

SITC Clinical Practice Guideline Webinar – Practical Management Pearls for the Treatment of Multiple Myeloma

Friday, April 23, 2021

5:00-6:00 p.m. ET

This webinar is supported, in part, by grants from Amgen and Merck & Co., Inc.

Webinar Agenda

5:00-5:05 pm ET Overview: Welcome and Introductions

5:05-5:30 pm ET Overview of the multiple myeloma clinical practice guideline

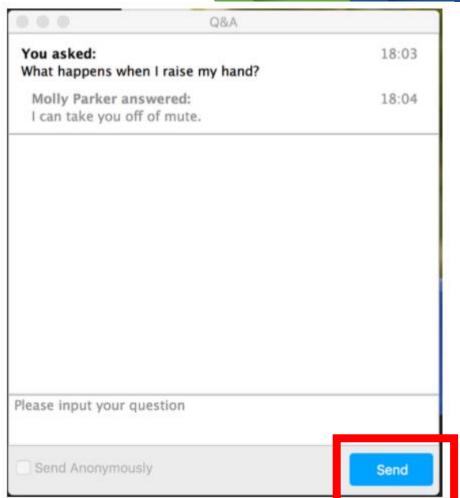
Pearls for:

Monoclonal antibody therapies

Antibody-drug conjugates

CAR T therapies

T cell engager therapies


5:30-5:58 pm ET Discussion and Question and Answer Session

5:58-6:00 pm ET Closing Remarks

How to submit questions

- Click the "Q&A" icon located on at the bottom of your Zoom control panel
- Type your question in the Q&A box, then click "Send"
- Questions will be answered in the Question & Answer session at the end of the webinar (as time permits)

Webinar Faculty

Nina Shah, MD – University of California San Francisco Medical Center (Expert Panel Chair)

Jesus G. Berdeja, MD – Sarah Cannon Research Institute

Yi Lin, MD, PhD – *Mayo Clinic*

Learning objectives

Upon completion of the webinar, participants will be able to:

- Appraise and classify multiple myeloma-specific considerations for immunotherapy agents and associated toxicities
- Appropriately manage multiple myeloma-specific toxicities or irAEs associated with immunotherapy
- Determine optimal sequencing of immunotherapies in relapsed/refractory disease
- Consider the integration of immunotherapies into treatment plans for early-stage disease

Outline

- Overview of the multiple myeloma clinical practice guideline
- Pearls for:
 - Monoclonal antibody therapies
 - Antibody-drug conjugates
 - CAR T therapies
 - T cell engager therapies
- Discussion and Q&A

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of multiple myeloma

Nina Shah, ¹ Jack Aiello, ² David E Avigan, ³ Jesus G Berdeja, ⁴ Ivan M Borrello, ⁵ Ajai Chari, ⁶ Adam D Cohen, ⁷ Karthik Ganapathi, ⁸ Lissa Gray, ⁹ Damian Green, ¹⁰ Amrita Krishnan, ¹¹ Yi Lin, ^{12,13} Elisabet Manasanch, ¹⁴ Nikhil C Munshi, ¹⁵ Ajay K Nooka, ¹⁶ Aaron P Rapoport, ¹⁷ Eric L Smith, ¹⁸ Ravi Vij, ¹⁹ Madhav Dhodapkar²⁰

Guideline development

- The Institute of Medicine's Standards for Developing
 Trustworthy Practice Guidelines were used to develop these recommendations
- Panel consisted of 19 participants, including medical oncologists, a nurse practitioner, and a patient advocate
- Recommendations come from literature evidence, supplemented with clinical experience of the panel members where necessary
- Consensus defined as ≥75% agreement

Key takeaways from the Multiple Myeloma Guideline

- Monoclonal antibodies targeting CD38 and SLAMF7 are available and recommended for multiple indications in myeloma
- New agents such as antibody-drug conjugates, CAR T cell therapies and bi- and tri-specific T cell engaging antibodies are changing the standard of care

