NanoFACS: Extracellular Vesicle Subset Sorting & Analysis for Personalized Medicine

Jennifer C. Jones, MD, PhD

NIH, NCI-Vaccine Branch & Radiation Oncology Branch

SITC 2017 November 8, 2017

The (Human) Clinical Problem

- Combining Radiation & Immunotherapy is very exciting
 - Impact: Cures not just "Treatments"
 - Problems:
 - Rad Onc: We don't know best doses & schedules
 - Immunology: We don't know best targets
 - Best choices = only 10-30% of treated patients respond
 - Best responses = not verifiable for months
 - Social: We don't know the cost:benefit outcomes ahead of time
 - Cancer Annual Drug Cost: \$84 Billion.
 - \$41 / \$84 Billion is now "Immune-Targeted" Therapies
 - Opportunity cost: TIME for patients for whom IT isn't effective
 - Research Budgets: Billions being spent testing new combos
- We need:

If 30% response rate, the

annual cost of ineffective tx: - \$29 Billion Immune Tx

- \$59 Billion all Medical Tx- weeks/months for pts

- Pre-Tx Biomarkers to Personalize Therapy
- Early-Tx Biomarkers to Adapt Treatments

What if....

Every patient carried a Dossier with them?

What if....

Every patient carried a Dossier with them?

What if....

Every patient carried a Dossier with them?

Blood Samples for Liquid Biopsies: More than Exosomes

Whole blood

Α

В

Cell free plasma

Erythrocytes (~5×10e9/mL blood)

Leukocytes (~7×10e⁶/mL blood)

Circulating tumor cells (~0-10/mL blood)

CTCs 10/mL Thrombocytes (~3×10e⁸/mL blood)

Normal exosomes (~10e¹¹/mL blood)

Tumor stroma exosomes (unknown)

Tumor exosomes (~0-5×10e¹⁰/mL blood*) Texosomes 10 billion/mL

Normal cfDNA (~5×10e9/mL blood)

Tumor cfDNA (~5×10e⁹/mL blood) Tumor cfDNA <10k copies/mL

Ago2 associated miRNA (~5×10e9/mL blood)

HDL associated miRNA (~5×10e9/mL blood)

Translational Cancer Research 2016

Jones Lab Program Priorities:

Extracellular Vesicles (EVs) for Personalized Medicine

- 1. Develop and refine methods needed to study EV subsets
- 2. Apply nanoFACS Program methods to the following clinical situations:
 - Detect Tumor-Associated EVs
 - Detect Immune-Response EVs
 - Detect Radiation-Induced EVs
 - Define Abscopal EV Profile

Nanoscale Biological Particles and Labels

NanoFACS at NCI

	Cellular Flow Cytometry	EV Flow Cytometry Status Quo	NanoFACS Program @ NCI2016
Size Resolution (light scatter)	Standard	not possible <400nm	Resolve to <u><</u> 100nm
Size Resolution (fluorescence)	Standard	not possible <100nm	Resolve to <u><</u> 40nm
Calibration	Standard	No standards	Developed protocols
Preparative Sorting Protocols	Standard	Not possible (too slow, too blind)	Sorted DC-Tumor EVs Functional Sorts (HIV) Index Sorting: Copy #s
Staining	Standard	Bead-based (bkgd probs)	Single EV optimized
Counting	Standard	Not possible. Need NTA	nanoFACS: Method developed
Tumor Marker Detection	Standard	Not ever done for single EVs (GPC1 on EVs on beads)	PSMA+ prostate CA EVs detected Also other immune, tumor surface markers
Bio. Reference	Common	None	1 st gen EV Stds

SCIENTIFIC REPORTS

OPEN Labeling Extracellular Vesicles for Nanoscale Flow Cytometry

Aizea Morales-Kastresana¹, Bill Telford², Thomas A. Musich³, Katherine McKinnon⁴, Cassandra Clayborne¹, Zach Braig¹, Ari Rosner^{1,2}, Thorsten Demberg³, Dionysios C. Watson⁵, Tatiana S. Karpova⁶, Gordon J. Freeman⁷, Rosemarie H. DeKruyff⁸, George N. Pavlakis⁵, Masaki Terabe¹, Marjorie Robert-Guroff³, Jay A. Berzofsky¹ & Jennifer C. Jones¹

Received: 13 October 2016 Accepted: 3 April 2017

JCI insight

RESEARCH ARTICLE

Flow virometric sorting and analysis of HIV quasispecies from plasma

Thomas Musich,¹ Jennifer C. Jones,² Brandon F. Keele,³ Lisa M. Miller Jenkins,⁴ Thorsten Demberg,¹ Thomas S. Uldrick,⁵ Robert Yarchoan,⁵ and Marjorie Robert-Guroff¹

