Cancer Immunotherapy Patient Forum

for the Treatment of Melanoma, Leukemia, Lymphoma, Lung and Genitourinary Cancers - November 7, 2015

Resource for Advancing

The Current Role of Immunotherapy in the Treatment of Patients with Cancer

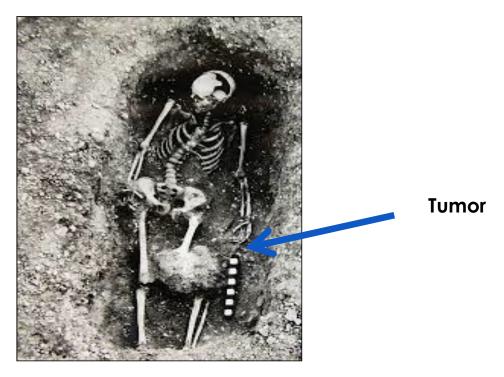
Michael B. Atkins, M.D. Deputy Director Georgetown-Lombardi Comprehensive Cancer Center

November 7, 2015

Conflicts of Interest

Consultant:

Genentech/Roche, BMS, Merck, Nectar, Novartis, Pfizer, Caladrius, Amgen, Alkermes


Advisory Board:

X4Pharma, Caladrius, Merck, Novartis

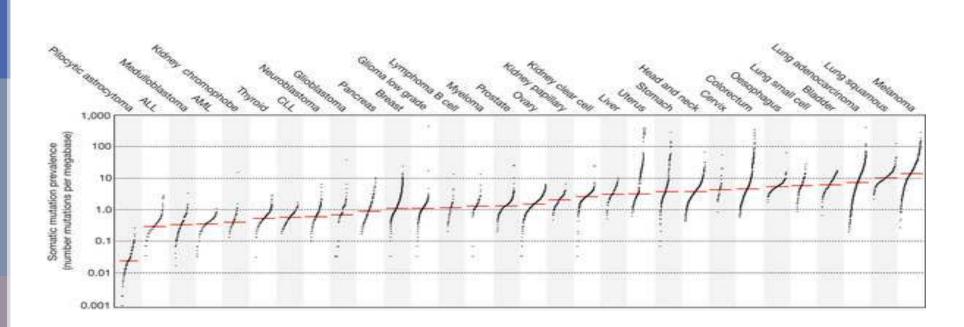
We Have Been at War Against Cancer Throughout Human History

President Nixon declares a "War on Cancer" in 1971

Medieval Saxon man with a large tumor of the left femur

The "War on Cancer" is fought one person at a time...

- Primary Combatants:
 - Malignant cell population
 - Host immune system
- The host immune system is the dominant active enemy faced by a developing cancer
- All "successful" cancers must solve the challenges of overcoming defenses erected by host immune systems

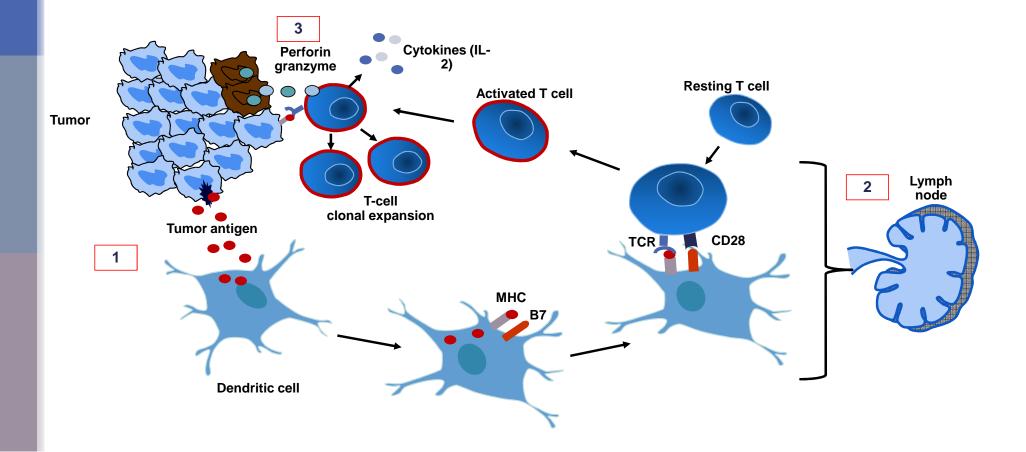

Successful Cancers Escape (Solve the Challenge of Host Immunity) in Different Ways

- Overwhelm out-proliferate the immune response
- Hide decreased antigen or MHC Class I or II expression
- Subvert immunosuppressive chemokines, cytokines
- Shield exclude infiltration by tumor antigen-reactive T cells
- Defend deactivate tumor-targeting T cells that attack tumor cells

Weiner L, SITC Symposium 8/7/2015

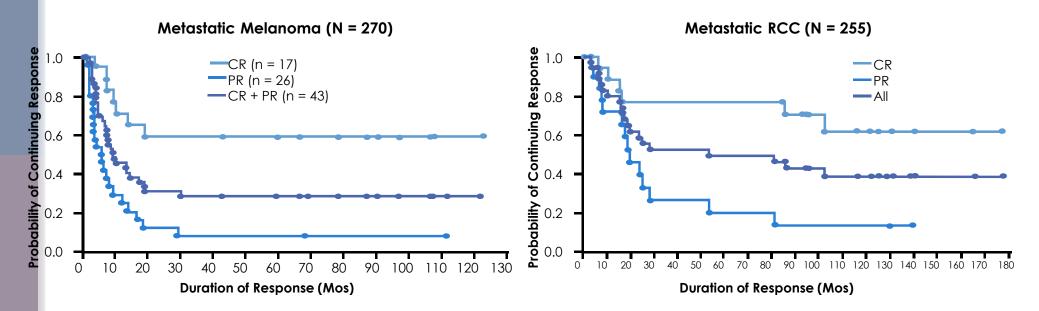
Cancer Immunotherapy

- Treatment of disease by inducing, enhancing, or suppressing an immune response
- "Treating the immune system so it can treat the cancer" (J. Wolchok)
- Immunotherapy can cure cancers



