

Immune Checkpoint Blockade in Cancer Therapy: New insights into therapeutic mechanisms and opportunities for **Cures**

Jim Allison, PhD

Making Cancer History"

Regental Professor and Chair, Department of Immunology Executive Director, Immunotherapy Platform Co-Director, Parker Institute for Cancer Immunotherapy at MDACC Olga Keith Weiss Distinguished University Chair for Cancer Research

SITC: Advances in Cancer Immunotherapy San Antonio December 12 2020

Disclosures

Consultant

Achelois, Apricity Health, BioAtla, Codiak Biosciences, Dragonfly Therapeutics, Jounce Therapeutics, Lave Therapeutics, Lytix Therapeutics, Polaris

Stock Ownership (<5%)

Adaptive Biotechnologies, BioAtla, BioNtech, Codiac Biosciences, Jounce Therapeutics Marker Therapeutics, Polaris

I will not discuss off label use and/or investigational use in my presentation.

MDACC

Spencer Wei Stephen Mok Naveen Sharma Nana-Ama Anang Alexandria Cogdill Renee Chin Oluwatomisin Atolagbe Kenny Lam James Mancuso

Padmanee Sharma

MSKCC Dana Pe'er

Funding

National Cancer Insitute Howard Hughes Medical Institute Ludwig Center for Cancer Research at MSKCC Prostate Cancer Foundation

CANCER PREVENTION & RESEARCH INSTITUTE OF TEXAS

PARKER INSTITUTE for CANCER IMMUNOTHERAPY

Ipilimumab (anti-CTLA-4) in Metastatic Melanoma

(pooled data from 4846 patients)

Schadendorf JCO 2015

Programmed Death 1 (PD-1)

Ipi/Nivo vs. Ipi in Metastatic Melanoma

Hodi NEJM 2015

FDA-Approvals of Immune Checkpoint Inhibitors (by cancer type)

Melanoma

- Ipilimumab (2011)
- Nivolumab (2014)
- Ipilimumab + Nivolumab (2015)
- Pembrolizumab (2019)

Lung Carcinoma

- Nivolumab (2015)
- Pembrolizumab (2015)
- Atezolizumab (2016)
- Durvalumab (2018)

Renal Cell Carcinoma

- Nivolumab (2015)
- Ipilimumab + Nivolumab (2018)
- Avelumab (2019)

Colorectal Carcinoma

- Nivolumab (2017)
- Pembrolizumab (2017)
- Ipilimumab + Nivolumab (2018)

Head and Neck Squamous Cell

Carcinoma

- Nivolumab (2016)
- Pembrolizumab (2016)

Lymphoma

- Nivolumab (2016)
- Pembrolizumab (2017)

Hepatocellular Carcinoma

- Nivolumab (2017)
- Pembrolizumab (2018)

Merkel Cell Carcinoma

- Avelumab (2017)
- Pembrolizumab (2018)

Gastric/Gastroesophageal Adenocarcinoma

Pembrolizumab (2017)

Cervical Carcinoma

Pembrolizumab (2018)

Breast Carcinoma

Atezolizumab (2019)

Cutaneous Squamous Cell Carcinoma

Cemiplimab (2018)

Esophageal Carcinoma

Pembrolizumab (2019)

Uterine Carcinoma

Pembrolizumab (2019)

Urothelial Carcinoma

- Atezolizumab (2016)
- Avelumab (2017)
- Durvalumab (2017)
- Nivolumab (2017)
- Pembrolizumab (2017)

	Anti-CTLA-4	Anti-PD-1
•	Hard wired	Induced resistance
•	Targets CD28 pathway	Targets TCR pathway
•	Works during priming Expands clonal diversity	 Works on differentiated 1 cells Does not expand clonal diversity
•	Responses often slow	Responses usually rapid
•	Primarily effects CD4 T cells	Only effects CD8 T cells
•	Can move T cells into "cold" tumors	Does not move T cells into tumors
•	Adverse events relatively frequent	Adverse events less frequent
•	Disease recurrence after response rare	Disease recurrence after response significant

Can we identify checkpoint blockade responsive T cell populations?

