

Immunotherapy for the Treatment of Lung Cancer

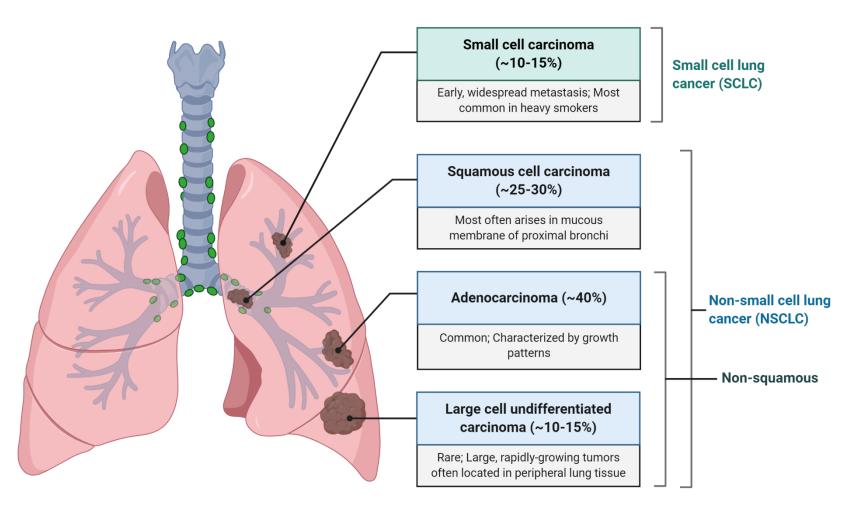
Jennifer Carlisle, MD

Assistant Professor

Winship Cancer Institute, Emory University

#LearnACI

Society for Immunotherapy of Cancer



- I have no conflicts of interest to disclose
- I will be discussing non-FDA approved indications during my presentation.

Lung cancer

sitc

Society for Immunotherapy of Cancer

Treatment options for NSCLC

Local disease

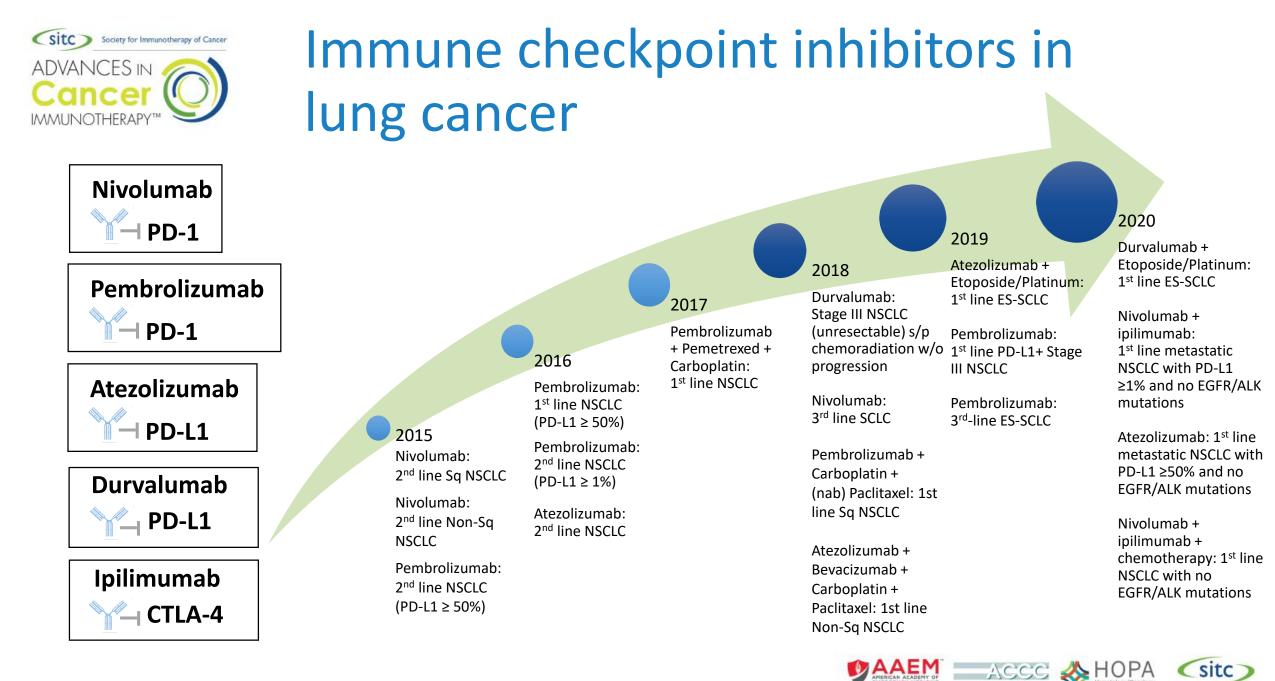
- Surgery
- Stereotactic body radiation therapy
- Chemotherapy

Metastatic disease

- Chemotherapy
- Targeted therapies
- Immunotherapy
- Radiation therapy

Stage III unresectable disease

- Concurrent chemo-radiation
- Immunotherapy



Metastatic NSCLC treatment options overview

Drug type	Molecular format	Administration route	Example for NSCLC	Typical dosing regimen
Chemotherapy	Small molecule	Intravenous, occasionally oral	Nab-paclitaxel	100 mg/m ² on days 1, 8, 15 of 21-day cycle
Targeted therapy	Small molecule	Oral	Osimertinib (kinase inhibitor)	80 mg tablet once a day
Targeted antibody therapy	Antibody	Intravenous	Bevacizumab (VEGF-A inhibitor)	15 mg/kg Q3W
Immune checkpoint inhibitor	Antibody	Intravenous	Pembrolizumab (PD-1 inhibitor)	200 mg Q3W or 400 mg Q6W

- Non-small cell lung cancer
 - Front-line PD-L1-selected and unselected
 - Later lines of treatment
 - Stage III
- Small cell lung cancer
- Future directions for lung cancer immunotherapy