Most Cancers Have Mutations

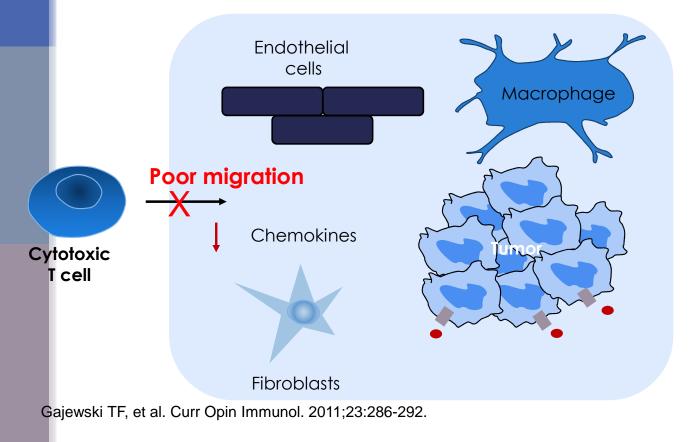
Mutated proteins represent potential antigens – targets for immune recognition and destruction


Lawrence, Nature 499:214 2013

Tumor Immunology: Overview

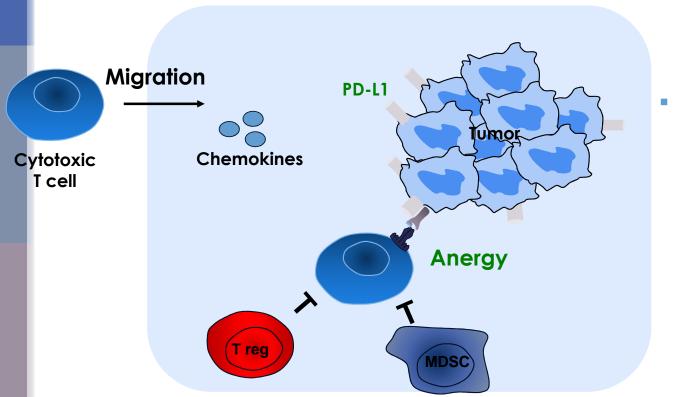
HD IL-2 Therapy: Durable Responses

- HD IL-2 produces durable responses in ~10% of patients with advanced melanoma or RCC
- Few relapses in patients responding for over 2.5 years (likely cured)
- FDA approval in 1992 (RCC) and 1997 (melanoma)



Atkins MB, et al. J Clin Oncol. 1999;17:2105-2116. McDermott DF, et al. Expert Opin Biol Ther. 2004;4:455-468.

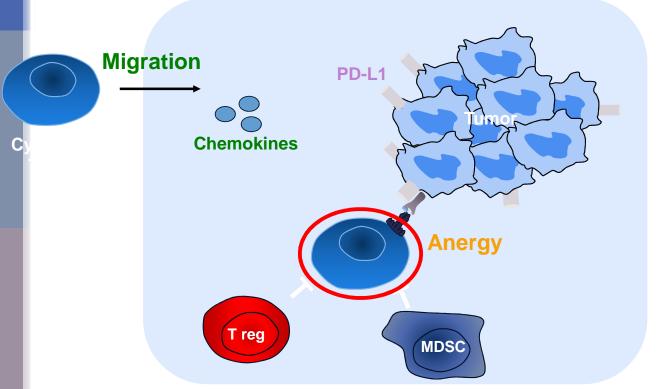
High-Dose IL-2 Therapy: 30-year History


- High-dose IL-2 appears to benefit pts, but:
 - Toxic, complex; must be delivered as an inpatient regimen
- Use remained limited to selected pts treated at experienced centers
- Efforts to develop more tolerable regimens unsuccessful
- Efforts to better select pts who might benefit from high-dose IL-2 therapy produced modest advances
- Proof of principle that immunotherapy can produce durable benefit in pts with cancer, but newer immunotherapies are needed

Non-inflamed Tumor Phenotype

- Poor effector cell trafficking due to:
 - Low inflammation and chemokine expression
- Poor effector cell function due to:
 - hypoxia and high expression of vascular markers, macrophages, fibroblasts

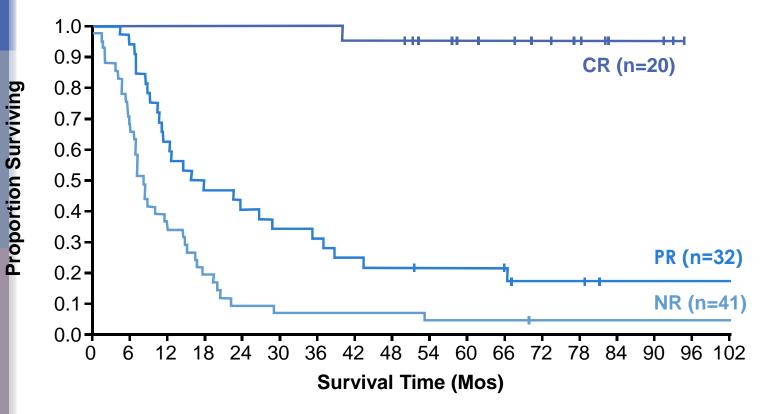
Inflamed Tumor Phenotype



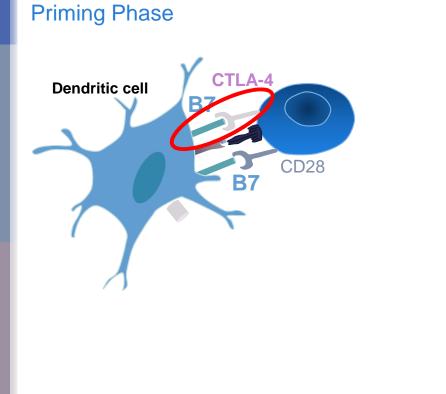
- T cell recruitment
 - High levels of innate immune signals
 - Chemokine expression
- Nevertheless, negative immune regulators dominate
 - Inhibitory receptors
 - Suppressive cells
 - Suppressive enzymes (IDO, arginase)

