Oncolytic Virus Immunotherapy for the Treatment of Cancer

Howard L. Kaufman

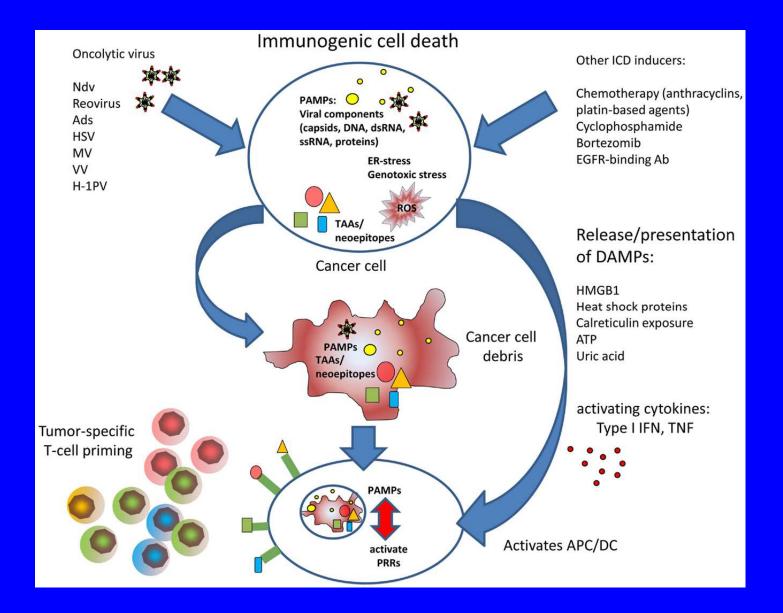
Rutgers Cancer Institute of New Jersey New Brunswick, NJ

DISCLOSURES Relevant to This Session

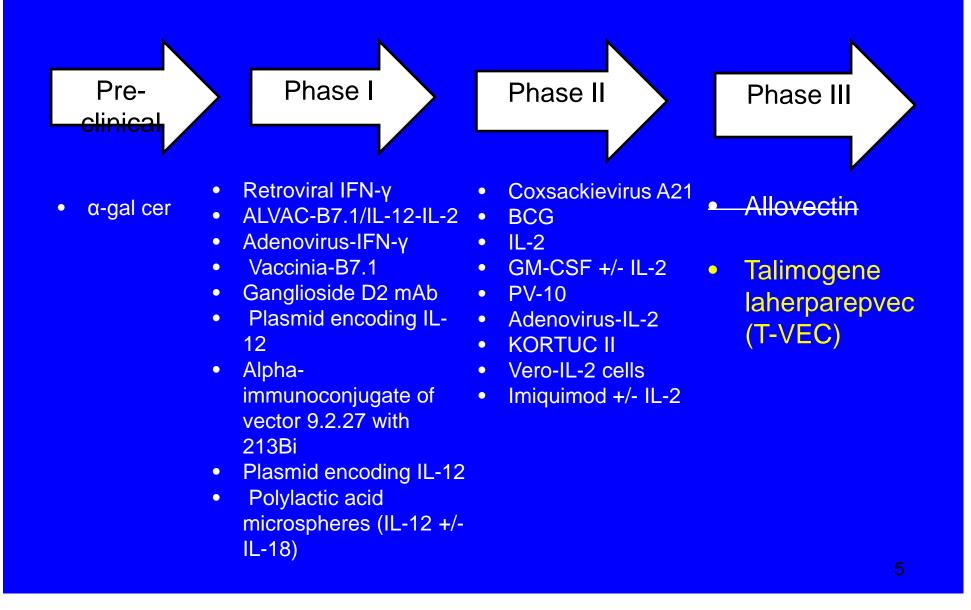

Dr. Howard Kaufman is a consultant/advisor for BioVex and Amgen Inc. and receives research funding from Amgen Inc.

He also serves on advisory boards for Alkermes, EMD Serono, Merck, Prometheus and Sanofi.

He receives research funding from BMS, EMD Serono, Merck, Prometheus and Viralytics

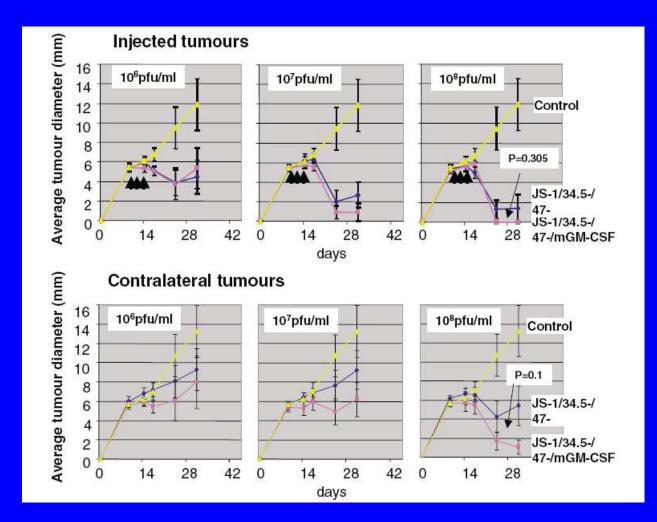

He is on the speaker's bureau at Merck and submits all honoraria for this activity to Rutgers University