Immunotherapy for first-line treatment of metastatic NSCLC

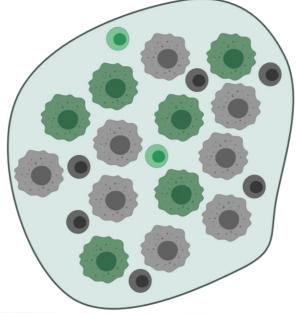
Drug	Indication	Dose
Pembrolizumab	1 st line metastatic NSCLC with PD-L1 TPS ≥ 1% and no EGFR/ALK mutations	200 mg Q3W or 400 mg Q6W
Atezolizumab	1 st line metastatic NSCLC with PD-L1 ≥ 50% of tumor cells or ≥ 10% of immune cells with no EGFR/ALK mutations	840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W
Nivolumab + ipilimumab	1 st line metastatic NSCLC with PD-L1 ≥1% and no EGFR/ALK mutations	Nivolumab 3 mg/kg Q2W + ipilimumab 1 mg/kg Q6W
Nivolumab + ipilimumab + platinum- doublet chemotherapy	1 st line metastatic NSCLC with no EGFR/ALK mutations	Nivolumab 360 mg Q3W + ipilimumab 1 mg/kg Q6W + 2 cycles of chemotherapy
Pembrolizumab + pemetrexed + platinum	1 st line metastatic non-squamous NSCLC with no EGFR/ALK mutations	200 mg Q3W or 400 mg Q6W
Pembrolizumab + carboplatin + paclitaxel/nab-paclitaxel	1 st line metastatic squamous NSCLC	200 mg Q3W or 400 mg Q6W
Atezolizumab + bevacizumab + paclitaxel + carboplatin	1 st line metastatic non-squamous NSCLC with no EGFR/ALK mutations	For 4-6 cycles: atezolizumab 1200 mg Q3W + chemotherapy + bevacizumab; Maintenance: 840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W
Atezolizumab + nab-paclitaxel + carboplatin	1 st line metastatic non-squamous NSCLC with no EGFR/ALK mutations	For 4-6 cycles: atezolizumab 1200 mg Q3W + chemotherapy Maintenance: 840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W

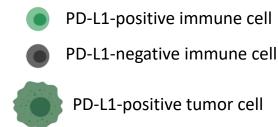
#LearnACI

PD-L1 Assays: TPS vs Ventana Assay

 $TPS = \frac{\# of \text{ PD-L1 positive tumor cells}}{number of viable tumor cells} \times 100$

 $TPS = \frac{6 \text{ positive tumor cells}}{14 \text{ total tumor cells}} \times 100 = 43\%$


Example below PD-L1 low (1-49%) by TPS


Looks at both the tumor cell and immune cell expression of PD-L1

$$TC = \frac{6 \text{ positive tumor cells}}{14 \text{ total tumor cells}} \times 100 = 43\%$$

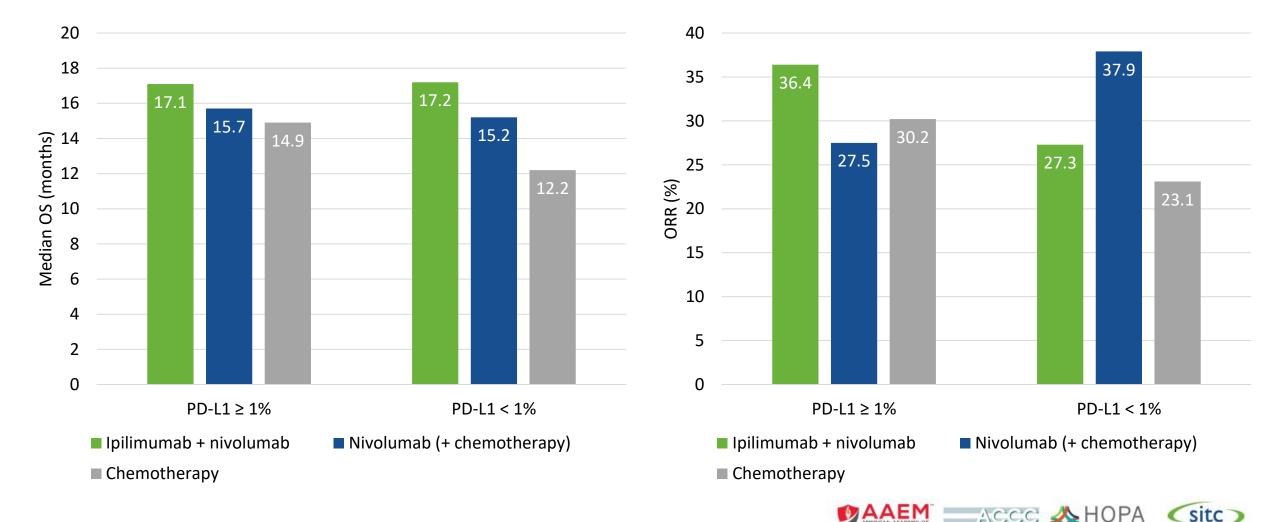
$$IC = \frac{2 \text{ positive immune cells}}{8 \text{ immune cells}} \times 100 = 25\%$$

Example would be in IC3, or immune high category

PD-L1-negative tumor cell

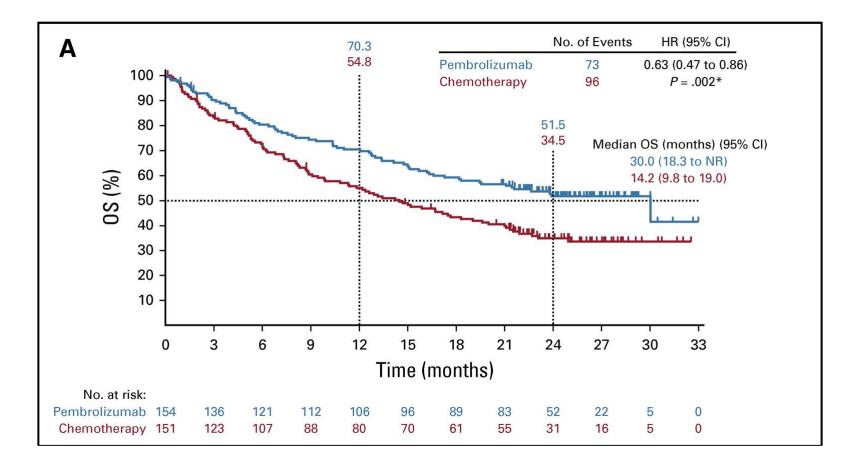
TC3	TC <u>≥</u> 50%
IC3	IC <u>≥</u> 10%
TC2/3	TC <u>≥</u> 5%
IC2/3	IC <u>≥</u> 5%
TC1/2/3	TC <u>≥</u> 1%
IC1/2/3	IC <u>≥</u> 1%