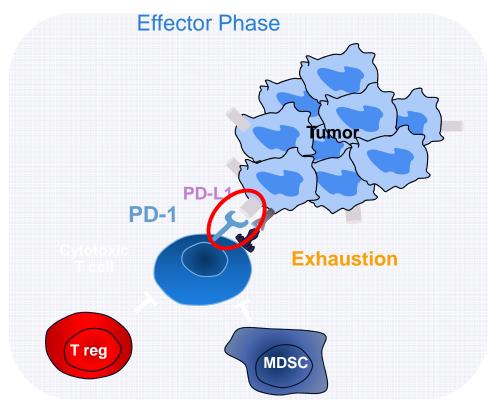
Studies suggest these are the tumors that can respond to Immunotherapy

Gajewski TF, et al. Curr Opin Immunol. 2011;23:286-292. Spranger S, Gajewski T. J Immunother Cancer. 2013;1:16.

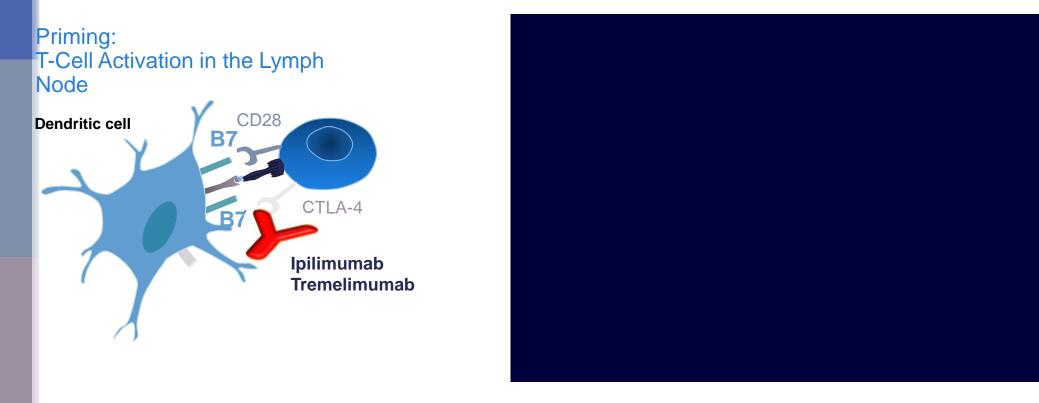

Inflamed Tumor Phenotype

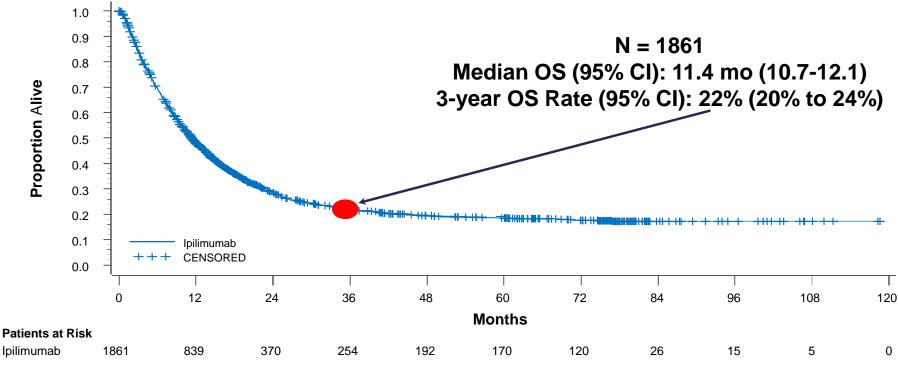
- T cell recruitment
 - High levels of innate immune signals
 - Chemokine expression
- Nevertheless, negative immune regulators dominate
- TIL therapy: remove antitumor T cells from immunosuppressive environment, select/expand ex vivo then re-administer


Gajewski TF, et al. Curr Opin Immunol. 2011;23:286-292. Spranger S, Gajewski T. J Immunother cancer. 2013;1:16.


Tumor-Infiltrating Lymphocytes + IL-2 in Metastatic Melanoma: OS

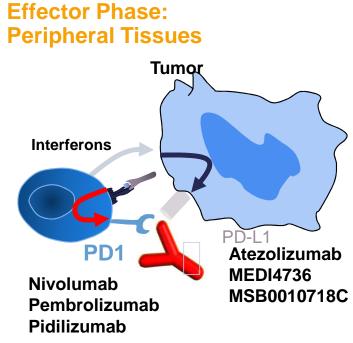
Robbins PF, et al. Nat Med. 2013;19:747-752.


Dampening the Immune System in Cancer


Ribas A. N Engl J Med. 2012;366:2517-2519. Spranger S, et al. J Immunother Cancer. 2013;1:16.

Blocking Immunologic Checkpoints

Ribas A. N Engl J Med. 2012;366:2517-2519. Spranger S, et al. J Immunother Cancer. 2013;1:16.


Ipilimumab: Pooled Survival Analysis from Phase II/III Trials in Advanced Melanoma

Schadendorf D, J Clin Oncol 2015.

Blocking Immunologic Checkpoints

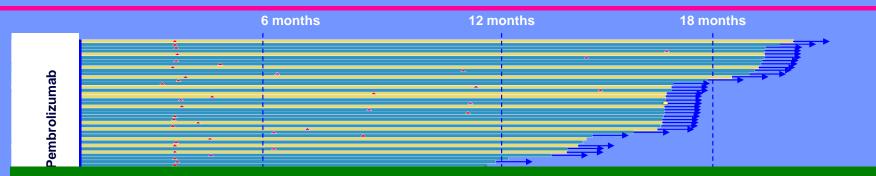
Ribas A. N Engl J Med. 2012;366:2517-2519. Spranger S, et al. J Immunother Cancer. 2013;1:16.