Classification of Animal Viruses



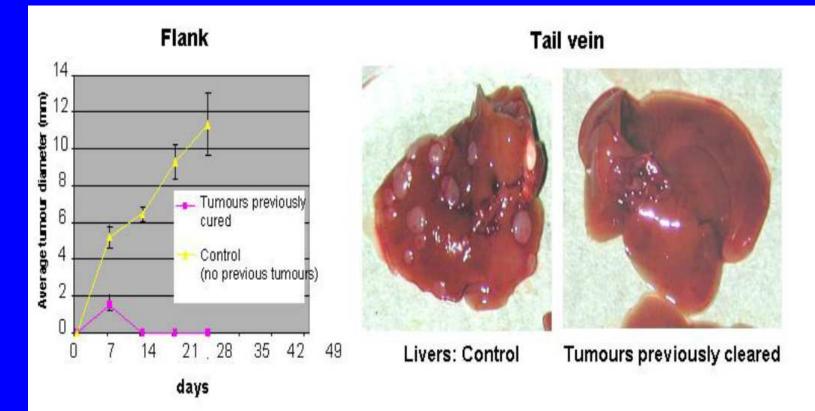
Oncolytic Virus Immunotherapy

Clinical Development of Intra-lesional Immunotherapy

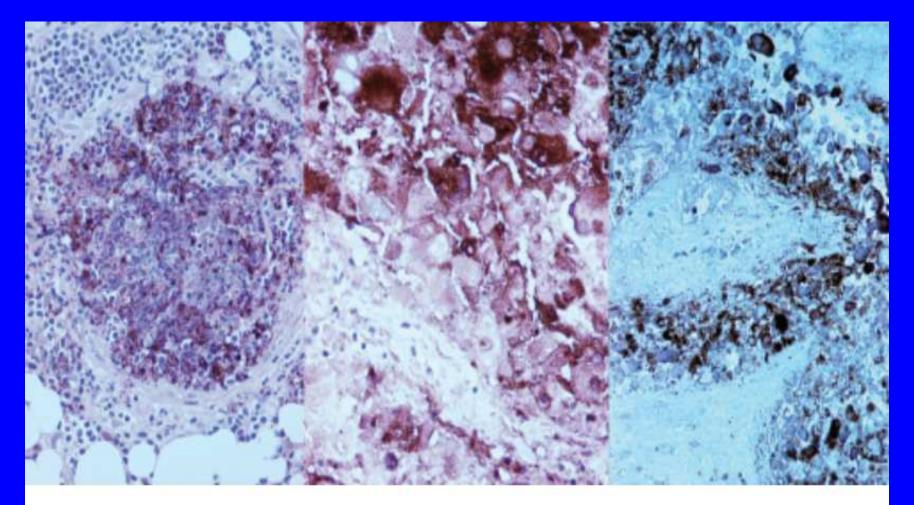

Oncolytic Herpesvirus Immunotherapy

- Selective tumor targeting and replication
- Results in potent lytic effect following infection in permissive cells (e.g. tumor)
- Rapidly cleared
- Acceptable safety profile/responds to acyclovir
- Induction of host anti-tumor immunity
- Can engineer to attenuate pathogenicity and enhance immunogenicity
- Off the shelf reagents/easy to administer (trials in glioblastoma, colorectal cancer, melanoma)

Talimogene laherparepvec (T-VEC) is an attenuated HSV-1 oncolytic virus


Deletion of ICP34.5	Provides tumor selective replication
New HSV-1 strain: JS1	Improved tumor cell lysis compared to other strains
Earlier/increased US11	Increases replication of ICP34.5 deleted HSV
Deletion of ICP47	Prevents block to antigen presentation
Insertion of GM-CSF, replacing ICP34.5	Enhances anti-tumor immune response

GM-CSF contributes to rejection of noninjected A20 tumors


Liu et al. Gene Ther 2003

T-VEC induces protection against re-challenge in A20 tumor model

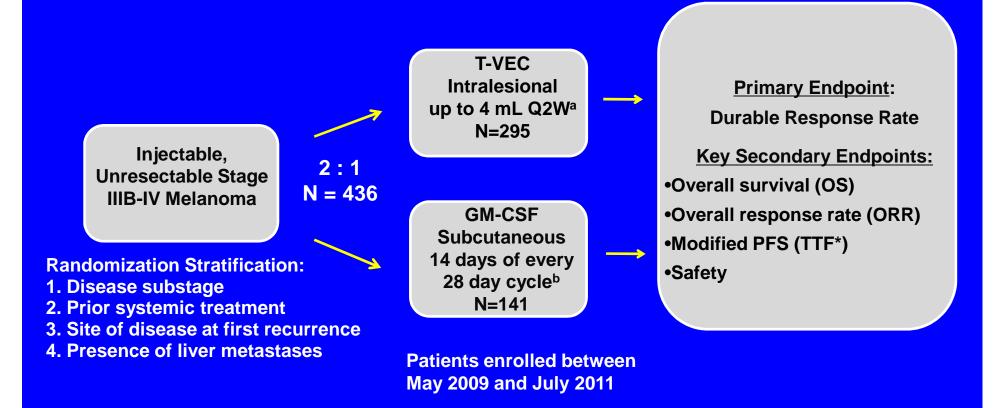
A20 lymphoma tumor cells were injected into mice who were naïve to, or previously cured of, A20 tumors

Anti-HSV Ab staining observed only in necrotic tumor tissue (14/19 biopsies)

Breast cancer

Melanoma

Head & neck cancer


Phase II Melanoma Trial

- 50 patients
- Stage IIIc-IV
- T-VEC injected into 1-10 lesions every 2 weeks for up to one year
- ORR 28%
- Higher ORR in Stage IIIc and IV M1a
- 93% of responses lasted
 > 6 months