Spencer Wei

Mass cytometry analysis of MC38 TILs

Wei et al Cell 2017

Mass Cytometry Analysis of MC38

Checkpoint blockade modulates MC38 infiltrating T cell population frequencies

CELLULAR TARGETS OF CHECKPOINT BLOCKADE

```
Monotherapy:

CTLA-4

CD4 ICOS+ Tbet+Th1-like Effector

CD8 Tbet+ EOMES+ Effector

PD-1

CD8 Tbet+ EOMES+ Effector

CD8 Tbet+ PD-1++ Lag2++ Tim3++ "Exhausted"
```

Inducible Costimulator (ICOS)

- Member of CD28/CTLA-4
 superfamily
- Usually associated with Tfh or Treg CD4 cells
- Role in cancer shown by Sharma (2006) ICOS+Th1-like CD4 cells expanded by CTLA-4 blockade

Identification of unusual ICOS+ Th1-like CD4 cells that arise after CTLA-4 Blockade

Clinical Studies

- 2-10 fold increase in tumor and blood after Ipi
- Contains tumor specific IFN γ & TNF α -producing CD4 cells
- Sustained increase associated with longer survival
- Pharmacodynamic marker of Ipi activity

Mouse Studies

- Essential for optimal efficacy of CTLA-4 blockade
- Signaling via PI3K binding motif enhances Tbet expression
- Can be targeted to enhance efficacy of CTLA-4 blockade

Sharma

ICOS/ICOSL pathway is necessary for optimal anti-tumor responses in the setting of CTLA-4 blockade

Fu et al., Cancer Research, 2011

Does negative costimulation effect the regulation of T cell differentiation?

Comprehensive profiling of cell types in the absence of CTLA-4

Mass cytometry analysis of *Ctla-4^{-/-}* and littermate controls

<u>39 Parameter T cell panel</u> Activation, surface, lineage markers Lineage transcription factors

Wei et al Immunity 2019

New T cell phenotypes arise in the absence of CTLA-4

Wei et al Immunity 2019

Multiple non-canonical CD4 T cell subsets arise in the absence of CTLA-4

Wei et al Immunity 2019

Multiple non-canonical CD4 T cell subsets arise in the absence of CTLA-4

Wei et al Immunity 2019

CD4 T cell differentiation is complex How are phenotypes, lineages, and boundaries defined?

What underlies the generation of these subsets?

Does negative costimulation regulate T cell differentiation?

Potential implications

Evidence for a 'nuanced model' of T cell differentiation

O'Shea and Paul. Science (2010)

Role of T cell differentiation in mechanisms of immunotherapies

Wei et al. Cell (2017)

How do these cellular mechanisms interact?

A + B = AB or A + B = C

Mass cytometry analysis of MC38 TILs

Wei et al PNAS 2019

Expansion of phenotypically exhausted CD8 T cells

Wei et al PNAS 2019

Combination therapy differentially affects CD8 subsets

Wei et al PNAS 2019

Combination therapy differentially affects CD8 subsets

Wei et al in press PNAS 2019

Do phenotypically exhausted CD8 T cells have the same function in the context of combination therapy?

Wei et al in press PNAS 2019

Do phenotypically exhausted CD8 T cells have the same function in the context of combination therapy?

Wei et al in press PNAS 2019

Expansion of Th1-like CD4 T cells following combination therapy

Cellular Targets of Checkpoint Blaockade

```
Monotherapy:

CTLA-4

CD4 ICOS+ Tbet+Th1-like Effector

CD8 Tbet+ EOMES+ KLRG-1+ Effector

PD-1

CD8 Tbet+ EOMES+ KLRG-1+ Effector

CD8 Tbet+ PD-1++ Lag2++ Tim3++ "Exhausted"
```

Combination Therapy:

CD4 ICOS+ Tbet+Th1-like Effector CD8 Tbet+ EOMES+ KLRG-1+ Effector

Cellular Targets of Checkpoint Blockade

What happens to "Exhausted" (PD1^{hi}Lag3^{hi}Tim3^{hi}) CD8 cells in presence of combination blockade of PD-1 and CTLA-4?

Cellular Targets of Checkpoint Blockade

What happens to "Exhausted" (PD1^{hi}Lag3^{hi}Tim3^{hi}) CD8 cells in presence of combination blockade of PD-1 and CTLA-4?

Converted into CD8 effector T cells? Unlikely, epigenetically fixed

Cellular Targets of Checkpoint Blockade

What happens to "Exhausted" (PD1^{hi}Lag3^{hi}Tim3^{hi}) CD8 cells in presence of combination blockade of PD-1 and CTLA-4?

- Converted into CD8 effector T cells? Unlikely, epigenetically fixed
- Exhaustion of effectors prevented in presence of continued CD28 costimulation allowed by CTLA-4 blockade?

Combinations to enhance immune checkpoint targeting resulting in CURES

- Blocking multiple checkpoints (negative and positive)
- Conventional therapies
 - Chemotherpiy
 - "Precision" Therapies
 - Radiation

Improving survival with combination therapy

Improving survival with combination therapy

Improving survival with combination therapy