Clinical Development of Inhibitors of PD-1 Immune Checkpoint

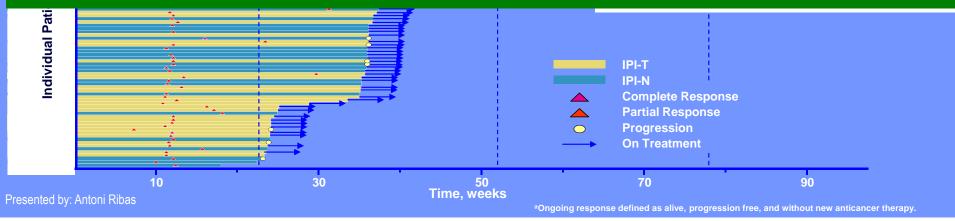
Target	Antibody	Molecule	Company	Development stage	
PD-1	Nivolumab (Opdivo)	Fully human IgG4	Bristol-Myers Squibb	Approved in Melanoma, NSCLCa Phase III in RCC, HNSCC etc	
	Pembrolizumab (Keytruda)	Humanized IgG4	Merck	Approved in Melanoma, NSCLCa Phase III in bladder etc	
	Pidilizumab	Humanized IgG1	Curetech Medivation	Phase II Melanoma, Heme Malignancies	
PD-L1	Durvalumab	Engineered human IgG1	MedImmune	Phase I-II multiple tumors	
	Atezolizumab	Engineered human IgG1	Genentech	Phase III in bladder, RCC, NSCLC	
	Avelumab	Fully human IgG1	EMD Serono (Pfizer)	Phase II in ovarian, Phase I in multiple solid tumors	

Nivolumab: Clinical Activity

Tumor Type	Dose, mg/kg	ORR (CR/PR), n (%)	SD ≥ 24 Wks, n (%)	Median PFS, Mos	MedianOS, Mos	1 yr, %	2 yr, %
MEL (n = 107)	0.1-10	32 (34)	7 (7)	3.7	17.3	68	48
NSCLC (n = 129)	1-10	22 (17)	13 (10)	2.3	9.9	42	24
RCC (n = 34)	1 or 10	10 (29)	9 (27)	7.3	> 22	70	50


Topalian SL, et al. N Engl J Med. 2012;366:2443-2454. Hodi FS, et al. ASCO 2014. Abstract 9002. Brahmer JR, et al. ASCO 2014. Abstract 8112.

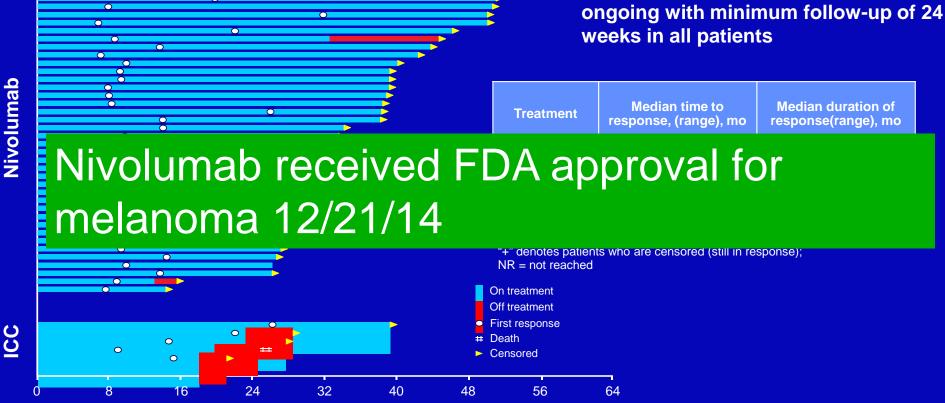
Slide 21


A1 Will need updating from ASCO 2014 reports.

Mel - Abst 9002 NSCLC - Abst 8112 Author, 7/14/2014

Pembrolizumab: Time to Response and On-Study Duration

Pembrolizumab received FDA approval for melanoma 9/4/14



A6

A6 Design - please format with our style Author, 6/24/2014

Nivo 037 Study: Time and Duration of Response

0

Time (Weeks)

36/38 (95%) of nivolumab responses

Spectrum of PD-1/PD-L1 Antagonist Activity

<u>Active</u>

- Melanoma
- Renal cancer (clear cell and non-clear cell)
- NSCLC adenocarcinoma and Squamous cell
- Small cell lung cancer
- Head and neck cancer
- Gastric and GE junction
- Mismatch repair deficient tumors (colon, cholangiocarcinoma)
- Bladder cancer
- Triple negative breast cancer
- Ovarian cancer
- Glioblastoma
- Hepatocellular carcinoma
- Thymic carcinoma
- Mesothelioma
- Cervical cancer
- Hodgkin Lymphoma
- Diffuse large cell lymphoma
- Follicular lymphoma
- T-cell lymphoma (CTCL, PTCL)
- Merkel Cell

Minimal to no activity:

- Prostate cancer
- MMR+ Colon cancer
- Myeloma
- Pancreatic Cancer
- ER+ breast cancer

