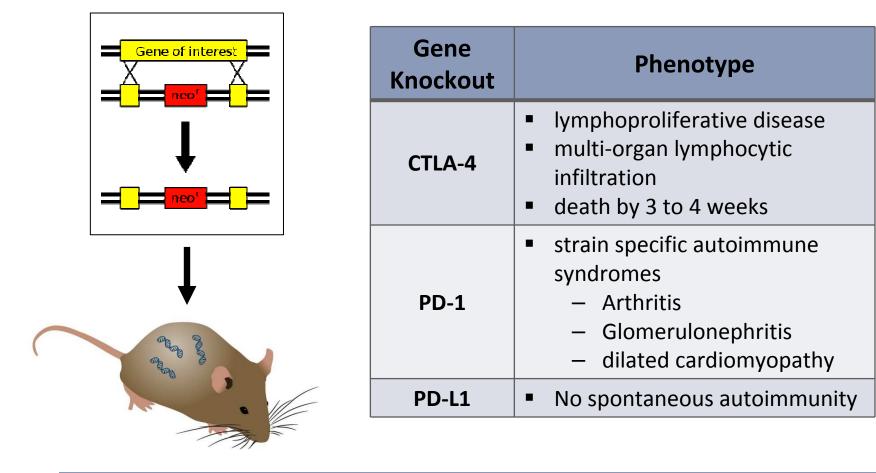

HLA-Associated Peptide Antigens

Normal cell proteins

 Tumor-specific mutated proteins –
 *"the mutanome"*

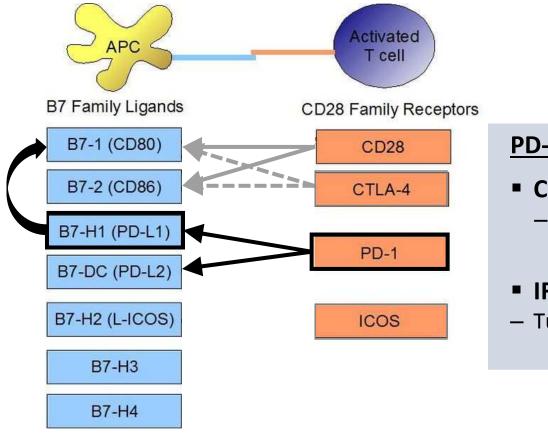

 Tumor-associated viral proteins

#### PD-1/PD-L1 Blockade: An Emerging Strategy for Cancer Immunotherapy




Keir, ME et al. Annu Rev Immunol (2008) 26:677. Pardoll, DM. Nat Rev Cancer (2012) 12:252.

#### **CTLA-4 vs PD-1: Distinct Immune Checkpoints**




## Immune Checkpoint Function Revealed by Murine Knockout Studies

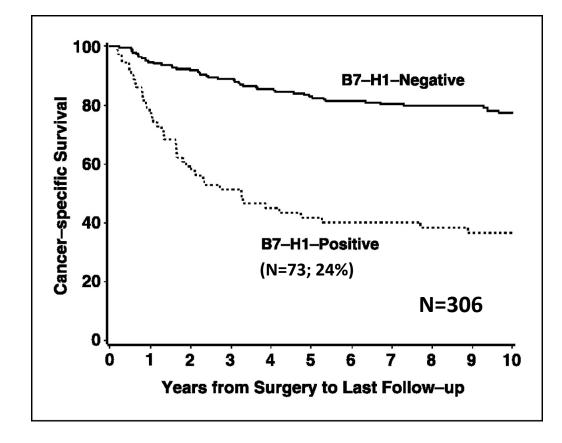


Waterhouse, P *et al*. <u>Science</u> (1995) 270:985. Tivol, EA *et al*. <u>Immunity</u> (1995) 3:541. Nishimura, H *et al*. <u>Immunity</u> (1999) 11:141. Nishimura, H *et al*. <u>Science</u> (2001) 291:319. Latchman, YE *et al*. <u>PNAS</u> (2004) 101:10691.