Difficult questions in multiple myeloma

- When and how to use anti-CD38 agents in front line
- Managing CD38-refractory disease
- Recognizing and managing unique toxicities from antibodydrug conjugates
- Patient selection for CAR T or T cell engagers
- Managing toxicities and complications from CAR T and T cell engagers

Outline

- Overview of the multiple myeloma clinical practice guideline
- Pearls for:
 - Monoclonal antibody therapies
 - Antibody-drug conjugates
 - CAR T therapies
 - T cell engager therapies
- Discussion and Q&A

Monoclonal antibody therapies for R/R multiple myeloma

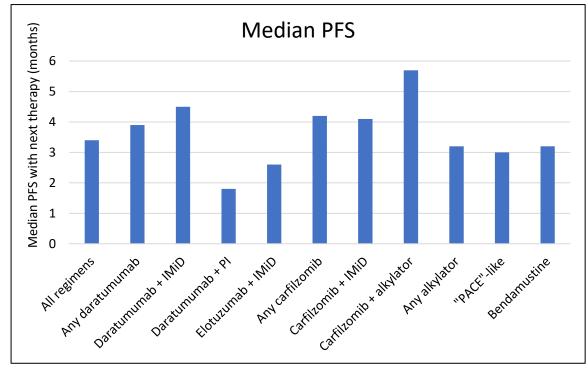
Regimen	FDA-approved indication
Daratumumab + bortezomib + dexamethasone	R/R MM after >1 prior therapy
Daratumumab + lenalidomide + dexamethasone	R/R MM after >1 prior therapy
Daratumumab + pomalidomide + dexamethasone	R/R MM after >2 prior therapies, including lenalidomide and proteasome inhibitor
Daratumumab + carfilzomib + dexamethasone	R/R MM after 1-3 prior therapies
Daratumumab	R/R MM after >3 prior therapies
Isatuximab + pomalidomide + dexamethasone	R/R MM after >2 prior therapies
Isatuximab + carfilzomib + dexamethasone*	R/R MM after 1-3 prior therapies
Elotuzumab + lenalidomide + dexamethasone	R/R MM after 1-3 prior therapies
Elotuzumab + pomalidomide + dexamethasone	R/R MM after >2 prior therapies, including lenalidomide and proteasome inhibitor

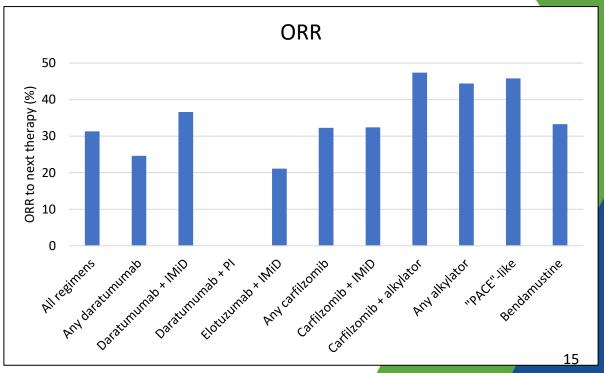
Front-line use of daratumumab

Trial	Population	Treatment arms	N	Landmark PFS	MRD negativity
GRIFFIN	Transplant- eligible	D-VRd vs VRD	207	24-month: 95.8% vs 89.8%	51.0 % vs 20.4%
CASSIOPEIA	Transplant- eligible	D-VTd vs VTd	1085	18-month: 93% vs 85%	64% vs 44%
MAIA	Transplant- ineligible	D-Rd vs Rd	737	30-month: 70.6% vs 55.6%	28.8% vs 9.2%
ALCYONE	Transplant- ineligible	D-VMP vs VMP	706	Median: 36.4 mo vs 19.3 mo	28.3% vs 7%

Infusion reactions with antibody therapies

Therapies require premedication:

