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Founded by Sean Parker with $250 million donation
Launched in April 2016
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Institutions %* Currently ~50 employees in San Francisco, CA
¢ Activities span clinical development, translational research,
bioinformatics, public outreach, and enabling collaborations
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More measurements mean
more opportunities for understanding
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I What are the challenges
in implementing this idea?

« Technology
* Logistics

* Analysis






I Variant calling is far from being a “done deal”

All Variants, FFPE

PARKER INSTITUTE



Concordance between
varies by vendor
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We are constantly working
to be at the forefront of assay technology

* Flow cytometry
« 31-marker CyTOF panel with space for drop-ins
« Packaged by Fluidigm and available to investigators
» Developing population specific panels for BD's FACS Symphony
« Computational infrastructure to analyze datasets with thousands of flow files

« Making significant efforts to implement advanced imaging technologies
* Vectra, MIBI, CODEX

 Single-cell sequencing
« Working to harmonize dissociation protocols
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Logistics

“Amateurs talk strategy. Professionals talk logistics.”



I Logistics are where aspirations meet reality

« Are these samples available in the clinic?
» Fresh dissociation is the main bottleneck for scRNAseq
« Obtaining fresh frozen samples is still a challenge

 [|s assay X worth doing?
* High bar to clear due to sample availability

« Can anybody run my samples?

« The fact that it can technically be done, does not mean you will find a way to do it in the real
world
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Being smart about aliquots is essential

to run multiple assays

Viability
(%)

98.1
95.8
98.8
97.4
98.6
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#dry
pellet (2M)

0.94
1.19
1.12
1.36
1.87
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« Centralized biobanking with a commercial partner

* Broad consent protocol
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Each sample is annotated
with multiple molecular measurements (features)

Samples Gene expression Cytokines Cell populations
(RNAseq) (Luminex) (CyTOF)

T

Categorical endpoint Continuous endpoint
— Responders
Progression-free survival
—— Non-responders ‘ &
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In order to get to that matrix
you need broad computational expertise

« Central computational biology team with expertise across multiple datatypes

Fluorescence flow cytometry Whole Exome Sequencing Luminex

CyTOF TCRseq
RNAseq (bulk and single-cell) VECTRA
ATACseq (bulk and single-cell) Imaging Mass Cytometry

« Take best approaches when they exist
* Develop them when they are needed
 https://github.com/ParkerICI
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I No matter what, real-world data is incomplete

Pre-treatment

All subjects : 60 total

Post-treatment.

Features from all assays : 30,000 total
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I This is not a Deep learning problem

The output is not clearly defined
 What is response?
» Collecting good molecular data is harder than collecting good data

Datasets are small (n << p) and incomplete

The encoding is ambiguous
 What is the best way to translate assay data into numeric features?

Deep Learning can help solve specific technical problems
« Examples include variant calling, image segmentation, tissue annotation
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The role of computational methods is
to help human reasoning
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Analysis Interpretation

\/

* Have people that understand biology
* Close collaboration with investigators

* Visualization methods
* (Queryable databases
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I What can we do with “more data”

 Increase the amount of “reference knowledge”
« Look at how individuals differ from the reference
* Increase statistical power

« Contextualize
« Have we observed this signal before in other contexts?

« Ask questions we can’t anticipate today
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