## **PD-1/PD-L1 Binding Interactions**



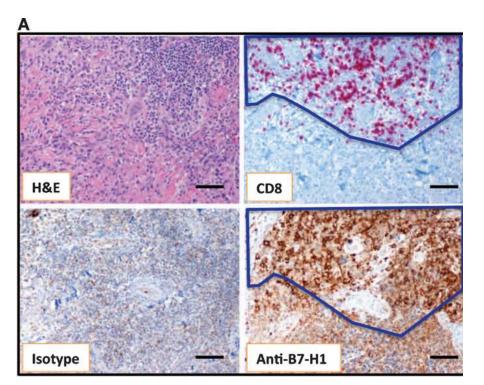
#### PD-L1 (B7-H1, CD274)


- Constitutive Expression
  - Macrophage, DC, B-cell, ?T-cell
- IFN-γ Inducible
- Tumor, normal epithelium

## PD-L1 Expression is Common in Solid and Hematopoietic Tumors

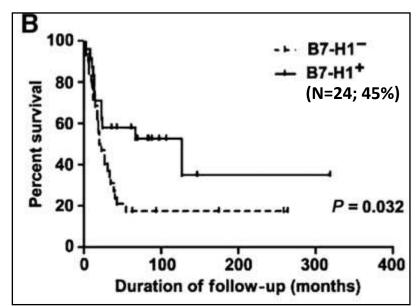
| Cancer Type        | Histology            | % PD-L1 <sup>+</sup> Tumors |
|--------------------|----------------------|-----------------------------|
| Solid Tumors       | Melanoma             | 40-100                      |
|                    | NSCLC                | 35-95                       |
|                    | RCC                  | 15-24                       |
|                    | CRC                  | 53                          |
|                    | Gastric              | 42                          |
|                    | Ovarian cancer       | 33-80                       |
|                    | Pancreatic           | 39                          |
|                    | Breast               | 31-34                       |
|                    | НСС                  | 45-93                       |
|                    | Urothelial carcinoma | 28-100                      |
| Hematologic Tumors | Multiple Myeloma     | 93                          |
|                    | Lymphomas            | 17-94                       |
|                    | Leukemias            | 11-42                       |

Adapted from Chen, DS et al. Clin Ca Res (2012) 18:6580.


## Association of Tumor B7-H1 (PD-L1) Expression with Death from ccRCC



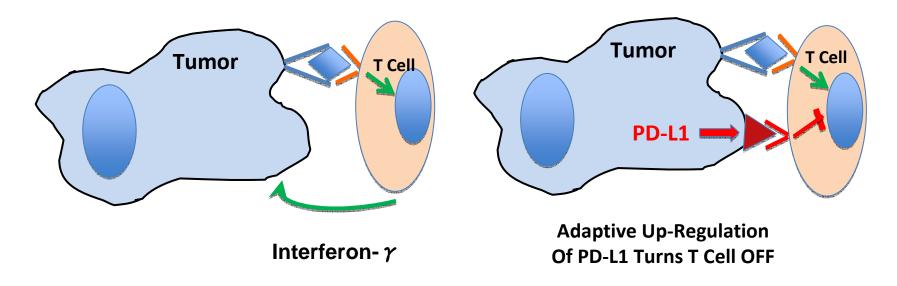
In multivariate analysis, PD-L1 expression (≥ 5%) on RCC tumor cells was an independent risk factor for death


Thompson, RH et al. Cancer Res (2006) 66:3381-3385.

## Strong Association of PD-L1 Expression in Melanoma with Immune Cell Infiltration



- PD-L1 and TIL co-localize
- TIL may trigger their own inhibition by IFN-γ mediated PD-L1 induction


Metastatic Melanoma (N=53)



PD-L1 expression (≥ 5%) on melanocytes was positively associated with survival

Taube, JM et al. Sci Transl Med (2012) 4:ra37.