© 2020–2021 Society for Immunotherapy of Cancer


Treatment Naïve Regimens: Competing Strategies in NSCLC by biomarker status

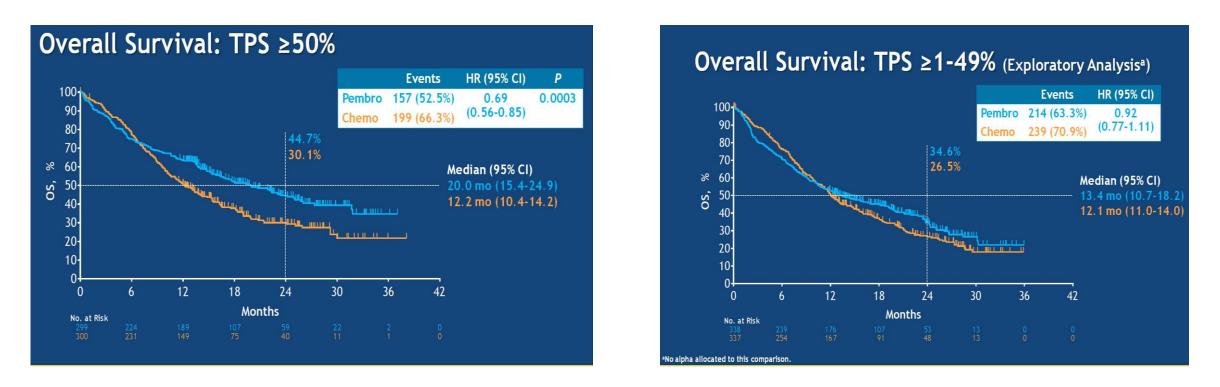
PD-L1-selected	PD-L1-unselected
Nivolumab + ipilimumab	Nivolumab + ipilimumab + platinum-doublet
CheckMate 227	<i>CheckMate 9LA</i>
Pembrolizumab	Pembrolizumab + chemotherapy
KEYNOTE-024, -042	KEYNOTE-189, -407
Atezolizumab	Atezolizumab + bevacizumab + chemotherapy
IMpower110	<i>IMpower150</i>
	Atezolizumab + chemotherapy Impower130

CheckMate 227: Ipilimumab + nivolumab vs chemotherapy for 1L NSCLC

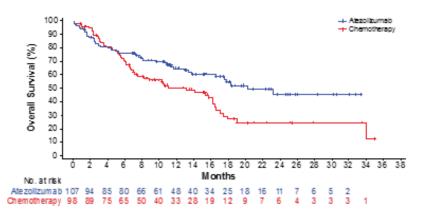

Ramalingam, ASCO 2020.

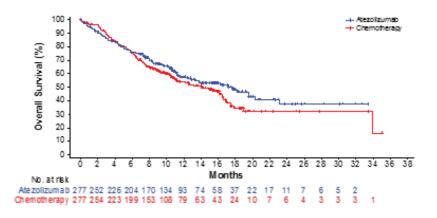
© 2020–2021 Society for Immunotherapy of Cancer

#LearnACI


KEYNOTE-024: Pembrolizumab vs. Chemotherapy for PD-L1 ≥ 50% NSCLC

KEYNOTE-042: Pembrolizumab vs. Chemotherapy for PD-L1 ≥ 1% NSCLC


Survival benefit seemed to be driven by the TPS ≥ 50% subset with little benefit witnessed in the subset TPS = 1 - 49%


IMpower110: Atezolizumab vs chemotherapy in 1L NSCLC

SP142 (TC3 or IC3-WT)^a

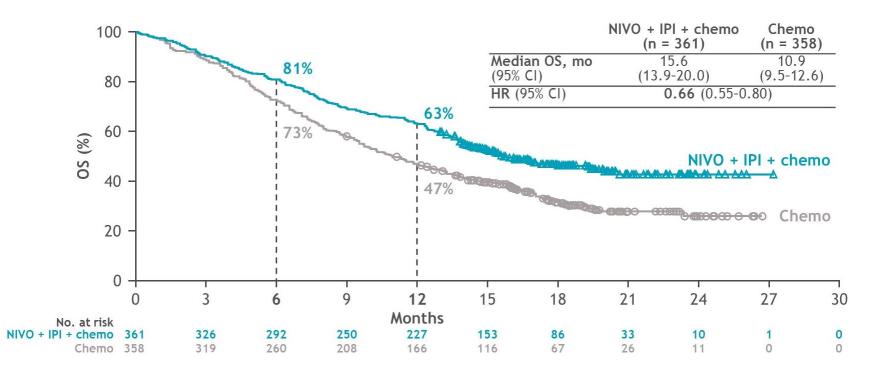
	Atezo (n = 107)	Chemo (n = 98)		
mOS, mo	20.2	13.1		
HR♭	0.59			
(95% CI)	(0.40, 0.89)			

SP142 (TC1/2/3 or IC1/2/3-WT)^a

	Atezo (n = 277)	Chemo (n = 277)	
mOS, mo	17.5	14.1	
HR♭	0.8	83	
(95% CI)	(0.65, 1.07)		

TC3	TC <u>≥</u> 50%
IC3	IC <u>≥</u> 10%
TC2/3	TC <u>≥</u> 5%
IC2/3	IC <u>≥</u> 5%
TC1/2/3	TC <u>≥</u> 1%
IC1/2/3	IC <u>≥</u> 1%