8 for 8 Phase III Trials

Randomized phase III trials of nivolumab vs. docetaxel in NSCLC

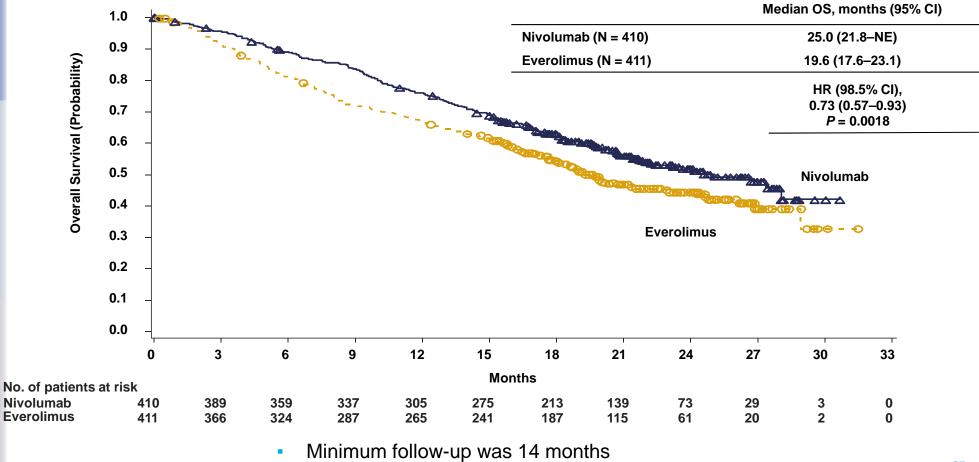
Trial 57: Non-Squamous Cell Carcinoma

Trial 17: Squamous Cell Carcinoma

100 Nivolumab Docetaxel Nivolumab Docetaxel n = 137 n = 135 100 90 N = 290N = 292mOS mos, 9.2 6.0 90 80 mOS, mo 12.2 9.4 (95% CI) (5.1, 7.3)(7.3, 13.3)80 HR = 0.73 (96% CI: 0.59, 0.89); P = 0.0015 70 86 113 # events 70 HR = 0.59 (95% CI: 0.44, 0.79), P = 0.00025 Nivolumab received FDA approval on 10/1/15 in 2nd lin Nivolumab received FDA approval on 3/4/15 in 2nd non-Sauamous NSCLCa line Squamous NSCLCa vr OS rate = 39% Nivolumab 30 -30 . 20 20 Docetaxel 10 -10 1-vr OS rate = 24% Docetaxel 0 -0 0 12 21 3 q 15 18 24 3 6 9 15 18 21 12 24 0 27 Time (months) Time (months)

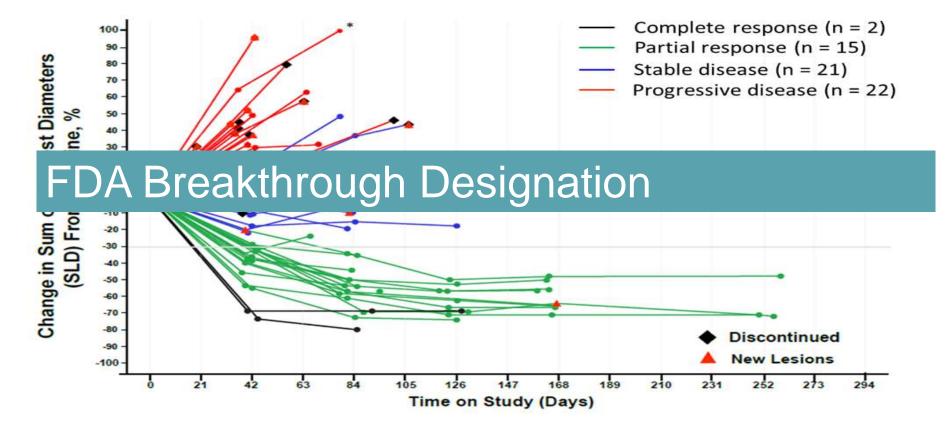
Pembrolizumab Monotherapy for NSCLC: Efficacy Data Supporting the Approved Indication

KEYTRUDA is indicated for the treatment of:

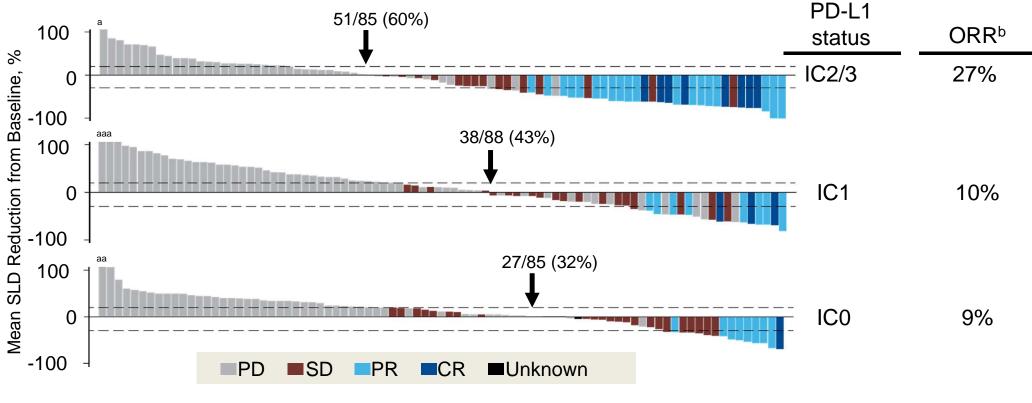

- Patients with metastatic NSCLC whose tumors express PD-L1 as determined by an FDA-approved test and who have disease progression on or after platinum-containing chemotherapy
- Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDAapproved therapy for these aberrations prior to receiving KEYTRUDA

FDA Approval with companion biomarker 10/2015

ORR%, (95% CI)	41% (29, 54)
Complete Response	0%
Partial Response	41%


Keytruda (pembrolizumab) Prescribing Information. Whitehouse Station, NJ: Merck & Co, Inc; October 2015.

Nivolumab RCC Ph3: Overall Survival

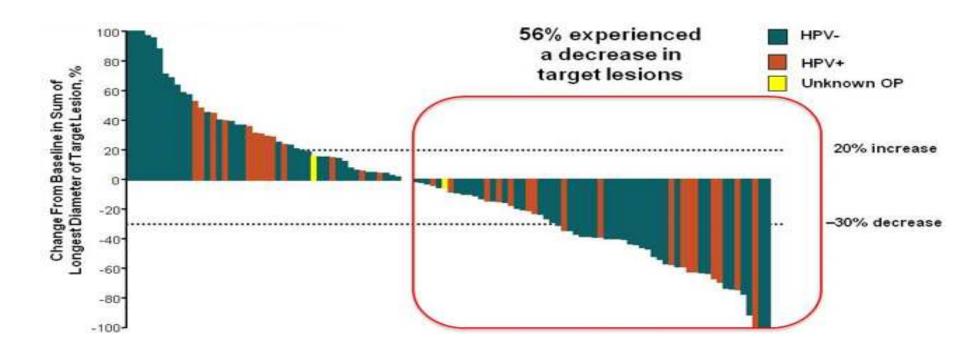

CI, confidence interval; HR, hazard ratio; NE, not estimable.