# Tumor Immune Escape by "Adaptive Resistance"



**Adaptive Immune Resistance** 

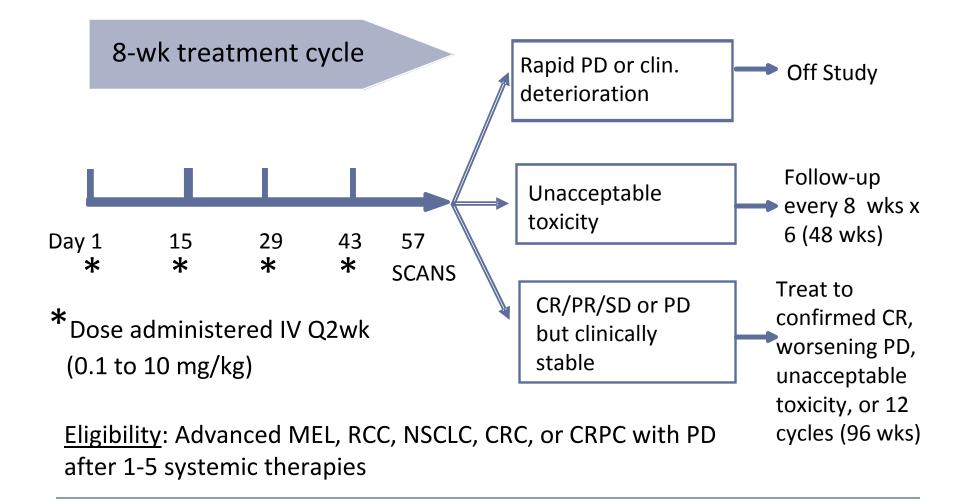
Taube, JM et al. Sci Transl Med (2012) 4:ra37.

### **PD-1 Targeted Drugs in Development 2013**

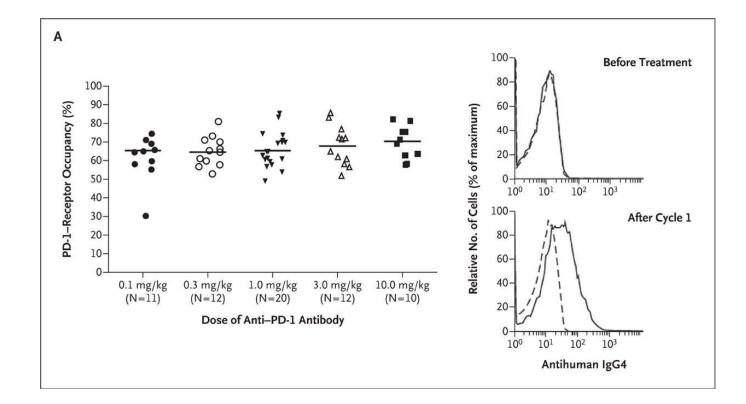
#### PD-1 Blockade

| Drug                      | Developer                       | Composition                 | Development<br>Phase |
|---------------------------|---------------------------------|-----------------------------|----------------------|
| Nivolumab<br>(BMS-936558) | Bristol-Myers Squibb            | fully human IgG4 mAb        | phase III            |
| MK-3475                   | Merck                           | humanized IgG4 mAb          | phase III            |
| CT-011                    | CureTech / Teva                 | humanized IgG1 mAb          | phase II             |
| AMP-224                   | Amplimmune /<br>GlaxoSmithKline | PD-L2 / IgG1 fusion protein | phase I              |

Abbreviations: mAb - monoclonal antibody


## Anti-PD1 Monoclonal Antibody Nivolumab (BMS-936558, MDX-1106)

- Fully human IgG4 anti-human PD-1-blocking Ab
- No known Fc function (ADCC, CDC)
- High affinity for PD-1 (K<sub>D</sub> ~3 nM)
- Preliminary results of a phase Ib dose-escalation study with nivolumab published June 2012
- 296 patients in total with melanoma, RCC, NSCLC, colorectal cancer, or prostate cancer