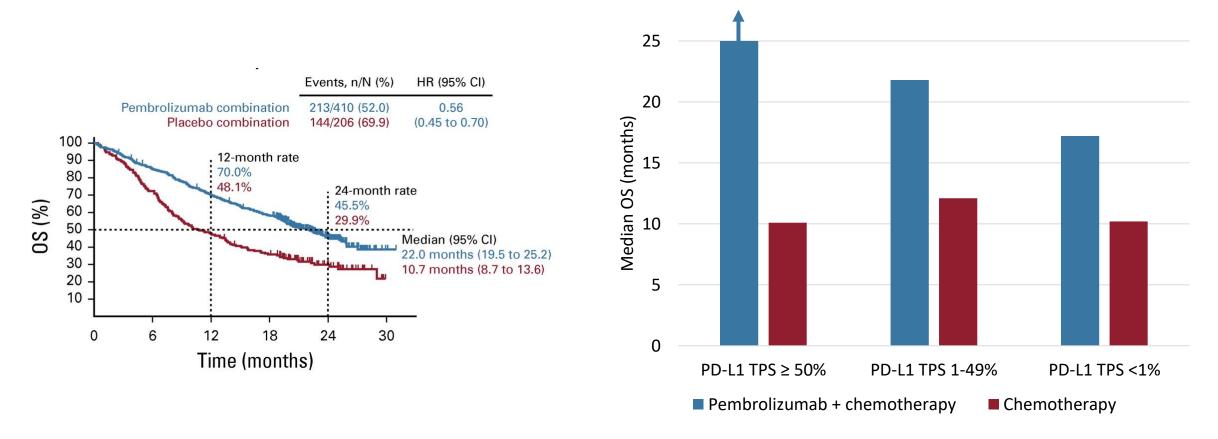
r



Treatments <u>not</u> reliant on PD-L1 expression

CheckMate 9LA: Nivolumab/Ipilimumab + limited chemo

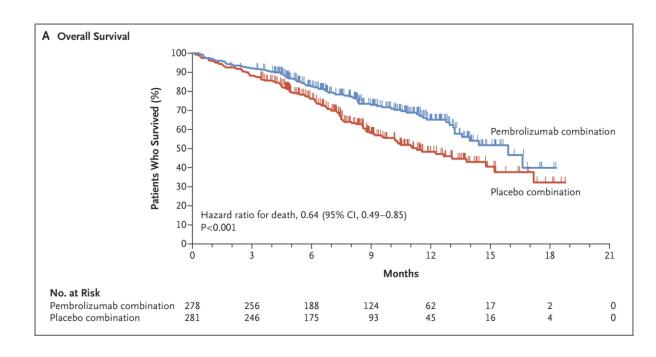
	NIVO + IPI + chemo (n = 361)	Chemo (n = 358)
ORR, n (%)	138 (38)	89 (25)
Odds ratio (95% CI)	1. (1.4-	
BOR, n (%) CR PR	8 (2)	4 (1) 85 (24)
SD	130 (36) 164 (45)	85 (24) 185 (52)
PD	32 (9)	45 (13)
DCR, n (%)	302 (84)	274 (76)



Reck M et al, ASCO 2020.

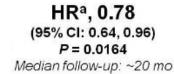
© 2020–2021 Society for Immunotherapy of Cancer

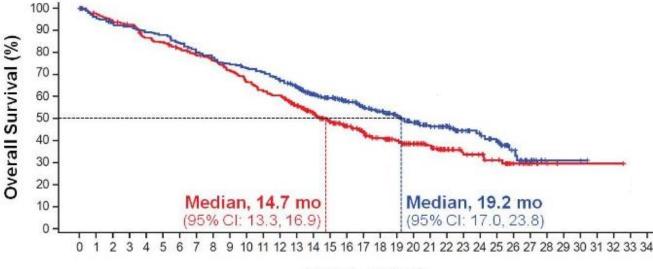
KEYNOTE-189: Pembrolizumab/chemotherapy vs Chemotherapy Alone for Advanced Non-Squamous NSCLC

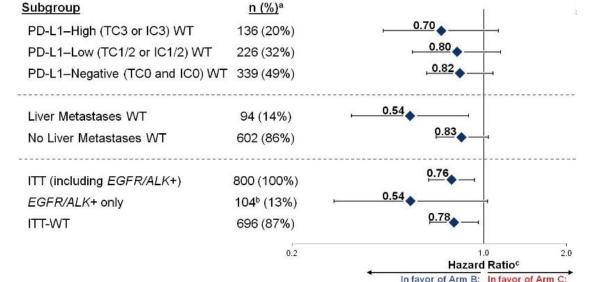


© 2020–2021 Society for Immunotherapy of Cancer

KEYNOTE-407: Pembrolizumab/Chemotherapy vs Chemotherapy Alone for Advanced Squamous-Cell NSCLC

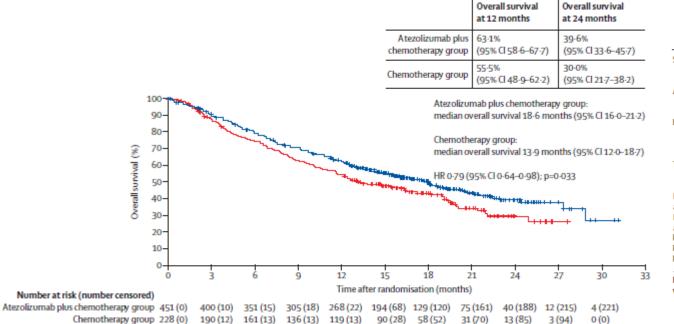

Subgroup	No. of Events/ No. of Patients	Hazard Ratio for Deat	n (95% CI)
Overall	205/559	— —	0.64 (0.49-0.85)
Age			
<65 yr	88/254		0.52 (0.34-0.80)
≥65 yr	117/305		0.74 (0.51-1.07)
Sex			
Male	167/455		0.69 (0.51-0.94)
Female	38/104	_	0.42 (0.22-0.81)
ECOG performance-status s	core		
0	48/163	_	0.54 (0.29-0.98)
1	157/396		0.66 (0.48-0.90)
Region of enrollment			
East Asia	34/106		0.44 (0.22-0.89)
Rest of the world	171/453		0.69 (0.51-0.93)
PD-L1 tumor proportion sco	re		
<1%	73/194		0.61 (0.38-0.98)
≥1%	129/353		0.65 (0.45-0.92)
1-49%	76/207		0.57 (0.36-0.90)
≥50%	53/146		0.64 (0.37-1.10)
Taxane-based drug			
Paclitaxel	140/336		0.67 (0.48-0.93)
Nab-paclitaxel	65/223		0.59 (0.36–0.98)
		.1 0.5 1.0	_
		Pembrolizumab Combination Plac Better	ebo Combination Better





IMpower150: Atezolizumab/Carboplatin/ Paclitaxel/Bevacizumab vs Carboplatin/Paclitaxel/ Bevacizumab in Advanced Non-Squamous NSCLC

Landmark OS, %	Arm B: atezo + bev + CP	Arm C: bev + CP	
12-month	67%	61%	
18-month	53%	41%	- (95
24-month	43%	34%	- Media