¹Immune Biology of Retroviral Infection Section and ²Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, National Cancer Institute, Bethesda, Maryland, USA. ³AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA. ⁴Collaborative Protein Technology Resource, Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland, USA. ⁵Retroviral Diseases Section, HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA. JOURNAL OF EXTRACELLULAR VESICLES, 2017 VOL. 6, 1286095 http://dx.doi.org/10.1080/20013078.2017.1286095

ORIGINAL RESEARCH ARTICLE

a OPEN ACCESS

2016-2017 Large Scale Efforts

2017 Working Group Study

Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper

Bogdan Mateescu^a*, Emma J. K. Kowal [®]b*, Bas W. M. van Balkom^c, Sabine Bartel^d, Suvendra N. Bhattacharyya^e, Edit I. Buzás^f, Amy H. Buck^g, Paola de Candia^h, Franklin W. N. Chow^g, Saumya Dasⁱ, Tom A. P. Driedonks^j, Lola Fernández-Messina^k, Franziska Haderk^{Lm}, Andrew F. Hill [®]n, Jennifer C. Jones [®]o, Kendall R. Van Keuren-Jensen^p, Charles P. Lai^q, Cecilia Lässer^{r,s}, Italia di Liegro^t, Taral R. Lunavat^{r,s}, Magdalena J. Lorenowicz^u, Sybren L. N. Maas^v, Imre Mäger^{w,x}, Maria Mittelbrunn^y, Stefan Momma^z, Kamalika Mukherjee^e, Muhammed Nawaz^{aa}, D. Michiel Pegtel^{ab}, Michael W. Pfaffl^{ac}, Raymond M. Schiffelers^{ad}, Hidetoshi Tahara^{ae}, Clotilde Théry^{af}, Juan Pablo Tosar^{ag}, Marca H. M. Wauben^j, Kenneth W. Witwer ^{®ah} and Esther N. M. Nolte-'t Hoen^j

> http://www.tandfonline.com/iplt ISSN: 0953-7104 (print), 1369-1635 (electronic)

Platelets, 2017; 28(3): 256-262 © 2017 Taylor & Francis. DOI: 10.1080/09537104.2017.1280602

SPECIAL REVIEW: PLATELET MICROVESICLES

Detection of platelet vesicles by flow cytometry

John P Nolan¹ & Jennifer C Jones ²

¹Scintillon Institute, San Diego, CA, USA and ²Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA

PLOS ONE

RESEARCH ARTICLE

Diurnal Variations of Circulating Extracellular Vesicles Measured by Nano Flow Cytometry

Kirsty M. Danielson¹°, Jessica Estanislau¹°, John Tigges¹, Vasilis Toxavidis¹, Virginia Camacho¹, Edward J. Felton¹, Joseph Khoory¹, Simion Kreimer^{2,3}, Alexander R. Ivanov^{2,3}, Pierre-Yves Mantel¹, Jennifer Jones⁴, Praveen Akuthota¹, Saumya Das¹⁴, Ionita Ghiran¹⁴*

1 Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America, 2 Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, United States of America, 3 Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States of America, 4 Molecular Immunogenetics & Vaccine Research Section Vaccine Branch, CCR, NCI, Bethesda, MD, United States of America

These authors contributed equally to this work.
These authors also contributed equally to this work.
* ighiran @ bidmc.harvard.edu

Basic Jones Lab Protocols / Workflow - I

Basic Jones Lab Protocols / Workflow - II

Next Generation High Sensitivity Flow Cytometers

Next Generation High Resolution Flow Cytometry

Szu, et al. ACS Nano, 2014, 8 (10), pp 10998–11006

ACSNANO

Next Generation High Resolution Flow Cytometry Single Molecule Detection

Single-molecule fluorescence burst data from (a) a 20 nm filtered ultrapure water blank and (b) R-PE molecules in an 83 fM solution. The data were binned into 100 μ s intervals, and the excitation laser power was 0.75 mW

Why Does Single Epitope Sensitivity Matter?

NCI High Sensitivity EV Flow Cytometry Evaluations 2017:

High resolution FCM versus Next Generation FCM

NCI High Sensitivity EV Flow Cytometry Evaluations 2017

Dimmest FL detected on all EVs

All >100nm EVs detected by SSC

Astrios-EQ nanoFACS

high speed detection, sorting detection limit estimate: ~30-200 epitopes

nanoFCM prototype May 2017

highly dedicated setup limited dynamic range detection limit estimate: 1-10 epitopes

PSMA-PE

To report X+ EVs per mL:

Accurate single vesicle analysis with <u>single epitope</u> <u>and small EV sensitivity</u> is essential for accurate reporting of how many EVs/mL are positive for X

Technology Readiness Levels: Overview of Jones Lab EV Biomarker Program in the NASA TRL Framework