Stage	CR	PR	ORR	>6 mo* responses
Stage IIIc	20%	20%	40%	30%
n=10	(2/10)	(2/10)	(4/10)	(3/10)
IV M1a	31%	6%	37.5%	37.5%
n=16	(5/16)	(1/16)	(6/16)	(6/16)
IV M1b	25%	0%	25%	25%
n=4	(1/4)	(0/4)	(1/4)	(1/4)
IV M1c	10%	5%	15%	15%
n=20	(2/20)	(1/20)	(3/20)	(3/20)
Total	20%	8%	28%	26%
n= 50	(10/50)	(4/50)	(14/50)	(13/50)

* Not a formal study endpoint

OPTiM Phase III Study Design

Patients were to remain on treatment for at least 24 weeks despite progression (unless intolerability or investigator decision to start new therapy)

^a Dosing of T-VEC was $\leq 4 \text{ mL x10}^6$ pfu/mL once, then after 3 weeks, $\leq 4 \text{ mL x10}^8$ pfu/mL Q2W. ^b Dosing of GM-CSF was 125 µg/m² subcutaneous daily x14 days of every 28 day cycle.

*Andtbacka et al. ASCO 2013; LBA9008

Key Eligibility Criteria

- Melanoma, not surgically resectable
 - Stage IIIB/C (with or without in-transit disease)
 - Stage IV with limited visceral burden
 - LDH ≤ 1.5x ULN
 - ≤ 3 visceral metastases (lung lesions excepted) and no lesion
 > 3 cm
 - Any liver lesion must have been stable for at least 1 month
 - Brain lesions must have been treated and stable for at least 2 months
- Injectable disease: at least one cutaneous, SC, or nodal lesion
- Measurable disease: lesion or aggregation of lesions ≥ 10 mm in greatest diameter
- ECOG Performance Status 0 or 1
- No open herpetic skin lesions or chronic anti-herpetic agents

Patient Demographics and Characteristics

	GM-CSF (N = 141)	T-VEC (N = 295)	Total (N = 436)
Disease substage, n (%) IIIB IIIC IV M1a IV M1b IV M1c	9 % 22% 30% 18% 21%	8% 22% 25% 22% 23%	8% 22% 27% 21% 22%
Line of therapy, n (%) 1 st line ≥ 2 nd line	46% 54%	47% 53%	47% 53%
Sex – Men, n (%)	55%	59%	57%
ECOG PS* – 0, n (%)	69%	71%	70%
LDH* – ≤ ULN, n (%)	88%	90%	89%
HSV serostatus* – Positive, n (%)	55%	59%	58%
BRAF Status, n (%) Mutant Wild-type Unknown/missing	16% 16% 68%	16% 15% 69%	16% 16% 68%

Safety: Adverse Events (AEs)

AEs of All Grades Occurring in ≥ 20% of
T-VEC Treated PatientsGrade 3/4 AEs Occurring in ≥ 5 Patients
in Either Arm

Preferred Term-	GM-CSF	T-VEC	Preferred Term-	GM-CSF	T-VEC
% All Grade AEs	(N=127)	(N=292)	% All Grade AEs	(N=127)	(N=292)
Fatigue	36.2%	50.3%	Cellulitis	<1%	2.1%
Chills	8.7%	48.6%	Fatigue	<1%	1.7%
Pyrexia	8.7%	42.8%	Vomiting	0	1.7%
Nausea	19.7%	35.6%	Dehydration	0	1.7%
Influenza-like illness	15.0%	30.5%	Deep vein thrombosis	0	1.7%
Injection site pain	6.3%	27.7%	Tumor pain	0	1.7%
Vomiting	9.4%	21.2%			

Vitiligo was reported as an AE in 5% with T-VEC and 1% with GM-CSF

Of 10 total fatal AEs on the T-VEC arm, 8 were due to PD. The 2 fatal AEs on the T-VEC arm not associated with disease progression were sepsis (due to Salmonella infection) and myocardial infarction. No treatment-related fatal AEs were observed.

There were 2 fatal AEs on the GM-CSF arm, 1 due to dyspnea and 1 due to disease progression. Median duration of treatment was 10 weeks for GM-CSF and 23 weeks for T-VEC

Vitiligo following T-VEC

Overall Response Rate

ITT Set	GM-CSF (N=141)	T-VEC (N= 295)	Treatment Difference (T-VEC – GM-CSF)
Overall Response Rate (95% CI)	5.7% (1.9, 9.5)	26.4% (21.4, 31.5)	20.8% (14.4, 27.1) <i>P</i> < 0.0001ª descriptive
CR	0.7%	10.8%	
PR	5.0%	15.6%	

Durable Response Rate (Primary Endpoint)

ITT Set	GM-CSF (N=141)	T-VEC (N= 295)	Treatment Difference (T-VEC – GM-CSF)
Durable Response Rate	2.1%	16.3%	14.1% 95% CI: (8.2, 19.2) <i>P</i> < 0.0001 ^a

