Vaccine sites as sinks and graveyards for tumor-specific T cells

Willem Overwijk, Ph.D.

MD Anderson Cancer Center

Center for Cancer Immunology Research

Houston, TX

Willem W. Overwijk, Ph.D.

The following relationships exist related to this presentation:

No Relationships to Disclose

gp100 peptide vaccine + IL-2 has activity in metastatic melanoma

Stage IV and locally advanced stage III melanoma patients

High-dose IL-2 +/- gp100 in IFA

	IL-2+gp100/IFA	IL-2	p-value
Overall response rate	22.1%	9.7%	0.022
Progression free survival	2.9 months	1.6 months	0.010
Median overall survival	17.6 months	12.8 months	0.096

Reports on detrimental properties of vaccination with peptide/IFA

- \triangleright Aichele *et al.*, JEM 1995: s.c. inj. \rightarrow Immunity; i.p. inj. \rightarrow Tolerance
- Toes et al., PNAS 1996: Systemic peptide presentation > Tolerance
- ➤ Bijker *et al.*, EJI 2008: Ag presentation by non-prof. APC→
 Tolerance

Rosenberg *et al.*: "The in vivo generation of gp100 reactive T cells was **significantly less** in patients receiving the olive compared with the beef IFA"

Slingluff et al.: "Responses to HLA-A1, A2, and DR associated peptides were largely preserved, but trended lower for some HLA-A3 associated peptides."

gp100 peptide/IFA primes T cells ...

gp100 peptide/IFA primes T cells ... then induces tolerance

gp100 peptide/IFA primes T cells ... then induces tolerance

gp100 peptide/IFA induces dominant tolerance

gp100 peptide/IFA induces dominant tolerance

gp100 peptide/IFA induces dominant tolerance

Where are the T cells?

gp100/IFA s.c. + *eLuc*-transduced pmel-1 T cells i.v.

Rabinovich et al., PNAS 2008

Where are the T cells?

gp100/IFA s.c. + eLuc-transduced pmel-1 T cells i.v.

Rabinovich et al., PNAS 2008

Where are the T cells?

gp100/IFA s.c. + eLuc-transduced pmel-1 T cells i.v.

Rabinovich et al., PNAS 2008

Vaccinate site is a sink for T cells

Antigen-rich vaccine depots persist

30 days post vaccination

Antigen-rich vaccine depots persist

30 days post vaccination

Persistent vaccine induces antigendriven T cell tolerance: graveyard Persistent vaccine induces antigendriven T cell tolerance: graveyard

Limiting T cell interaction time with the vaccine depot 28 days 48 hr transfer pmel-1 effectors from DLN 28 days

Limiting T cell interaction time with the vaccine depot 28 days VSV.gp 48 hr transfer pmel-1 effectors from DLN measure pmel-1 response 28 days VSV.gp

Limiting T cell interaction time with the vaccine depot prevents tolerance

Vaccinating without IFA

Vaccinating without IFA

No priming, some tolerance

Vaccinating without IFA

Water-based vaccines require an adjuvant

Melief et al.
Schoenberger et al.
Noelle et al.
Kedl et al.
and many others

aCD40/imiq/IL-2 combo overcomes tolerance

aCD40/imiq/IL-2 combo overcomes tolerance but not vaccine homing

Water-based vaccines permit T cell accumulation in tumor

Water-based vaccines permit T cell accumulation in tumor

Water-based vaccines permit T cell accumulation in tumor

Therapy with long-lived vs. short-lived vaccine

Therapy with long-lived vs. short-lived vaccine

Working Model

Tumor

Low [antigen]
Low MHC-I
Abnormal endothelium
Stromal Barrier
Immunosuppression

Vaccine site

High [antigen]
Normal MHC-I
Normal endothelium
No stromal Barrier
No Immunosuppression?

brief: priming

chronic: priming →
tolerance + sink

Conclusions

- Oil-based/long-lived vaccine formulations:
 - activate T cells, eventually tolerize
 - tolerance can be overcome by additional adjuvants
 - sequester T cells at vaccine site
 - limit T cell accumulation in tumor

Conclusions

- Oil-based/long-lived vaccine formulations:
 - activate T cells, eventually tolerize
 - tolerance can be overcome by additional adjuvants
 - sequester T cells at vaccine site
 - limit T cell accumulation in tumor
- Water-based/short-lived vaccine formulations:
 - require additional adjuvants to activate T cells
 - do not sequester T cells at vaccine site
 - allow T cell accumulation in tumor
 - may have greater therapeutic efficacy than long-lived formulations

Conclusions

- Oil-based/long-lived vaccine formulations:
 - activate T cells, eventually tolerize
 - tolerance can be overcome by additional adjuvants
 - sequester T cells at vaccine site
 - limit T cell accumulation in tumor
- Water-based/short-lived vaccine formulations:
 - require additional adjuvants to activate T cells
 - do not sequester T cells at vaccine site
 - allow T cell accumulation in tumor
 - may have greater therapeutic efficacy than long-lived formulations

Long-lived vaccines can induce sub-optimal anti-tumor immunity Short-lived peptide vaccine formulations deserve consideration

Cancer Vaccine Lab

Dpt. of Melanoma Medical Oncology

Yared Hailemichael, Ph.D.

Zhimin Dai, M.D.

Xuefei Huang, M.D., Ph.D.

Nina Jaffarzad, M.S.

Dpt. of Melanoma Medical Oncology

Brian Rabinovich, Ph.D.

Yang Yee, M.S.

Patrick Hwu, M.D.

This work was partially funded by:

NIH/NCI: 1R01-CA143077-01A1

NIH/NCI: 1PO1 CA128913-01A1

Melanoma Research Alliance

Not high-zone tolerance

gp100 peptide/IFA vaccine: uncertainty about impact of IFA variants

Different Adjuvanticity of Incomplete Freund's Adjuvant Derived From Beef or Vegetable Components in Melanoma Patients Immunized With a Peptide Vaccine

Rosenberg *et al.*: "The in vivo generation of gp100 reactive T cells was **significantly less** in patients receiving the olive compared with the beef IFA"

Immunogenicity for CD8+ and CD4+ T Cells of 2 Formulations of an Incomplete Freund's Adjuvant for Multipeptide Melanoma Vaccines

Slingluff et al.: "Responses to HLA-A1, A2, and DR associated peptides were largely preserved, but trended lower for some HLA-A3 associated peptides."

aCD40/imiq/IL-2 combo overcomes tolerance but not vaccine homing

Therapy with long-lived vs. short-lived vaccine

Adjuvants do not prevent tolerance

Persistent vaccine induces antigendriven T cell tolerance