Atezolizumab: Tumor Burden Over Time in Urothelial Bladder Cancer

Powles T, et al. ASCO 2014. Abstract 5011.

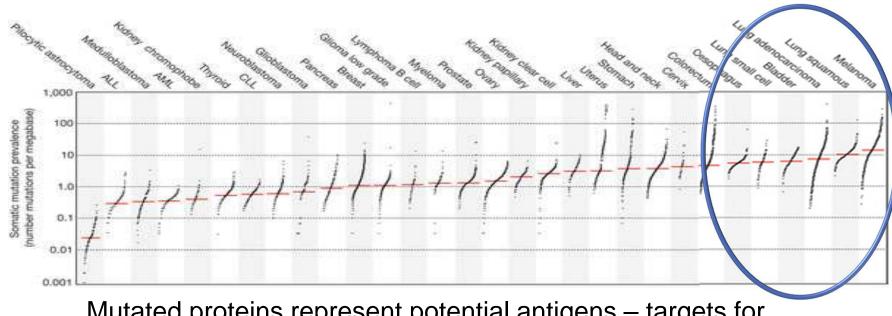
IMvigor 210: Efficacy Changes in Target Lesions by PD-L1 Subgroup

111/258 (43%) patients with tumor assessments had SLD reduction


SLD, sum of longest diameters. ^a> 100% increase. ^bPer confirmed RECIST v1.1 (independent review). Data cutoff May 5, 2015. Follow up ≥ 24 weeks. Patients without post-baseline tumor assessments not included. Several patients with CR had < 100% reduction due to lymph node target lesions. All lymph nodes returned to normal size per RECIST v1.1. Rosenberg JE, et al.: IMvigor 210: Phase II Atezolizumab in mUC

ECCO

29


Phase Ib KEYNOTE-12 Pembrolizumab Study: SCCHN Cohort

N = 132 patients with recurrent or metastatic SCCHN (HPV+ or HPV-) ORR: 25% with 1 CR and 28 PRs

Siewert TY, et al. ASCO 2015. Abstract LBA6008.

A1 No permission yet. Author, 6/11/2015

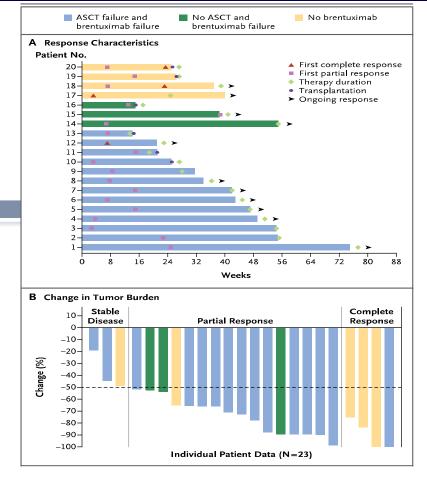
Most Cancers Have Mutations

Mutated proteins represent potential antigens – targets for immune recognition and destruction

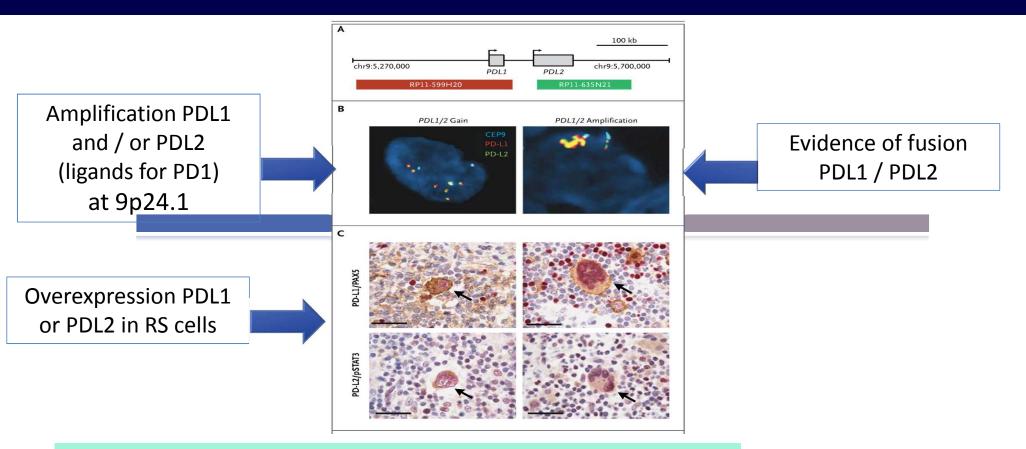
Tumors with more mutations appear more likely to respond to PD1 blockade

Lawrence, Nature 499:214 2013

PD-1 Blockade in MMR-Deficient Tumors: Efficacy


Efficacy Outcome (RECIST), %	MMR-Deficient CRC (n = 13)	MMR-Proficient CRC (n = 25)	MMR-Deficient Other tumors (n = 10)
ORR	62	0	60
Disease control rate	92	16	70

Le DT, et al. ASCO 2015. Abstract LBA100.