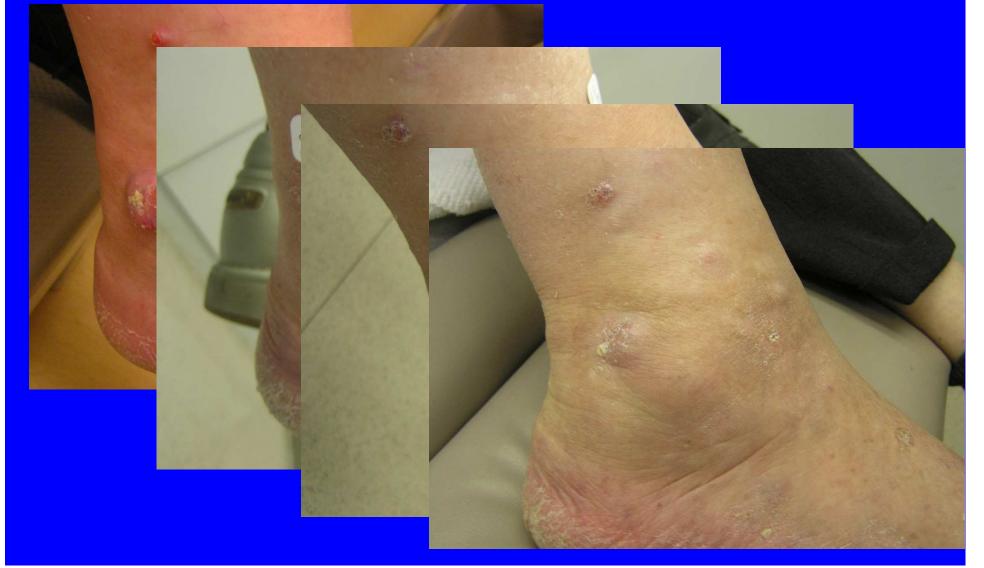
All responses presented are per independent EAC. Overall responses were not required to be confirmed. ^aUnadjusted Fisher's exact test

Andtbacka et al. ASCO 2013; LBA9008

DRR By Key Covariates

(Exploratory Subgroup Analyses)

Favors G	M-CSF Favors	T-VEC N	GM-CSF (%)	T-VEC (%)	Diff. % (95% CI)
All randomly assigned	i Heri	436	2.1	16.3	14.1 (8.2 – 19.2)
Disease stage – IIIB / IIIC		→ 131	0.0	33.0	33.0 (19.1 – 43.9)
Disease stage - IVM1a	→	118	2.3	16.0	13.7 (0.2 - 24.6)
Disease stage - IVM1b		90	3.8	3.1	-0.7 (-18.6 – 8.7)
Disease stage - IVM1c		96	3.4	7.5	4.0 (-12.8 – 14.3)
Line of therapy - First line		⊣ 203	0.0	23.9	23.9 (14.3 – 32.1)
Line of therapy - \geq Second line	H-+-1	233	3.9	9.6	5.6 (-3.2 – 12.3)
Male	⊢ ⊷⊣	250	2.6	16.8	14.2 (5.3 – 21.1)
Female	⊢ ⊷-1	186	1.6	15.6	14.0 (4.2 – 22.1)
ECOG - 0	⊢ ⊷⊣	306	3.1	18.2	15.1 (7.1 – 21.6)
ECOG - 1	++	114	0.0	12.2	12.2 (-2.4 – 21.7)
HSV-1 Status - Negative		142	0.0	13.4	13.4 (2.0 – 22.2)
HSV- 1 Status - Positive	⊢ ⊷1	253	3.8	17.7	13.9 (4.5 – 21.1)
	-20 0 20	40			
	DRR Difference (T-V	(EC-GM-CSE)			