Time (months)

atezo + bey + CP bey + CP

IMpower130: Atezolizumab + chemo vs chemo alone for non-squamous NSCLC

ents/number patients	Median overall survival, months	Events/number	Median overall		
	sorvivat monuts	of patients	survival, months		
3/185	21-4	52/94	12-8		0.66 (0.46-0.93)
3/266	16-0	79/134	14-2	— →	0.87 (0.66-1.15)
				•	
8/227	19-2	63/114	16-6		0.79 (0.58-1.08)
8/224	16-1	68/114	12-6		0.78 (0.58-1.05)
				*	
8/189	20-8	45/91	19-7		0.85 (0.59-1.22)
8/261	15-2	85/136	11-9	→	0.77 (0.58-1.00)
	NA	1/1	NA	•	NA
1/48	28-2	10/17	19-5	-	0.55 (0.26-1.19)
5/403	18-1	121/211	13-9		0.81 (0.65-1.02)
4/382	21-1	109/197	15-2		0.73 (0.57-0.92)
				•	
2/69	10-0	22/31	8-8	— —	1.04 (0.63-1.72)
				Ĩ	
3/88	17-3	23/42	16-9		0.84 (0.51-1.39)
4/128	23.7	33/65	15.9	→	0.70 (0.45-1.08)
9/235	15-2	75/121	12-0	⊢ ♦–1	0.81 (0.61-1.08)
6/451	18-6	131/228	13.9		0-79 (0-64-0-98)
	3/266 8/227 8/224 8/189 8/261 1/48 5/403 4/382 2/69 3/88 4/128 9/235	3/266 16-0 8/227 19-2 8/224 16-1 8/189 20-8 8/261 15-2 NA 1/48 28-2 5/403 18-1 4/382 21-1 2/69 10-0 3/88 17-3 4/128 23-7 9/235 15-2	3/266 16-0 79/134 8/227 19-2 63/114 8/224 16-1 68/114 8/189 20-8 45/91 8/261 15-2 85/136 NA 1/1 1/48 28-2 10/17 5/403 18-1 121/211 4/382 21-1 109/197 2/69 10-0 22/31 3/88 17-3 23/42 4/128 23-7 33/65 9/235 15-2 75/121	$3/266$ $16 \cdot 0$ $79/134$ $14 \cdot 2$ $8/227$ $19 \cdot 2$ $63/114$ $16 \cdot 6$ $8/224$ $16 \cdot 1$ $68/114$ $12 \cdot 6$ $8/189$ $20 \cdot 8$ $45/91$ $19 \cdot 7$ $8/261$ $15 \cdot 2$ $85/136$ $11 \cdot 9$ NA $1/1$ NA $1/1$ NA $1/48$ $28 \cdot 2$ $10/17$ $19 \cdot 5$ $10 \cdot 10^{-1}$ $5/403$ $18 \cdot 1$ $121/2111$ $13 \cdot 9$ $1/322$ $16 \cdot 10^{-1}$ $4/382$ $21 \cdot 1$ $109/197$ $15 \cdot 2$ $2/69$ $10 \cdot 0$ $22/31$ 8.8 $3/88$ $17 \cdot 3$ $23/42$ $16 \cdot 9$ $4/128$ $23 \cdot 7$ $33/65$ $15 \cdot 9$ $9/235$ $15 \cdot 2$ $75/121$ $12 \cdot 0$	$3/266$ $16 \cdot 0$ $79/134$ $14 \cdot 2$ $8/227$ $19 \cdot 2$ $63/114$ $16 \cdot 6$ $8/224$ $16 \cdot 1$ $68/114$ $12 \cdot 6$ $8/189$ 20.8 $45/91$ $19 \cdot 7$ $8/261$ $15 \cdot 2$ $85/136$ 11.9 NA $1/1$ NA $1/1$ $1/48$ $28 \cdot 2$ $10/17$ $19 \cdot 5$ $5/403$ $18 \cdot 1$ $121/211$ 13.9 $4/382$ $21 \cdot 1$ $109/197$ $15 \cdot 2$ $2/69$ 10.0 $22/31$ 8.8 $1/12$ $23/7$ $33/65$ $15 \cdot 9$ $3/88$ $17 \cdot 3$ $23/42$ $16 \cdot 9$ $4/128$ $23 \cdot 7$ $33/65$ $15 \cdot 9$ $9/235$ $15 \cdot 2$ $75/121$ $12 \cdot 0$

Favours atezolizumab Favours chemotherapy plus chemotherapy

Immunotherapy for relapsed/refractory NSCLC

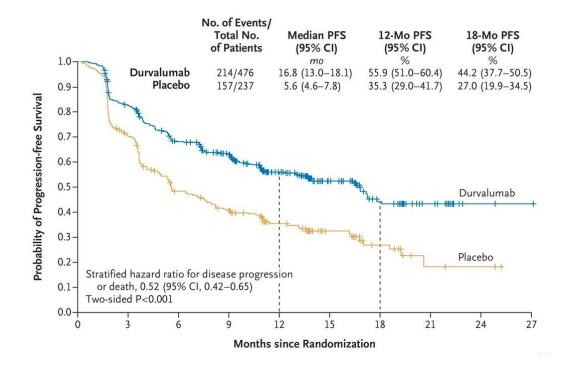
Drug	Indication	Dose
Nivolumab	Metastatic squamous or non- squamous NSCLC with progression after chemotherapy (2 nd line)	240 mg Q2W or 480 mg Q4W
Pembrolizumab	Metastatic NSCLC with progression after chemotherapy and PD-L1 ≥ 1%	200 mg Q3W or 400 mg Q6W
Atezolizumab	Metastatic NSCLC with progression after Pt-chemotherapy and targeted therapy if EGFR/ALK mutation- positive	840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W

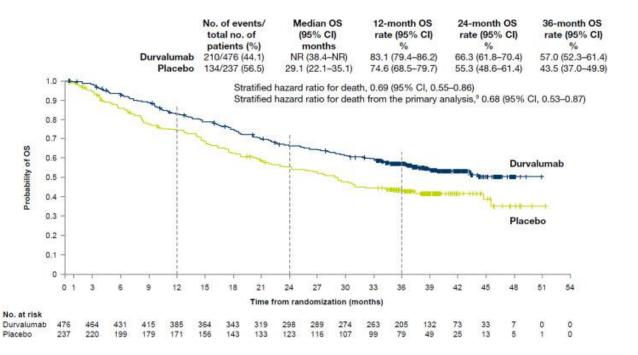
Second-line use of ICIs in NSCLC

Study	Treatment arms	ORR	Median PFS (months)	Median OS (months)
CheckMate 017 and	Nivolumab	19%	2.56	11.1
CheckMate 057	Docetaxel	11%	3.52	8.1
KEYNOTE-010	Pembrolizumab	18%	4.0	12.7
(PD-L1 TPS ≥ 1%)	Docetaxel	9%	4.0	8.5
ΟΑΚ	Atezolizumab	14%	2.8	13.8
	Docetaxel	13%	4.0	9.6

Vokes, Ann Oncol 2018. Herbst, Lancet 2016. Fehrenbacker, J Thorac Oncol 2018.