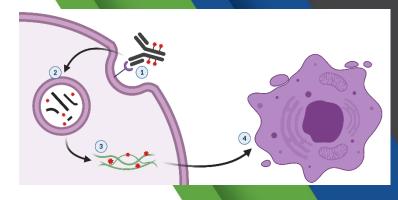

- Daratumumab: antihistamines, antipyretics and corticosteroids
- Isatuximab: dexamethasone, acetaminophen, H2 antagonists and diphenhydramine
- **Elotuzumab**: dexamethasone, diphenhydramine, ranitidine and acetaminophen


Study	Grade 1-2	Grade 3-4			
Daratumumab					
CASTOR (n=251)	45.3%	8.6%			
POLLUX (n=286)	47.7%	5.3%			
ALCYONE (n=346)	28%	4%			
Isatuximab					
NCT01749969 (n=57)	47%	8.7%			
NCT01084252 (n=97)	49.5%	2.1%			
Elotuzumab					
Zonder (n=34)	58.8%	3%			
ELOQUENT-2 (n=318)	9%	1%			

Daratumumab may be administered either intravenously or subcutaneously

Management of CD38-refractory disease

- The MAMMOTH study investigated patient outcomes after becoming CD38-refractory
- Median OS for patients after becoming CD38-refractory is 8.6 months, regardless of next line of therapy



Outline

- Overview of the multiple myeloma clinical practice guideline
- Pearls for:
 - Monoclonal antibody therapies
 - Antibody-drug conjugates
 - CAR T therapies
 - T cell engager therapies
- Discussion and Q&A

- FDA-approved August 2020 (this guideline published July 2020, so not included) for R/R MM after ≥4 prior therapies, including anti-CD38, PI, and IMiD
- Anti-BCMA humanized antibody conjugated to MMAF

Trial	Phase	Patient population	N	Treatment arm(s)	ORR	Median PFS
DREAMM-	1	R/R MM after ASCT, alkylators, PI, and IMiD	35	3.4 mg/kg belantamab mafodotin Q3W	60%	12 months
DREAMM- 2	2	R/R MM after	106	2.5 mg/kg belantamab mafodotin Q3W	31%	2.9 months
	Z	IMiD, PI, and anti-CD38	196	3.4 mg/kg belantamab mafodotin Q3W	34%	4.9 months

Ocular toxicities of belantamab mafodotin

- Patients should receive pre-treatment eye exam
- Symptoms may include dry eyes, blurred vision, changes in vision, and exam findings
- 72% of patients on trials had keratopathy on exam
- Around 50% of patients on clinical trials reported significantly worsening vision symptoms
- Management approaches:
 - Belantamab mafodotin dose reductions
 - Supportive care, like lubricating eye drops

Outline

- Overview of the multiple myeloma clinical practice guideline
- Pearls for:
 - Monoclonal antibody therapies
 - Antibody-drug conjugates
 - CAR T therapies
 - T cell engager therapies
- Discussion and Q&A

Comparing CAR T and T cell engagers

	CAR T cells	T cell engagers		
Structure	Synthetic gene construct encoding an scFv against tumor antigen linked to activation/costimulatory motifs	Recombinant protein with two specificities: one for tumor antigen and one for T cell antigen (usually CD3)		
Effector cell types Engineered CD8+ and CD4+ T cells E		Endogenous CD8+ and CD4+ T cells		
Trafficking	Active	Passive		
Clinical applications	Pre-treatment lymphodepletion followed by a single infusion	No lymphodepletion; repeat administration and continuous infusions		
Specificity Manufactured for each patient		"Off-the-shelf"		
Availability Limited to REMS program facilities		Most cancer centers		
Typical CRS incidence	80-90+% of patients; median onset 1-7 days	30-40% of patients; occurs during infusion		
Response kinetics TTR: 1-2 months; DoR: 10+ months		TTR: 1 month; DoR: 8 months		
Secondary Yes – due to lymphodepletion and targeting immunosuppression immune cell antigens		Yes – due to targeting immune cell antigens		