Andtbacka et al. ASCO 2013; LBA9008

T-VEC Administration is easily done in the ambulatory setting

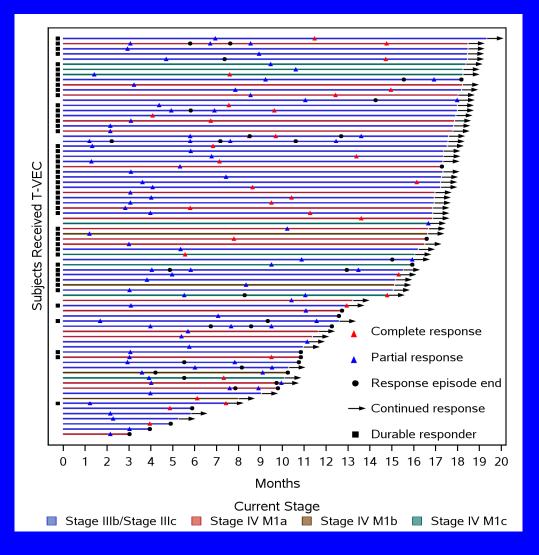
Drug Administration

Complete regression of soft tissue melanoma after TVEC

Regression of regional disease following T-VEC

Baseline

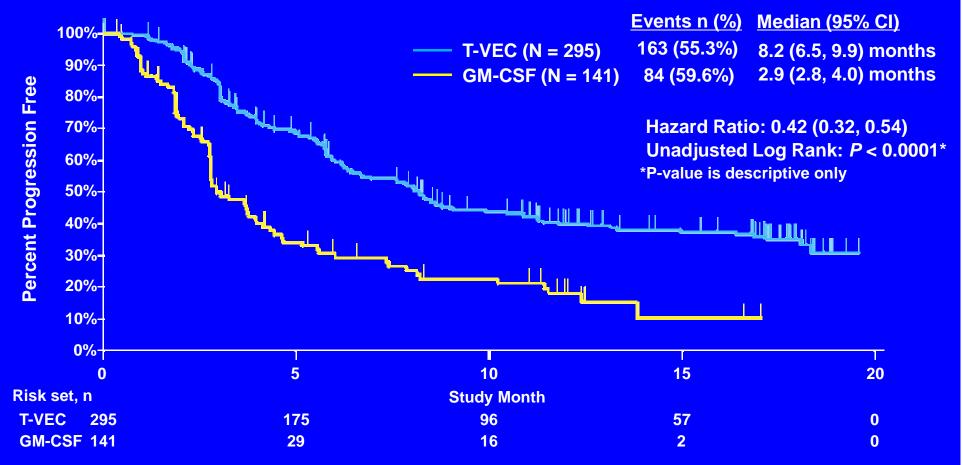
12 months


Regression of regional disease following T-VEC

1 year

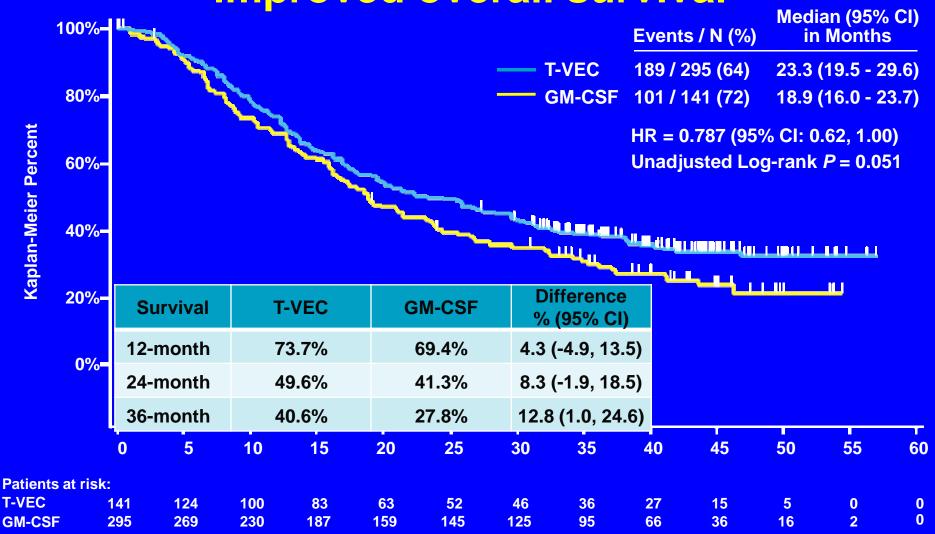
Baseline

Time to Response And Duration of Response

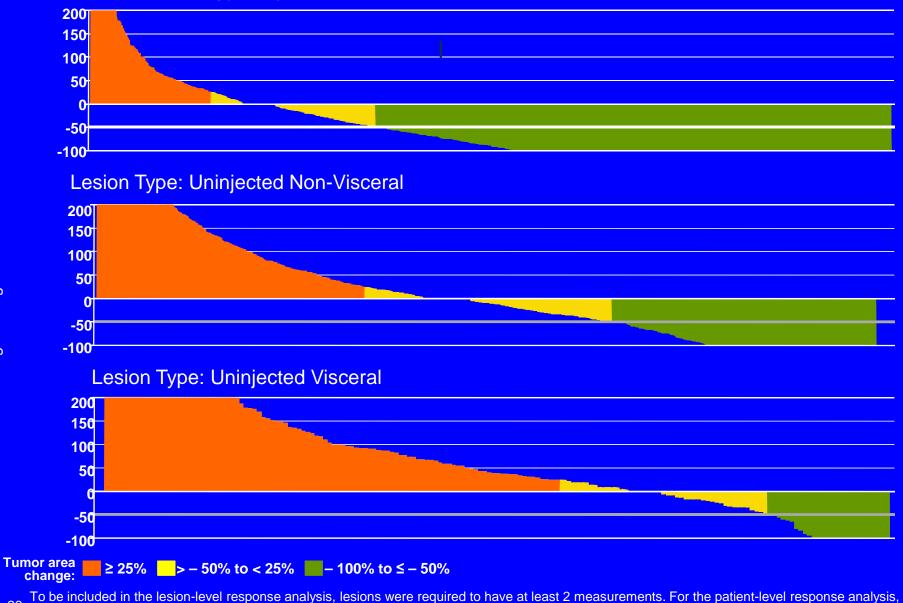

•To be a durable responder, patient had to have response of at least 6 continuous months

•Patients were to continue treatment beyond progression, allowing for reinitiation of response after progression

•PD displayed when it represents the end of an objective response. PD also occurred prior to objective responses in many cases (54%).


•72% of patients with an ORR were still in response at the time of the last available tumor assessment

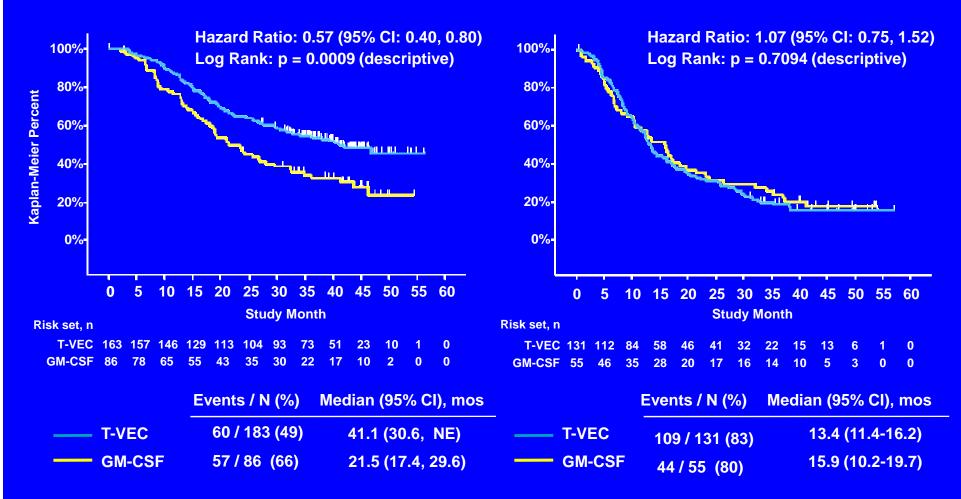
T-VEC is associated with improved [modified] progression-free survival