© 2020–2021 Society for Immunotherapy of Cancer

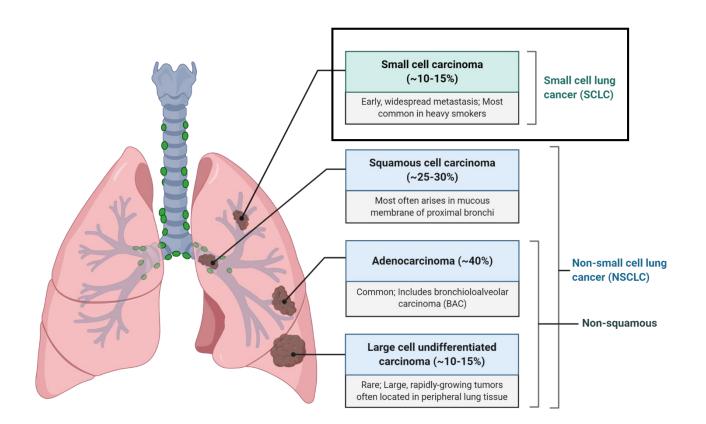

Immunotherapy for stage III NSCLC


Drug	Indication	Dose
Durvalumab	Stage III NSCLC, ineligible for surgery and without progression after chemoradiation	10 mg/kg Q2W
Pembrolizumab	1 st line stage III NSCLC (not candidate for resection or definitive chemoradiation) with PD-L1 TPS ≥ 1%	200 mg Q3W or 400 mg Q6W

PACIFIC: durvalumab consolidation therapy for stage III NSCLC

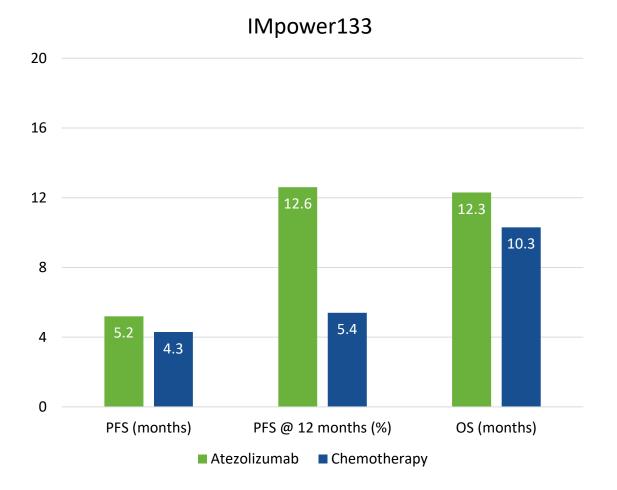
Antonia, N Engl J Med 2017. Gray, J Thorac Oncol 2020.

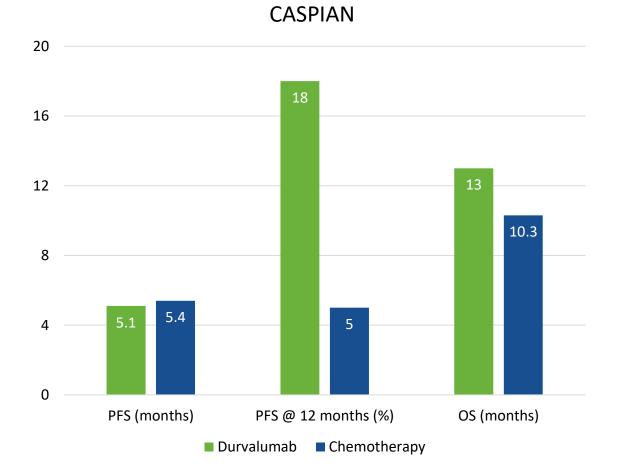
© 2020–2021 Society for Immunotherapy of Cancer


- Non-small cell lung cancer
 - Front-line PD-L1-selected and unselected
 - Later lines of treatment
 - Stage III
- Small cell lung cancer
- Future directions for lung cancer immunotherapy

Small cell lung cancer

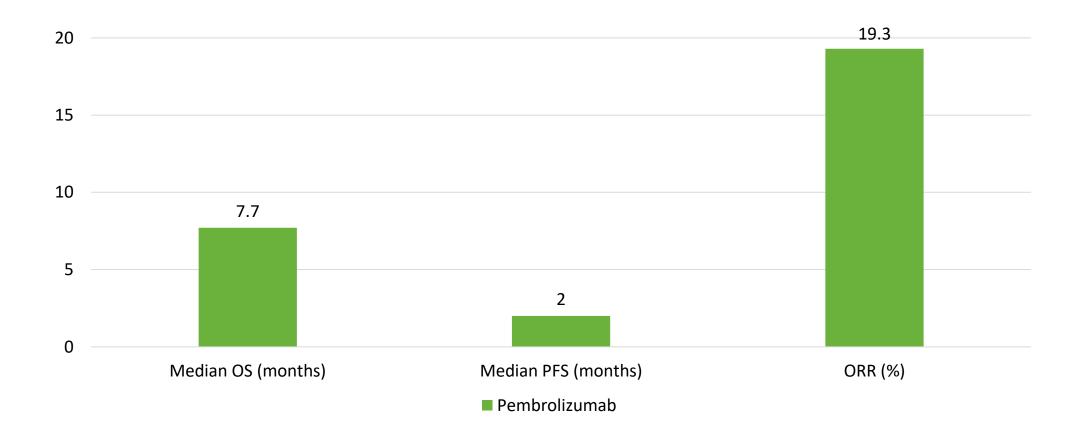
- Median survival 1-2 years after diagnosis
- Until recently, only one FDA-approved 2nd line option: topotecan – DOR: 3.3 months
- Recent approvals of immunotherapies mark the first progress in decades