Publication / Patent

👆 Jones Lab

Jones Lab Collaboration

🍹 Ongoing Studies

"Flow Virometric Sorting of infections HIV quasispecies from plasma for genomic and proteomic analysis." JCI Insight, Feb 2017 (Marjorie Robert-Guroff Lab, NCI-VB)

"Labeling Extracellular Vesicles for Nanoscale Flow Cytometry," Scientific Reports, May 2017

 "Manumycin A suppresses exosome biogenesis and secretion via targeted inhibition of Ras/Raf/ERK1/2 in castration-resistant prostate cancer cells," *Cancer Letters*, August 2017 (Asim-Abdel Mageed Lab, Tulane University)

PLoS One, 2016 (a precursor to robust nanoFACS methods)

Provisional Patent 2017: "Novel Methods for Submicron Vesicle or Particle Processing, Purification, and Detection"

PCT# 62/411,324 2016 "Molecualr NanoTags"

"Efficient production and enhanced tumor delivery of engineered EVs." Biomaterials 2017 (Pavlakis Lab, NCI-VB)

"Obstacles and opportunities in the functional analysis of extracellular vesicle RNA." Journal of Extracellular Vesicles 2017

"Detection of Platelet Vesicles by Flow Cytometry" Platelets 2017

"Serum Exosome Biomarkers for Immunotherapy and Radiation Responses" (abstract) Int J Radiation Biology & Physics 2011

TRL 9

Actual system "flight proven" in successful missions Prospective Clinical Trial Validation

TRL 8

Actual system completed and "flight qualified" CLIA - ready

TRL 7

System prototype demonstration in space Exploratory Tests of Pipeline for Clinical Samples

TRL 6

System prototype in relevant environment Use of Pipeline to test Biorepository Samples

TRL 5

Component validation in a relevant environment Assay validation with Healthy Serum, Plasma EVs

TRL 4

Component validation in a laboratory environment Assay validation: Cancer/Immune Cell EV Subsets

TRL 3

Analytical and experimental proof-of-concept Assay validation: General EVs and HIV Subsets

TRL 2

Technology concept and/or application formulated Formulation of EV Subset Hypothesis & Identification of Technological Requirements

TRL 1

Basic principles observed and reported Observed increased CD81 with Radiation and Absence of early metrics for treatment response

Clinical Example: GMB/ROB Patient w Metastatic Tumor

Tumor Scan

Malignant Pleural Effusion

Large volume clinical bio-fluid sample. Useful for nanoFACS method validation, refinement.

Tumor miRNA Enriched in PSMA+ Exosomes

Critical Steps for EV/Exosome Analysis in Immunotherapy

Critical Steps for EV/Exosome Analysis in Immunotherapy

Critical Steps for EV/Exosome Analysis in Immunotherapy

Specific analytical approach depends on what information is being interrogated

Thank You to NCI, ERCC, NanoFACS Program Collaborators

NIH ERCC U01 Collaborators:

Ionita Ghiran Saumya Das

Technology Working Group:

Stanford – Marty Bigos Stanford – David Parks DFCI/Harvard – Vasilis Toxavidis DFCI/Harvard – John Tigges DFCI/Harvard – Jim Felton MIT – Penny Chisholm NCI – Bill Telford NCI – Ari Rosner NCI – Ari Rosner NCI – Veena Kapoor NCI – Kathy McKinnon NCI – Anu Puri NCI – Vaccine Branch NIAID VRC – Steve Perfetto UC Davis – Jonathan Van Dyke Roy Overton

Collaborative Research & Development Agreement:

NCI:Beckman Coulter Beckman Coulter Fort Collins Engineering Team

NCI Translational Team:

Aizea Morales Kastresana, Joshua Welsh Jay Berzofsky, Vaccine Branch Kevin Camphausen, Radiation Oncology Tom Musich, Thorsten Demberg Marjorie Robert-Guroff, Steve Jacobson Veffa Franchini (Veronica, Dai, Robyn) Dennis Watson, George Pavlakis D. Citrin, A. Kesarwala, P. Guion Peter Choyke, Maria Merino James Gulley, Jenn Marte, James Hodge Jane Trepel, Tim Greten, Austin Duffy T. Waldmann, Kevin Conlon, NIH Pathology Norman Coleman & Moly Aryankalayi David Goldstein, Lisa Jenkins Bao Tran, NCI RNAseq David Venzon, Ari Rosner, Alexis Barfield

Additional Collaborators:

Susan J. Knox (Stanford University) Gordon J. Freeman (Dana-Farber/Harvard) Holden Maeker, T Whiteside, Ken Witwer Marca Wauben (Utrecht, NL) James Wood (Wake Forest, NC) Xiaomei Yan (Xiamen University, China) Fatah Kashanchi (GMU)

jennifer.jones2@nih.gov