 Modified PFS was defined as time from the first dose of study treatment until death or development of the first clinically significant progression for which no objective response was subsequently achieved

T-VEC is associated with an improved overall survival

Lesion-Level and Patient-Level Responses to T-VEC

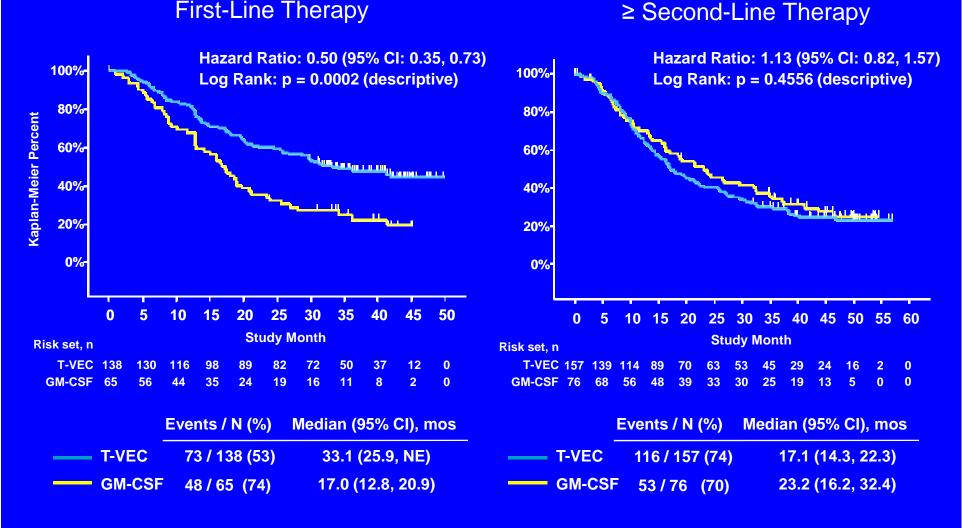
Lesion Type: Injected


To be included in the lesion-level response analysis, lesions were required to have at least 2 measurements. For the patient-level response analysis, only patients with at least 1 lesion represented in the corresponding waterfall plot were included. Responses were per investigator

Andtbacka et al., SSO 2014, Abstract PCC-121.

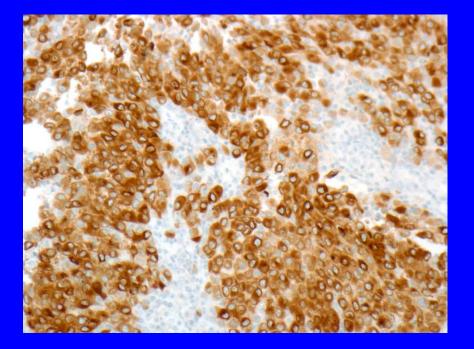
Exploratory OS Subgroup Analysis By Disease Stage