Approved checkpoint inhibitors in SCLC


Drug	Indication	Dose	
Pembrolizumab	Metastatic small cell lung cancer with progression on Pt-chemotherapy and one other therapy (3 rd line)	200 mg Q3W or 400 mg Q6W	
Atezolizumab + carboplatin + etoposide	1st line extensive stage SCLC	For 4 cycles: atezolizumab 1200 mg + carboplatin + etoposide Q3W Maintenance: 840 mg Q2W, 1200 mg Q3W, or 1680 mg Q4W	
Durvalumab + etoposide + carboplatin/cisplatin	1st line extensive stage SCLC	For 4 cycles: 1500 mg durvalumab Q3W + chemotherapy; Maintenance: 1500 mg durvalumab Q4W	

Front-line ICIs in SCLC

ACCC


© 2020–2021 Society for Immunotherapy of Cancer

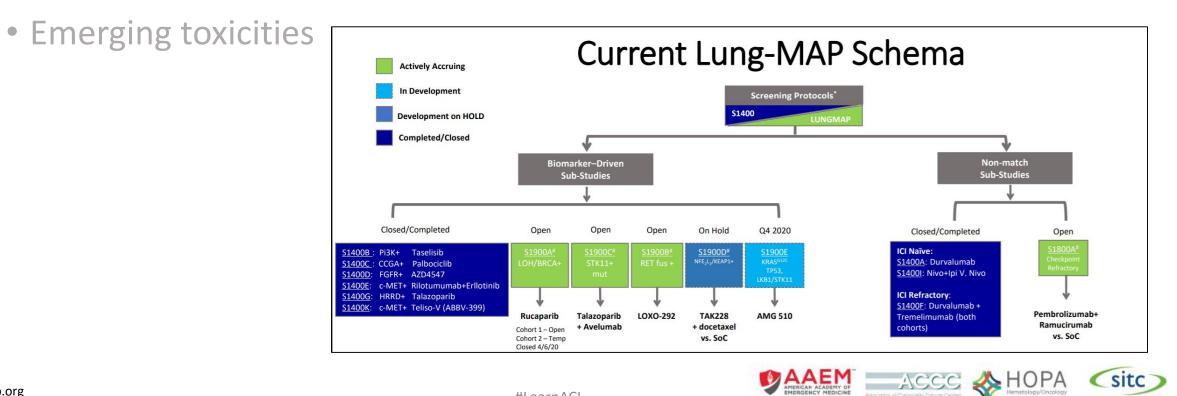
#LearnACI

inotherapy of Cancer

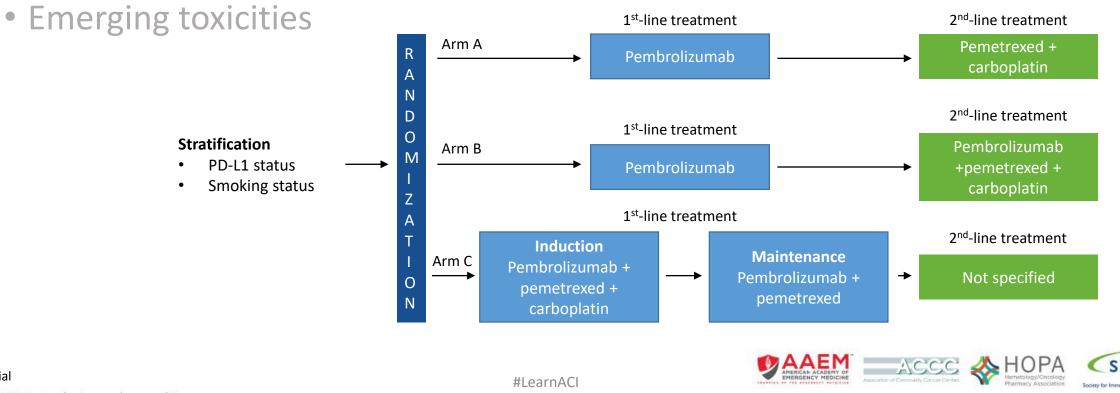
Later-line ICIs in SCLC

#LearnACI

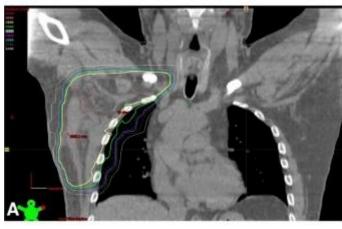
- Non-small cell lung cancer
 - Front-line PD-L1-selected and unselected
 - Later lines of treatment
 - Stage III
- Small cell lung cancer
- Future directions for lung cancer immunotherapy


- Biomarker-driven treatment
- Timing of different treatments and combinations
- Emerging toxicities

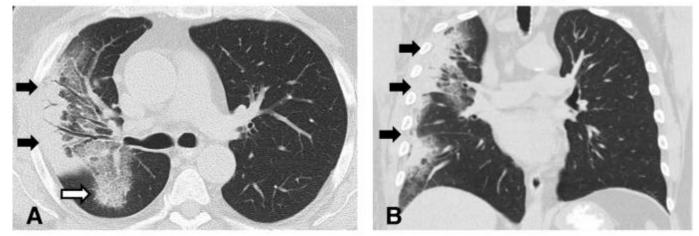
Biomarker-driven treatment


• Timing of different treatments and combinations

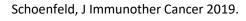
Society for Immunotherapy of Cance


- Biomarker-driven treatment
- Timing of different treatments and combinations

INSIGNIA trial



- Biomarker-driven treatment
- Timing of different treatments and combinations
- Emerging toxicities radiation and ICIs



Axillary radiation treatment field from September-October 2017 demonstrating overlap with peripheral lung.