Topalian, SL *et al*. <u>New Engl J Med</u> (2012) 366:2443

#### Nivolumab Study Design: Phase Ib Multi-dose Regimen



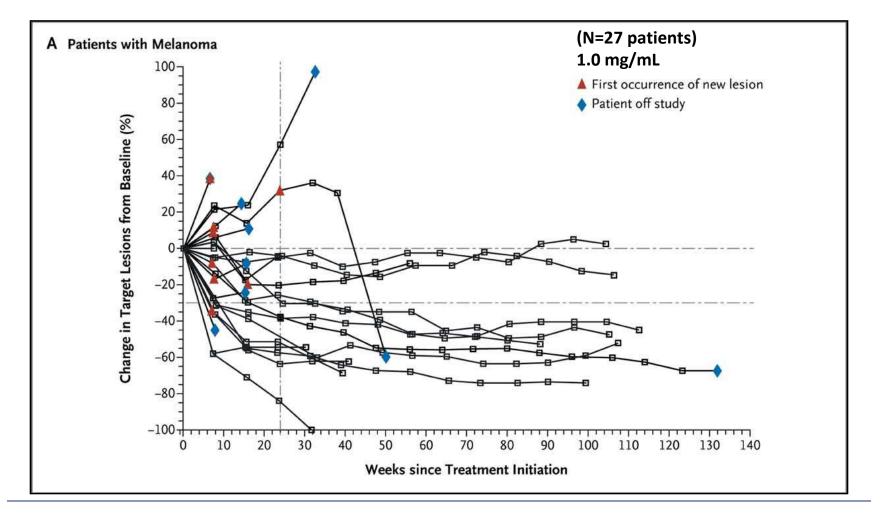
# PD-1-receptor occupancy by anti-PD-1 antibody



Topalian, SL et al. <u>New Engl J Med</u> (2012) 366:2443

## Clinical Activity of Nivolumab in 236 Patients; (All Doses)

| Tumor Type |             | Patients | ORR<br>(%) | SD ≥24<br>weeks<br>(%) | PFSR at 24<br>Weeks<br>(%) |
|------------|-------------|----------|------------|------------------------|----------------------------|
| Melano     | ma          | 94       | 28         | 6                      | 41                         |
| NSCLC      | Squamous    | 18       | 33         | 0                      | 33                         |
|            | Nonsquamous | 56       | 12         | 9                      | 22                         |
| RCC        |             | 33       | 27         | 27                     | 56                         |


• ORR was assessed using modified RECIST v1.0 criteria

ORR = objective response rate; PFSR = progression-free survival rate; SD = stable disease

 8 additional pts with reduction in tumor measurements, but in presence of new lesions – Immune related response pattern

Topalian, SL et al. <u>New Engl J Med</u> (2012) 366:2443

#### **Changes in Melanoma Tumor Burden with Nivolumab Treatment**



Topalian, SL et al. New Engl J Med (2012) 366:2443

#### Immune-related Adverse Events (irAE) Associated with Nivolumab (anti-PD1)

| Adverse Event                                                     | Any Event (%) | Grade 3/4 (%) |
|-------------------------------------------------------------------|---------------|---------------|
| Any                                                               | 41            | 6             |
| Dermatologic<br>Prutitis<br>Rash                                  | 21            | 1             |
| Gastrointestinal<br>Diarrhea                                      | 11            | 1             |
| Hepatic                                                           | 4             | 1             |
| Endocrine<br>Hypothyroid<br>Hypophysitis<br>Adrenal insufficiency | 3             | 1             |
| Pulmonary                                                         | 3             | 1*            |

- Data from 296 pts (all histologies entered on phase Ib study)
- \*Includes 3 deaths from pneumonitis

Topalian, SL *et al*. <u>New Engl J Med</u> (2012) 366:2443

#### **PD-L1 Targeted Drugs in Development 2013**

#### PD-L1 Blockade

| Drug                  | Developer                  | Composition                        | Development<br>Phase |
|-----------------------|----------------------------|------------------------------------|----------------------|
| MPDL3280A<br>(RG7446) | Genetech                   | IgG1 mAb with a modified Fc domain | phase II             |
| BMS-936559            | Bristol-Myers Squibb       | fully human IgG4 mAb               | phase I              |
| MEDI4736              | MedImmune /<br>AstraZeneca | fully human mAb                    | phase I              |

Abbreviations: mAb - monoclonal antibody

## MPDL3280A: Anti-PD-L1

- IgG1 anti-human PD-L1 blocking Ab
- Fc domain engineered to remove ADCC function and avoid killing activated T cells
- Inhibits PD-L1 binding to PD-1 or B7-1 in vitro