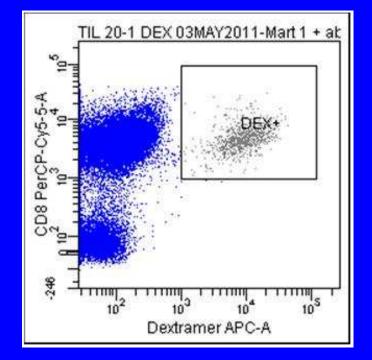
Stage IIIB/C, IVM1a


Stage IVM1b/c

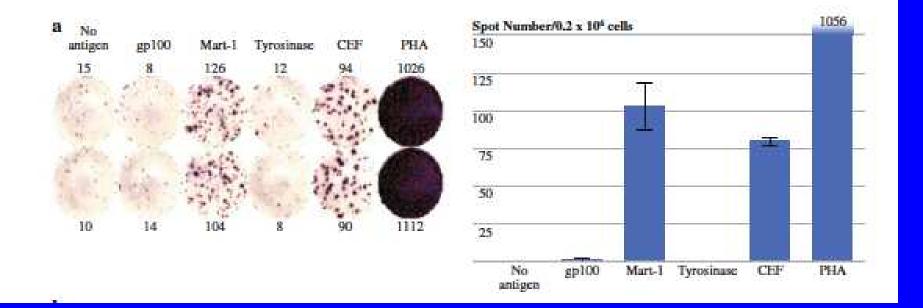
27

Exploratory OS Subgroup Analysis By Treatment Line

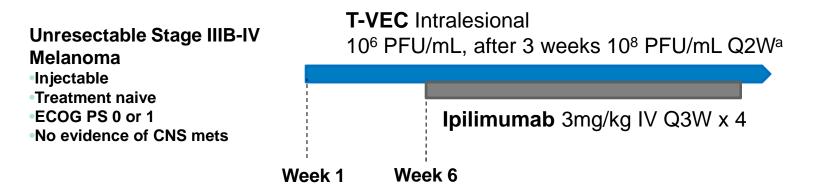

First-Line Therapy



T-VEC is associated with MART-1 CD8+ T cells responses in PBMC


MART-1 tumor cell staining

MART-1 T cells by dextramers


T-VEC is associated with MART-1 CD8+ T cells in tumor-infiltrating lymphocytes

Kaufman et al. Ann Surg Oncol 2010

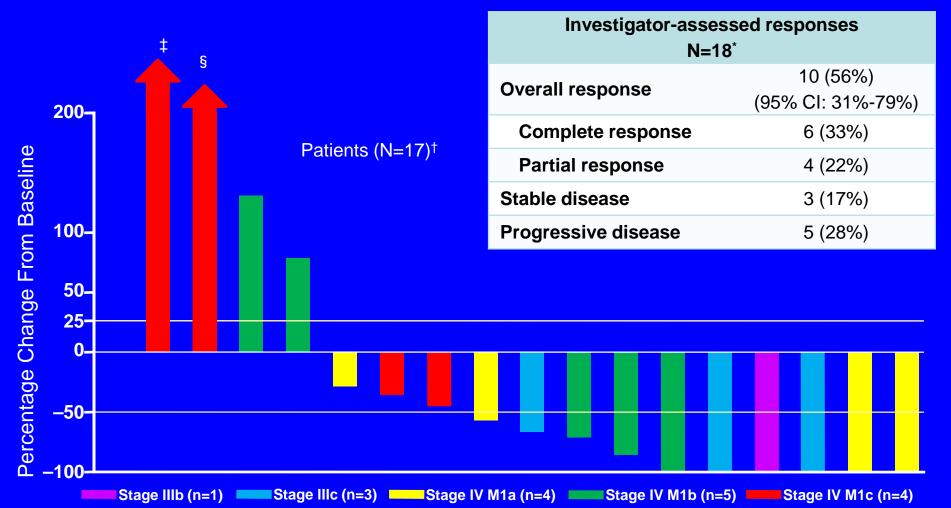
Phase IB/II combination trial of T-VEC and Ipilimumab

T-VEC dosing until CR, all injectable tumors disappeared, PD per irRC, or intolerance whichever comes first.

Primary Endpoint:	Incidence of dose-limiting toxicities (DLTs)
Key Secondary Endpoints:	ORR ^{irRC} , Safety

^a Dosing of T-VEC was δ 4 mL × 10⁶ PFU/mL once, then after 3 weeks, δ 4 mL × 10⁸ PFU/mL Q2W.

Collichio et al. SMR 2014, Zurich

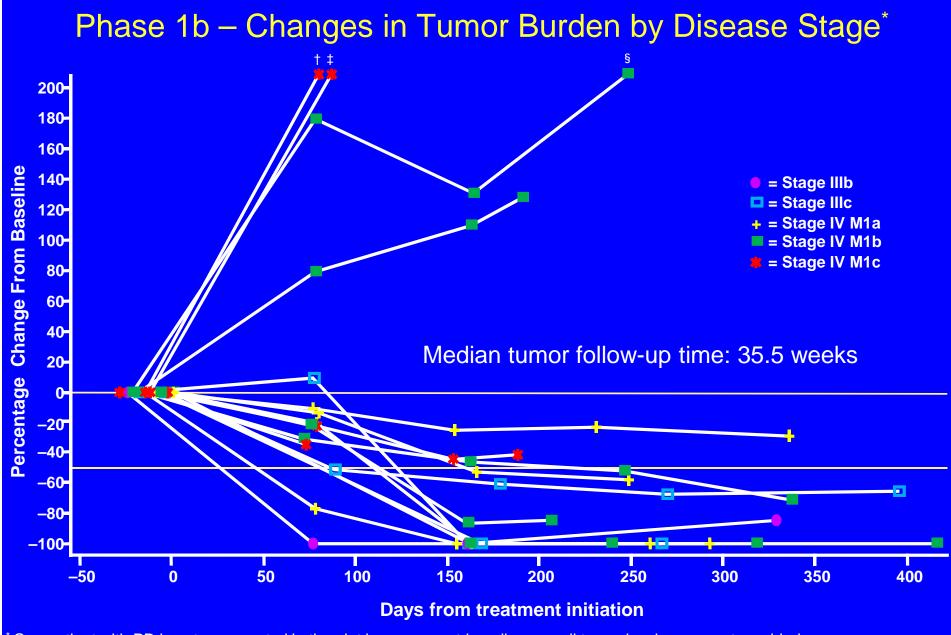

Phase 1b: Treatment-Emergent Adverse Events*

Preferred Term	Total	Grade 3	
	N (%)	N (%)	
Any event	19 (100)	5 (26)	
Any attributed to T-VEC	17 (90)	3 (16) [†]	
Any attributed to ipilimumab	15 (80)	3 (16) [†]	
Chills	11 (58)	-	
Fatigue	11 (58)	1 (5)	
Pyrexia	11 (58)	1 (5)	
Nausea	9 (47)	2 (11)	
Rash	9 (47)	-	
Diarrhea	8 (42)	1 (5)	
Headache	8 (42)	-	
Pruritis	7 (37)	-	
Decreased appetite	4 (21)	-	
Hyperglycemia	4 (21)	-	
Vomiting	4 (21)	1 (5)	
ALT increased	3 (16)	-	
Back pain	3 (16)	1 (5)	
Influenza-like illness	3 (16)	1 (5)	
Pain	3 (16)	-	
Vision blurred	3 (16)	-	