Chest CT performed 5 months after completing right axillary radiotherapy (March 2018) and 1.5 months after initiating nivolumab therapy

© 2020–2021 Society for Immunotherapy of Cancer

Immunotherapy for mesothelioma

Drug	Indication	Dose
Nivolumab + ipilimumab	Frontline unresectable malignant pleural mesothelioma	Nivolumab 360 mg Q3W + ipilimumab 1 mg/kg Q6W

- Approval based on CheckMate 743
 - Nivolumab + ipilimumab vs platinum-based chemotherapy
 - Median OS: 18.1 months vs 14.1 months
 - 2-year OS: 41% vs 27%
 - Median PFS: 6.8 months vs 7.2 months
- First FDA approval for mesothelioma since 2004

Conclusions

- NSCLC has been a proving ground for checkpoint inhibitors
- Many front-line options available for NSCLC
- Clear-cut biomarkers still lacking
- SCLC is beginning to benefit from immune checkpoint inhibitor treatments

Brahmer et al. Journal for ImmunoTherapy of Cancer (2018) 6:75 Journal for ImmunoTherapy https://doi.org/10.1186/s40425-018-0382-2 of Cancer **POSITION ARTICLE AND GUIDELINES Open Access** CrossMark The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of non-small cell lung cancer (NSCLC) Julie R. Brahmer¹, Ramaswamy Govindan², Robert A. Anders³, Scott J. Antonia⁴, Sarah Sagorsky⁵, Marianne J. Davies⁶, Steven M. Dubinett⁷, Andrea Ferris⁸, Leena Gandhi⁹, Edward B. Garon¹⁰, Matthew D. Hellmann¹¹, Fred R. Hirsch¹², Shakuntala Malik¹³, Joel W. Neal¹⁴, Vassiliki A. Papadimitrakopoulou¹⁵, David L. Rimm¹⁶, Lawrence H. Schwartz¹⁷, Boris Sepesi¹⁸, Beow Yong Yeap¹⁹, Naiyer A. Rizvi²⁰ and Roy S. Herbst^{21*}

Case Studies

Instructions - Case Study 1

Please use the format below to present a case study with which you are familiar. Case studies that are written, should follow this format so that the case studies can be used as inquiry-based practice for clinicians both at the live ACI programs, as well as in the ACI online interactive courses.

Case Study Format

- 1. A brief summary of the patient, age, gender, cancer and stage, prior treatment, what is happening now why she is in your office at this point.
- 2. Question 1 about the case (What would you do?)
 - A. Option 1 (include written feedback about this option- correct/incorrect and why)
 - B. Option 2 (")
 - C. Option 3 (")
 - D. Option 4 (")
- 3. Summary of the results of that decision.
- 4. Question 2 about the case (What is the next step?)
 - A. Option 1 (include written feedback about this option- correct/incorrect and why)
 - B. Option 2 (")
 - C. Option 3 (")
 - D. Option 4 (")

5. Summary of the results of that decision and the final outcome for that patient.

* If there are more treatment decisions that were made in the case, please just add subsequent steps to account for them, using the same format.

- Background: RT is a 68-year-old male former 40 pack year smoker with past medical history of hypertension, hypothyroidism, and benign prostatic hypertrophy. He comes to see you in follow-up for his stage III squamous cell carcinoma of the lung during the last week of concurrent chemo-radiotherapy, which he has tolerated well. Reflex PD-L1 testing was performed and shows that his TPS is 1%.
- Vitals: Temp 37.1 C, HR 76, RR 13, BP 143/87, Ht 178 cm, Wt 81 kg
- Labs: WBC 5.8, Hgb 14.2, Plt 358
 Na 139, K 4.6, CO2 21, BUN 12, SCr 0.65, Ca 9.2, Glu 122
 AST 32, ALT 18, Alk Phos 280, Tbili 0.6
 TSH 5.32 Free T4 1.12

Question: What is the most appropriate next step in management of this patient?

A. Start surveillance imaging, avoiding immunotherapy due to the history of hypothyroidism

B. Start surveillance imaging, avoiding immunotherapy as his PD-L1 TPS is 1% and patients with low PD-L1 did not respond to immunotherapy

C. Obtain CT chest to ensure patient does not have progressive disease prior to starting durvalumab

D. Obtain CT chest to ensure patient does not have progressive disease prior to starting pembrolizumab

Case Study 1 Follow-up

Two months into therapy with durvalumab, RT presents to clinic for evaluation prior to the next cycle of durvalumab. He reports increasing cough and shortness of breath and oxygen saturation in 90% on room air, previously 97%. What should be done next?

Case Study 1 Follow-up

Two months into therapy with durvalumab, RT presents to clinic for evaluation prior to the next cycle of durvalumab. He reports increasing cough and shortness of breath and oxygen saturation in 90% on room air, previously 97%. What should be done next?

- A. Hold immunotherapy, and order CXR
- B. Continue durvalumab infusion as patient is not hypoxic and move up his surveillance CT scan
- C. Hold immunotherapy, obtain walking O2 assessment, and request urgent chest CT
- D. Hold immunotherapy, treat empirically with azithromycin and Medrol dose pack and recheck in clinic in 2 weeks

Case Study 2

- Background: AS is a 63-year-old female former 20 pack year smoker, who presented to her primary care physician with non-productive cough and 15 lb unintentional weight loss. CXR showed a right lower lobe mass and subsequent CT scan showed a 5.2 cm right lower lobe mass with bilateral mediastinal lymphadenopathy. PET scan was obtained and in addition to FDG avid lesions noted above, it also showed 3 suspicious hypodense FDG-avid lesions ranging from 1-3cm in the liver. A liver lesion was biopsied and showed adenocarcinoma (TTF1+, Napsin A+) consistent with lung origin; PD-L1 TPS was low (1-49%). A brain MRI has been ordered and is pending.
- Vitals: Temp 36.8 C, HR 88, RR 15, BP 137/84, O2 saturation 96% on room air
- Labs: WBC 6.8, Hgb 11.6, Plt 285
 Na 143, K 3.9, CO2 22, BUN 13, SCr 0.74, Ca 8.8, Glu 94
 AST 22, ALT 28, Alk Phos 114, Tbili 0.4

Question: What is the most appropriate next step in management of this patient?

A. Start carboplatin, pemetrexed, pembrolizumab based on Keynote-189 if brain MRI shows no evidence of metastatic disease

B. Request molecular testing on the liver biopsy specimen and await results prior to starting therapy

C. Start single agent pembrolizumab based on Keynote-042 now, there is no need to wait on brain MRI

D. Start carboplatin, paclitaxel, atezolizumab, bevacizumab based on Impower-150 if brain MRI shows no evidence of metastatic disease