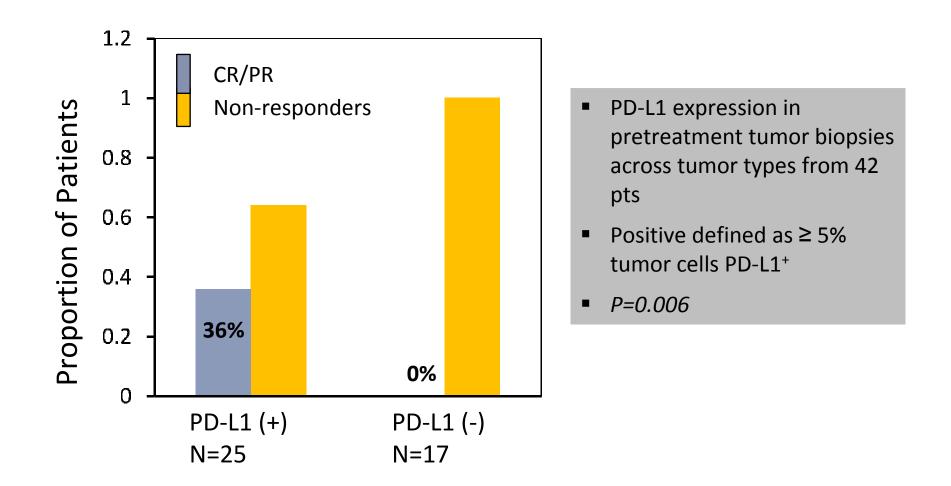
### MPDL3280A - Phase Ia Experience (N=171)

- Administered iv q3 weeks x maximum of 16 doses (~ 1 yr)
- Doses ranging from 0.01 mg/kg to 20 mg/kg;
  (162/171 patients treated at doses ≥ 3mg/kg)
- Primary Objectives:
  - Evaluate safety and tolerability
  - Determine MTD and recommended phase II dose

| Tumor Type                                               | N (Total = 171) |
|----------------------------------------------------------|-----------------|
| Melanoma                                                 | 44 (26%)        |
| RCC                                                      | 55 (32%)        |
| NSCLC                                                    | 52 (30%)        |
| <b>Other</b><br>10 histologies included CRC (4), gastric | 20 (12%)        |

### MPDL3280A Efficacy Summary (N=140)

| Tumor Type | Patients (%) |    | SD ≥24<br>weeks<br>(%) | PFSR at 24<br>Weeks<br>(%) |
|------------|--------------|----|------------------------|----------------------------|
| Melanoma   | 38           | 29 | 5                      | 43                         |
| NSCLC      | 41           | 22 | 12                     | 46                         |
| RCC        | 47           | 13 | 32                     | 53                         |

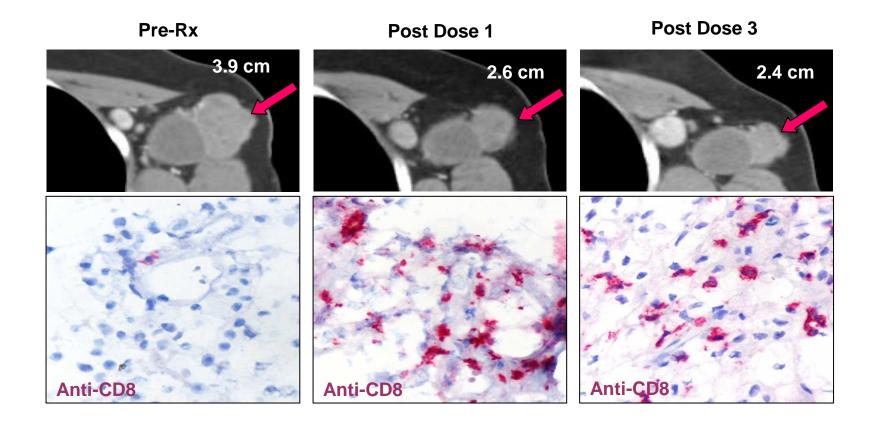

- ORR was assessed using modified RECIST v1.1 criteria
- ORR = objective response rate; PFSR = progression-free survival rate; SD = stable disease
- Additional delayed responses not reflected in ORR
- Other responses included CRC (PR 1/4) and gastric (PR in 1/1)