- The only grade 3 event occurring in > 1 patient was nausea
- The only two grade 4 events were in a patient with elevated amylase and lipase (attributed to ipilimumab)
- There was one grade 5 event of metastases to central nervous system (preferred term)

*All events of any grade occurring in > 15% of patients during treatment or up to 30 days after last T-VEC or 60 days after last ipilimumab, whichever is later; [†]Grade 3 events in these patients: pyrexia attributed to T-VEC; hypophysitis and abdominal distention attributed to ipilimumab; and nausea, diarrhea, fatigue, influenza-like illness, vomiting, adrenal insufficiency, and dehydration attributed to both; ALT: alanine aminotransferase

Initial response rates of T-VEC and ipilimumab



* Efficacy analysis set includes only the patients who received both T-VEC and ipilimumab. Both responses and progressions are included; nine of the 10 responses are confirmed, and one is unconfirmed

[†] One patient assessed to have PD by the investigator was not shown in the plot because tumor burden could not be accurately calculated based on missing post-baseline data

[‡] Percentage change from baseline for this patient was 538

[§] Percentage change from baseline for this patient was 265

^{*} One patient with PD is not represented in the plot because post-baseline overall tumor burden was not provided

[†] Percentage change from baseline for this patient was 538 at study day 87

- [‡]Percentage change from baseline for this patient was 265 at study day 80
- [§] Percentage change from baseline for this patient was 770 at study day 248

Comparison of melanoma immunotherapy single agents

Drug	ORR (%)	DCR (%)	DRR (%)	Median OS (months)	1-yr OS (%)	3-yr OS (%)	Mortality (%)*	References
Interleukin-2 (IL-2)	16-28	41	N/A	11.41	59	31	0-2	Atkins et al. JCO 1999; Payne et al. JITC 2014; Hughes et al. CII 2015
Ipilimumab	10.9	28.5	N/A	10	45.6	22	2.1	Hodi et al. NEJM 2011
Pembrolizumab	24	51	N/A	NR**	58	N/A	0	Robert et al. Lancet 2014
Nivolumab	31.7-40	N/A	N/A	NR**	72.9	N/A	0	Robert et al. NEJM 2015; Weber et al. Lancet Oncol 2015
Talimogene laherparepvec (T-VEC)	26.4	76	16.3	23.3	73.6	40.6	0	Kaufman et al. ASCO 2014 and JCO, 2015

*Drug-related; **NR, not reached at time of publication

CONCLUSIONS

- T-VEC is the first oncolytic immunotherapy to demonstrate therapeutic benefit against melanoma in a well-controlled, randomized phase III trial
 - Improvement in DRR and ORR compared to control
 - Improved OS
 - Evidence for induction of activated antigen-specific CD8+ T cells
- T-VEC monotherapy provides a novel potential therapeutic approach for metastatic melanoma
 - Exploratory analyses suggest a particular benefit in patients with limited visceral disease and when administered as first-line therapy
 - T-VEC compares favorably with other monotherapy agents available for the treatment of melanoma
- Combinatory treatment approaches with T-VEC are rational and showing further promise for treating more advanced disease
 - T-VEC and Ipilimumab Phase II in progress
 - T-VEC and pembrolizumab planned

ACKNOWLEDGEMENTS: Patients & Families

✤ UNITED STATES

- Thomas Amatruda, MN
- Amy Abernethy, NC
- Robert Andtbacka, UT
- Sanjiv Agarwala, PA
- Ernest Borden, OH
- Peter Brett, CA
- Jason Chesney, KY
- Frances Collichio, NC
- Lee Cranmer, AZ
- Brendan Curti, OR
- Gregory Daniels, CA
- Keith Delman, GA
- Troy Guthrie, Jr., FL
- Howard Kaufman, IL
- Laura Hutchins, AR
- Eddy Hseuh, MO
- Karl Lewis, CO
- Gerald Linette, MO
- Theodore Logan, IN
- Jose Lutsky, FL
- David Minor, CA
- Dirk Noyes, UT
- Kendra Feeney, PA

Neil Senzer, TX Leslie Oleksowicz OH **Gregory Pennock, FL** Madhavi Venigalla, FL Merrick Ross, TX **Neal Rothschild, FL** Saenger Yvonne, NY Lynn Spitler, CA Mark Cohen, KS **Eric Whitman, NJ** Jonathan Richards,, IL Paul Richards, VA **Stephen Schultz, IN** Joseph Stephanson, SC Igor Puzanov, TN Nikhil Khushalani, NY **David Watkins, TX** Anton Melnyk, Jr., TX Mohammed Milhem, IA Jonathan Zager, FL Keisuke Shirai, SC Clair Verschraegen, NM **Bret Taback, NY**

Nash Gabrail, OH

UNITED KINGDOM

- Pippa Corrie, Cambridge
- Kevin Harrington, London
- Mark Middleton, Oxford
- Alan Melcher, Leeds
- Neil Steven, Birmingham
- Stephen Nicholson, Leicester
- Christian Ottensmeier, Southampton

SOUTH AFRICA

Samuel Fourie, Pretoria Graham Cohen, Pretoria Lee-Ann Jones, Port Elizabeth Conrad Jacobs, Cape Town Lydia Dreosti, Pretoria Susan Fourie, Free State Georgina Mc Adam, Cape Town Shane Cullis, Kwa-Zulu Natal

CANADA

Wilson Miller, Montreal David Hogg, Toronto

Jennifer Gansert – Michael Wolf – Jeffrey Chou – Yining Ye – Rob Coffin