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CLL Background

= Chronic lymphocytic leukemia (CLL) accounts for 25% of all newly diagnosed
leukemias, with 20,940 new cases diagnosed in the US in 2018

= Average at diagnosis: 70 years
= Male:female ratio is 2:1

= Current drug-based therapies e.qg.
- first and second generation Bruton’s tyrosine kinase inhibitors (e.g. Ibrutinib),
 PI3KS inhibition (e.g. Idelalisib),
* Bcl-2 inhibition (e.g. Venetoclax) or
- antibody-based therapies (e.g. Rituximab; targets CD20)

= are not curative and all come with severe clinical and financial toxicities

= Cell-based therapies, on the other hand, can be curative

ACS 2018 statistics https://www.cancer.org/cancer/chronic-lymphocytic-leukemia/about/key-statistics.html
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CAR Costimulatory Domains Do Appear to
Influence T Cell Engraftment —- mouse data
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« Deep remission
induced in 23 days

* 0% blasts seen

« flow MRD negative

* CR maintained
outto 5 mo
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Tisagenlecleucel Expansion and Dom

= Across a wide range of doses, in vivo expansion and dose are independent

Maximal Expansion (C,.,)
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Mechanism(s) of Response to CAR [-Cell Therapy
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* Gene expression profiles of CTLO19 cells generated from CR and PR,y patients exhibit marked differences compared to
those from PR and NR patients

* Gene set enrichment analysis (GSEA) revealed that CTLO19 cells from CR and PR,y patients were enriched in gene
expression profiles involved in early memory differentiation

« CTLO19 cells from PR and NR patients exhibited increased expression levels of key regulators of late memory cell as well
as effector differentiation, pro-apoptotic signaling and exhaustion

Fraietta et al. (2018). Nature Med 24:563-571



%CD8+ T,

Frequencies of Canonical CD8+ T cell Subsets in Pre-
manufactured Cells and Response to CTL019
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Analysis of Pre-Manufacturing T Cells Identifies an Immunophenotype
Predictive of Response to CTLO19
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« All TET enzymes contain a C-terminal catalytic domain (CD) that belongs to the
dioxygenase superfamily and oxidizes 5mC in a 2-oxoglutarate- (2-OG) and Fe(ll)-dependent
manner

« TET2 mutations frequently occur in hematological malignancies, including myeloid
malignancies, T cell lymphomas and adult T cell leukemia

« TETZ2 mutation not sufficient for transformation

« TET2 LOF mutations frequent in clonal hematopoiesis



TET2 SNP on Non-Disrupted Allele Creates Hypomorphic Enzyme
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TET2 Deficiency Increases CAR T-Cell Proliferative Capacity
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TET2 Deficiency Alters T-Cell Differentiation
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TEI2 Disruption in CART Cells: umor: lamed by Clonal CAR I-Cellsd

= A CLL patient developed delayed response to CAR T cell re-infusion, 2 months
after the first

" CAR T cells peaked by day 50, coincident with significant tumor reduction and
cytokine release syndrome

= CAR T cells at the peak of expansion displayed early memory T cell phenotype,
unlike typical responders who are predominantly effector-memory T cells

= This CAR T cell population was a) clonal and b) carried a disrupted TET2 allele;
second allele was hypomorphic

= Knock-down of TETZ2 in normal donor T cells recapitulated phenotype and
enhanced memory function of T cells

= Q: Does TET2 knockdown prevent T cell differentiation/exhaustion, or possibly
reprogram to early memory/non-exhausted state?

IMarcela Maus, New & Views with Fraietta et al. Nature 2018



Fate Mapping of CAR T Cells

= Patients with longest follow-up (7-8 A o[@] @] CARTeele
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ldentification of Phenotypically Stable Clusters with Plﬁ}ﬁraphdc

* 16 phenotypically distinct T
cell clusters

 Distinct clusters dominated
T cell repertoire in both
patients

« CD4+ CART cells
gradually dominated CAR
T cell repertoire in both
patients, suggesting a
prominent role for CD4+
CAR T cells in sustained
remissions

 In both patients, clusters 4
and 10 most prominent:
Actively cycling, negatively
requlated CD4+ CAR T
cells
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CAR T vector apheresis product CAR T Therapy
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Sustained Remissionin Pts™d; 2. by Few Persisting CAR I, mb‘heﬁs
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« High degree of sharing of the integration sites within each patient but not between

« Same CAR T cells continue to control the tumor .
Melenhorst et al., unpublished



@ligocional Composition of:Memory CAR=IFCellS

CLL patient 1 CLL patient 2
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* CAR integration site landscape in both patients

demonstrates selective clonal expansion and persistence

* CAR integration site repertoire in both patients appears to come in two separate
waves, coincident with switch from CD8 to CD4 dominance Melenhorst et al., unpublished



Sustained Remission ol CLIEGlIowing CARILONINErap

= Two patients infused 9 years ago with anti-CD19 CAR T cells with durable molecular
remission, B cell aplasia

= Memory function of CAR T cells critical for this clinical efficacy

= Mass cytometry with UMAP and Phenograph-based data analyses revealed initial
dominant role of effector CD8+ CAR T cells, followed by CD4+ CAR T cells

= |nitial 2-3 years post-infusion showed diverse phenotypes, which converged on actively
proliferating, immune checkpoint inhibitor molecule-expressing CD4+ CAR T cells

" CAR T cells sustain high level of activation throughout, but also expression of negative
regulatory molecules such as CTLA4, PD1, and TIGIT

= Fate mapping experiments demonstrates rapid clonal focusing after infusion with
maintenance of some of the same clones

= This data suggest that remission in CTLO19 treated CLL patients is induced and
sustained by a pauciclonal repertoire of CAR T cells
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