### MPDL3280A Phase Ia Safety – Immune-related AE

| Adverse Event                    | Grade 3/4 N (%) |
|----------------------------------|-----------------|
| Any                              | 4 (2)           |
| Dermatologic<br>Prutitis<br>Rash | 0               |
| Gastrointestinal<br>Diarrhea     | 1 (0)           |
| Hepatic                          | 2 (1)           |
| Endocrine<br>Hyperglycemia       | 1 (0)           |
| Pulmonary                        | 0*              |

- No Treatment related deaths
- No Grade 3-5 pneumonitis
- No MTD identified at doses tested

#### **Correlation of PD-L1 Expression in Pretreatment Tumor Biopsies with Responses to Nivolumab**




Topalian, SL *et al*. <u>New Engl J Med</u> (2012) 366:2443

## MPDL3280A Phase Ia: Response by PD-L1 IHC Status (N=103/140)

| .1 Positive<br>% (13/36) | PD-L1 Negative<br>13% (9/67)      | All†<br>21% (29/140)                                  |
|--------------------------|-----------------------------------|-------------------------------------------------------|
| % (13/36)                | 13% (9/67)                        | 21% (29/140)                                          |
|                          |                                   |                                                       |
|                          | 28<br>13<br>Iting immune cells th | 41<br>20<br>at stain for                              |
| X                        | ,                                 | 33<br>13<br>with infiltrating immune cells the<br>IHC |

#### PD-1 Blockade: Increased CD8+ T Cells in a Regressing Melanoma Tumor Treated with Nivolumab



## MPDL3280A Phase Ia: PD-L1 IHC Status in Paired Tumor Biopsies

Summary of responses to MPDL3280A in paired biopsies

| Max SLD Decrease*                                     | Increase in tumor<br>PD-L1 <sup>†</sup> |
|-------------------------------------------------------|-----------------------------------------|
| > 30% reduction                                       | 4/4 (100%)                              |
| Unevaluable SLD (due to tumor excision <sup>®</sup> ) | 2/2 (100%)                              |
| 0-30% reduction                                       | 2/6 (33%)                               |
| 0-20% increase                                        | 1/10 (10%)                              |
| > 20 increase                                         | 0/4 (0%)                                |

\* Best response; SLD = sum of linear dimensions.

- <sup>+</sup> PD-L1 expression measured by proprietary Genetech/Roche IHC Assay for PD-L1 expression on infiltrating immune cells.
- I Excision of responding tumor for marker analysis. Patient not evaluable for max SLD change.

Powderly, JD *et al*. <u>JCO</u> (2013) 31:abstr 3001.

## Anti-PD1/PDL1 Cancer Immunotherapy: Summary and Conclusions

- Spontaneous and durable anti-tumor effects in a subset of patients with continuous treatment (q 2-3 weeks)
- Similar efficacy with PD-1 versus PD-L1 blockade
- Side effects are autoimmune in nature
  - Manageable in early testing
  - Similar spectrum of autoimmune phenomena with PD1 vs CTLA4
  - \*frequency and severity of pneumonitis worse with PD1 vs CTLA4 blockade
- Ongoing evaluation of the association of pretreatment tumor expression of PD-L1 with clinical outcome.

## **Advanced Phase Clinical Trials Pipeline for Anti-PD1/PDL1 Therapies**

| Target | Diagnosis                    | Phase | Drug and Format                                                                        |
|--------|------------------------------|-------|----------------------------------------------------------------------------------------|
|        | PD-1<br>NSCLC III<br>RCC III | 111   | Nivolumab- 1L vs Ipi or Combo- 1L vs dacarbazine- ≥ 2L vs chemo (Ipi +/- BRAF failure) |
|        |                              |       | MK-3475 - 1L vs Ipi                                                                    |
| PD-1   |                              | 111   | Nivolumab - 2L vs standard chemo (SSC and non-<br>SSC)                                 |
|        |                              |       | MK-3475 - 2L vs chemo                                                                  |
|        |                              |       | Nivolumab - 2L randomized vs everolimus                                                |
| PD-L1  | NSCLC<br>Melanoma<br>(RCC)   | II    | MPDL3280A - (multiple studies)                                                         |

www.clinicaltrials.gov