Nivolumab in Relapsed/Refractory Hodgkin Lymphoma

- 23 pts / double refractory (ASCT and brentuximab)
- Nivolumab 3 mg/kg q2 wks until POD / toxicity up to 2y max
- 20/ 23 resp: **ORR 78% / 17% CR** (3 others had SD)
- 2y PFS 86% ++
- Well tolerated

Ansell, NEJM; Jan 2015

Nivolumab in Hodgkin Lymphoma - Biology

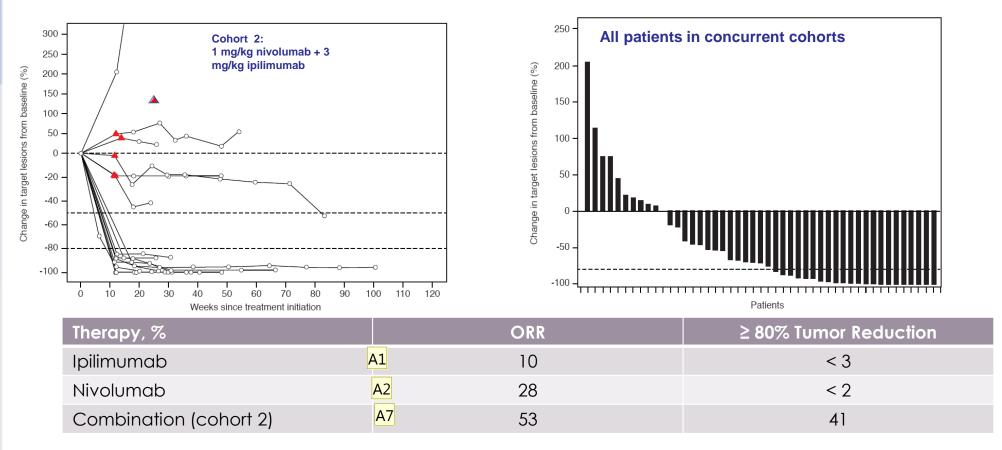
Highlight the importance of the PD-1 immune evasion pathway w/ structural basis

Ansell, NEJM; Jan 2015

Summary of PD-1/PD-L1 Blockade Immune-Mediated Toxicities

- Fatigue
- Rash: maculopapular and pruritus
 - Topical treatments
- Diarrhea/colitis
- Hepatitis/liver enzyme abnormalities

- Infusion reactions
- Endocrinopathies: thyroid, adrenal, hypophysitis

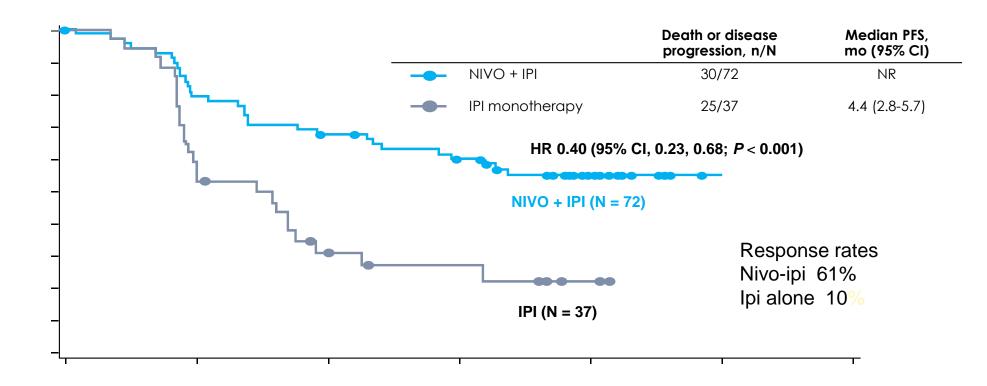

- Pneumonitis
- Grade 3/4 toxicities uncommon

Topalian SL, et al. N Engl J Med. 2012;366:2443-2454.
Patnaik A, et al. ASCO 2012. Abstract 2512.
Brahmer JR, et al. N Engl J Med. 2012;366:2455-2465.
Herbst RS, et al. ASCO 2013. Abstract 3000.

Single Agent Anti-PD1/PDL1 Blockade: Current and Future Directions

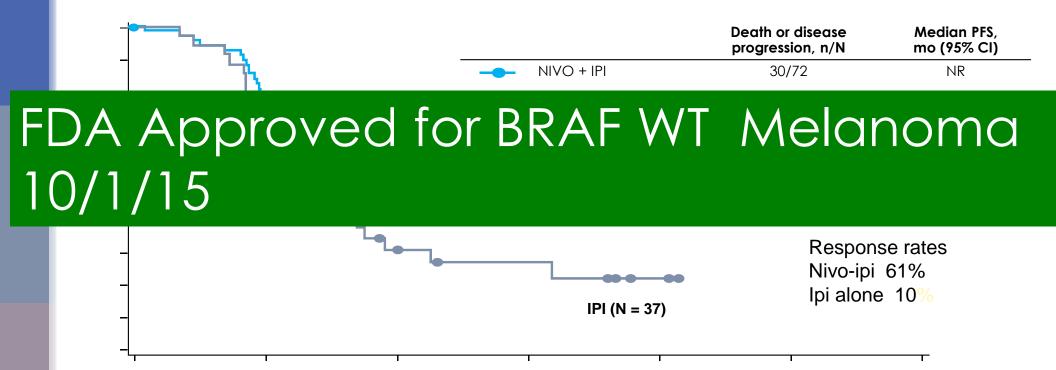
- Determine treatment length
- Adjuvant protocols (melanoma, others?)
- Combinations:
 - Immunotherapy, targeted therapy, RT, Vaccines
- Biomarker refinement

Ipilimumab + Nivolumab: Change in Target Lesions



Wolchok JD, et al. N Engl J Med. 2013;356:122-133..

Slide 37


- A1 Please verify. I could not confirm these numbers. ORR from ipilimumab was 11% per ASCO presentation slide and >80% tumor reduction was "<10%" Author, 5/12/2014
- A2 Please verify. I could not confirm these numbers. ORR from nivolumab was 41% per ASCO presentation slide and >80% tumor reduction was "<10%" Author, 5/12/2014
- A7 Perhaps the data from the ipilimumab and nivolumab monotherapy rows are from another source? Author, 5/13/2014
- A3 Data to be updated at ASCO 2014 Author, 5/21/2014

Nivo-Ipi vs Ipi alone

Postow et al NEJM, 2015

Nivo-Ipi vs Ipi alone

Postow et al NEJM, 2015

Nivo vs Nivo + Ipi: Topline Melanoma Data

	Nivo	Nivo + Ipi
Med PFS (months)	6.9 (4.3-9.5)	11.5 (8.9-16.7)
ORR, % (95% CI)	43.7 (38.1-49.3)	57.6 (52.0-63.2)
CR %	8.9	11.5
Tumor Burden change	- 34.5%	- 51.9%
Response Duration	NR	NR
Med OS	NR	NR
Grade 3-4 SAEs	16%	55%