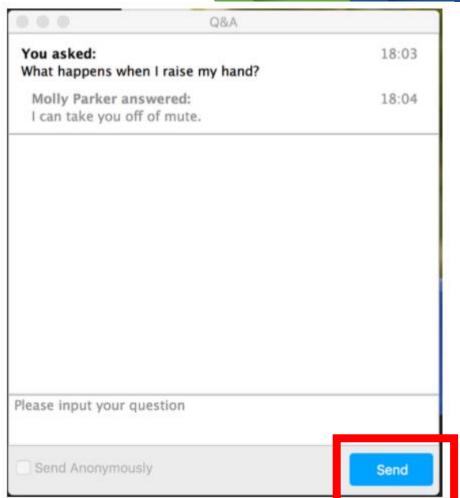
BCMA CAR T cells

	Trial	Phase	Product	ORR	CRS %	ICANS %	Survival data
	KARMMA-1	2	Idecabtagene vicleucel (bb2121)*	73%	84%	18%	mPFS: 8.8 mo; 12.1 mo @ high dose
(CARTITUDE-1	1b/2	JNJ-4528	97%	92%	16.5%	12-month: 77% progression-free
L	UMMICAR-2	1b/2	CT053	94%	77-83%	15-17%	NR
	PRIME	1/2	P-BCMA-101	67% with nanoplasmid; 44-75% with original	17%	3.8%	NR
	CRB-402	1	Bb21217	68%	70%	16%	mDOR: 17 months
	UNIVERSAL	1	Allo-715	60-67%	45%	0%	NR

*Ide-cel was FDAapproved in March 2021 for R/R MM after 4+ prior therapies, after the Guideline published

Early T cell engager studies

Drug	Target	N	Dosing	ORR	CRS %	ICANS %
Teclistamab	ВСМА	68	SC weekly for RP2D	69%	55%	5%
TNB-383B	ВСМА	58	Q3W	80% at higher doses	45%	0%
REGN-5458	ВСМА	49	Q2W	63% at highest doses	39%	12%
AMG-701	ВСМА	85	Weekly	83% at highest dose	64%	3.8%
Talquetamab	GPRC5D	157	Weekly or Q2W, IV or SC	66% at higher doses	54%	46%
Cevostamab	FcRH5	53	Q3W	53% at higher doses	76%	28%


Outline

- Overview of the multiple myeloma clinical practice guideline
- Pearls for:
 - Monoclonal antibody therapies
 - Antibody-drug conjugates
 - CAR T therapies
 - T cell engager therapies
- Discussion and Q&A

How to submit questions

- Click the "Q&A" icon located on at the bottom of your Zoom control panel
- Type your question in the Q&A box, then click "Send"
- Questions will be answered in the Question & Answer session at the end of the webinar (as time permits)

Case Studies in Immunotherapy for the Treatment of Multiple Myeloma

June 16, 2021, 5:00-6:00 pm ET

Learn more and register:

https://www.sitcancer.org/research/cancer-immunotherapy-guidelines/myeloma

Earn CME Credit as a JITC Reviewer

JITC also cooperates with reviewer recognition services (such as Publons) to confirm participation without compromising reviewer anonymity or journal peer review processes, giving reviewers the ability to safely share their involvement in the journal.

Learn how to become a reviewer at sitcancer.org/jitc

Targets for Cancer Immunotherapy: A Deep Dive Seminar Series

Eight online seminars will address key questions in the field of cancer immunotherapy **drug development**

SEMINAR 1 – TGF-BETA: A DEEP DIVE IN CANCER IMMUNOTHERAPY TARGETS – May 26, 2021, 2–4 p.m. EDT

SEMINAR 2 – THE TIGIT PATHWAY: A DEEP DIVE IN CANCER IMMUNOTHERAPY TARGETS – June 29, 2021, 2-4 p.m. EDT

Learn more and register at:

https://www.sitcancer.org/education/deepdive