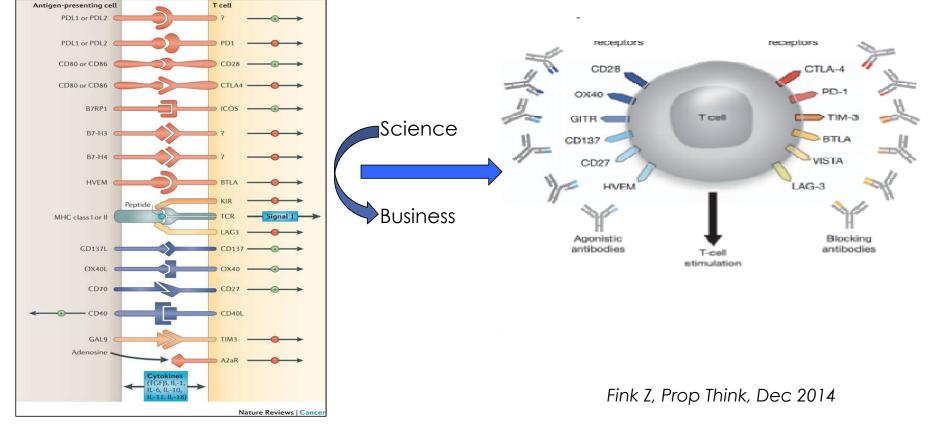
Proof of principle that combination immunotherapy can produce greater activity than anti-PD1 alone

Additional Issues/opportunities for Nivo + Ipi

- Transition into the community
- Less toxic regimen
 - Less ipi (2 cycles; lower dose, less frequent)
 - Better toxicity management (more liberal immune suppression)
 - Substitute for ipi (many options)
- Explore activity of nivo + ipi rescue, if no response to nivo/pembro
- Sequencing with standard therapies
 - BRAF inhibitors, RT etc
- Role in other cancers
 - RCC, Lung etc

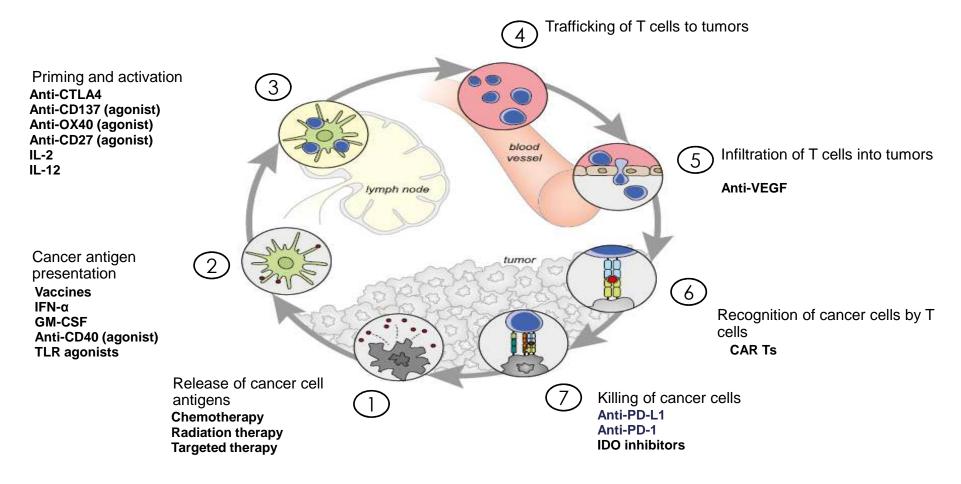
CheckMate 012: Nivolumab Plus Ipilimumab in First-line NSCLC: Efficacy

	Nivo 1 + Ipi 1 Q3W	Nivo 1 Q2W + Ipi 1 Q6W	Nivo 3 Q2W + Ipi 1 Q12W	Nivo 3 Q2W + Ipi 1 Q6W
Confirmed ORR, %	13	25	39	31
Unconfirmed PR, %	3	3	5	8
Confirmed DCR, %	55	58	74	51
ORR in PD-L1 ≥1% (+)	8	24	48	48
ORR in PD-L1 negative	15	14	22	0


Rizvi, et al WCLC 2015

Anti-tumour efficacy of nivolumab-ipilimumab combination therapy (CheckMate-016)

		Nivolumab 3 mg/kg + ipilimumab 1 mg/kg (n=47)	Nivolumab 1 mg/kg + ipilimumab 3 mg/kg (n=47)	Nivolumab 3 mg/kg + ipilimumab 3 mg/kg (n=6)			
Confirmed O (%) 95% Cl	RR, n	18 (38.3) 24.5–53.6	19 (40.4) 26.4–55.7	0			
Best overall response, n (%)	CR	4 (8.5)	1 (2.1)	0			
	PR	14 (29.8)	18 (38.3)	0			
	SD	17 (36.2)	17 (36.2)	5 (83.3)			
	PD	10 (21.3)	7 (14.9)	1 (16.7)			
Ipilimumab ORR = 9%							
Nivolumab ORR = 13-25%							
Nivo/Ipi RR > Nivo RR + Ipi RR							


Hammers H, et al. ASCO 2015. Abstract 4516.

Immune Checkpoints Regulate Strength and Type of Anti-Tumor Immune Response

Pardoll, Nat Rev Cancer 2012

A Roadmap of Immunotherapy-Tumor Interactions

Chen DS, et al. Immunity. 2013;39:1-10.

Considerable research is still required to optimally apply novel immunotherapies

- Optimal treatment setting for a particular tumor Optimal combinations for particular tumors
- Integration with standard therapies
- Approach to patients with innately resistant (non-inflamed) tumors
- Treatment of anti-PD1 failures
- Role of the gut microbiome (toxicity and activity) and host immune polymorphisms
- Cost

A4 updated as previous focus on PD-1 pathway was not balanced Author, 7/20/2014