

A PhII study of bemcentinib, a first-in-class selective AXL kinase inhibitor, in combination with pembrolizumab, in pts with previously-treated advanced NSCLC: Updated clinical & translational analysis

Professor James Spicer, PhD, FRCP
School of Cancer and Pharmaceutical Sciences
King's College London, Guy's Hospital
London, UK

Disclosures

Personal financial interests:

Travel expenses: BerGenBio

Institutional financial interests: BerGenBio, AstraZeneca, BMS, Genmab, GSK, Lilly, Roche

Study rationale

Multi-arm study in 2L NSCLC of selective AXL inhibitor bemcentinib in combination with pembrolizumab

- AXL drives tumor EMT and resistance to CTL-mediated tumor cell killing¹
- AXL receptor tyrosine kinase is negatively prognostic in many cancers including NSCLC²
- AXL expression is associated with anti-PD-1 therapy failure in melanoma patients³
- AXL is expressed by immuno-suppressive tumor-associated M2 macrophages and dendritic cells⁴
- Bemcentinib is a first-in-class highly selective, potent oral small molecule AXL kinase inhibitor
- Bemcentinib reverses EMT, repolarizes TAMs and potentiates immunotherapy in mouse models⁴

bemcentinib Invasion Proliferation Migration AXL IHC low (n=59 80 Probability of survival AXL IHC high (n=29) 20 NSCLC² P < 0.001 12 36 48 60 Months after operation

¹Terry, 2019; ²Ishikawa, 2012, ³Hugo, 2016; Davidsen, 2017; ⁴Ludwig, 2018, Davidsen, submitted

Study design

Multi-arm study in 2L NSCLC of selective AXL inhibitor bemcentinib in combination with pembrolizumab

Cohort A

- Previously treated with a platinum-containing chemotherapy
- CPI-naïve
- Demonstrable PD

Cohort B

- Previously treated with PD-L1 or PD-1 inhibitor monotherapy
- ≥12 weeks clinical benefit followed by PD

Cohort C

- Previous 1st line combination checkpoint inhibitor + platinum doublet
- ≥12 weeks clinical benefit on 1st line therapy followed by PD

Interim Analysis

Cohort A Stage 1

N=22 patients

(each patient has the potential for at least 24 weeks follow-up)

Interim Analysis

Cohorts B Stage 1

N=16 patients

(each patient has the potential for at least 24 weeks follow-up)

Interim Analysis

Cohorts C Stage 1

N=13 patients

(each patient has the potential for at least 24 weeks follow-up)

Final Analysis Cohort A

Stage 2

	Previously-reported survival data in Cohort A ¹		
	Cohort	mOS	12-mo OS
1	Cohort A – cAXL +ve	17.3 mo	79%
	Cohort A – cAXL -ve	12.4 mo	60%

N=48 patients

(each patient has the potential for at least 24 weeks follow-up)

Final Analysis Cohorts B

Stage 2

N=29 patients

(each patient has the potential for at least 24 weeks follow-up)

Final Analysis Cohorts C

Stage 2

N=29 patients

(each patient has the potential for at least 24 weeks follow-up)

¹ Gabra, et al. Next Gen Immuno-Oncology Congress, June 2020

Safety profile of combination across all cohorts

Most frequently occurring treatment-related* AEs (≥10% dosed patients) n=73

Preferred term	All Grades n (%)	Grades <u>></u> 3 n (%)
Alanine aminotransferase increased	24 (33%)	8 (11%)
Diarrhea	23 (32%)	1 (1%)
Aspartate aminotransferase increased	22 (30%)	5 (7%)
Asthenia	12 (16%)	4 (5%)
Pruritus	12 (16%)	0
Blood creatinine increased	10 (14%)	0
Anemia	9 (12%)	2 (3%)
QT prolonged	9 (12%)	1 (1%)
Fatigue	9 (12%)	1 (1%)
Nausea	9 (12%)	0

AEs were reported as possibly, probably or definitely related to bemcentinib and/or pembrolizumab.

Safety Summary

- Treatment combination was well tolerated
- Safety profile of combination treatment consistent with that of individual drugs
- Treatment-related AEs generally mild and reversible
- Two patients reported grade 4 and no patients reported grade 5 TRAEs

Safety cut-off: July 2020

Study design

Multi-arm study in 2L NSCLC of selective AXL inhibitor bemcentinib in combination with pembrolizumab

Cohort A

- Previously treated with a platinum-containing chemotherapy
- CPI-naïve
- Demonstrable PD

Interim Analysis

Cohort A Stage 1

N=22 patients

(each patient has the potential for at least 24 weeks follow-up)

Cohort B

- Previously treated with PD-L1 or PD-1 inhibitor monotherapy
- ≥12 weeks clinical benefit followed by PD

Interim Analysis

Cohorts B Stage 1

N=16 patients

(each patient has the potential for at least 24 weeks follow-up)

Cohort C

- Previous 1st line combination checkpoint inhibitor + platinum doublet
- ≥12 weeks clinical benefit on 1st line therapy followed by PD

Interim Analysis

Cohorts C Stage 1

N=13 patients

(each patient has the potential for at least 24 weeks follow-up)

Final Analysis

Cohort

Stage 2

N=48 patients

(each patient has the potential for at least 24 weeks follow-up)

Final Analysis

COHOL

Stage 2

N=29 patients

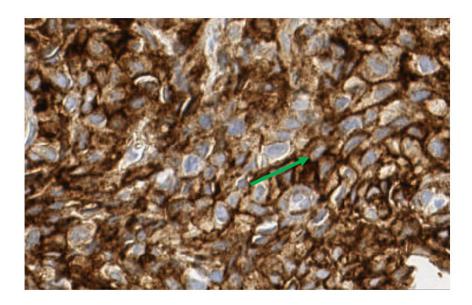
(each patient has the potential for at least 24 weeks follow-up)

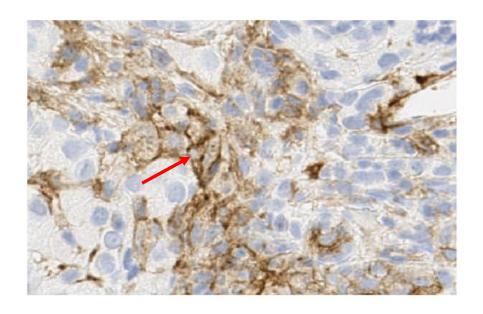
Final Analysis

Cohorts

Stage 2

N=29 patients


(each patient has the potential for at least 24 weeks follow-up)

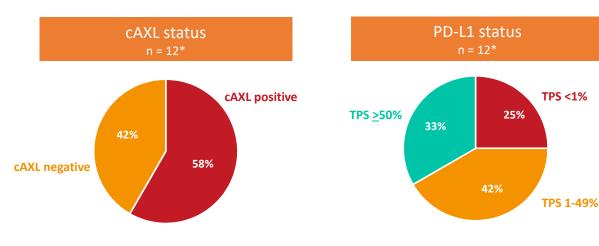


Composite AXL score (cAXL)

High AXL expression on tumour cells

High AXL expression on immune cells

Examples of positively-stained tumor and immune cells, respectively

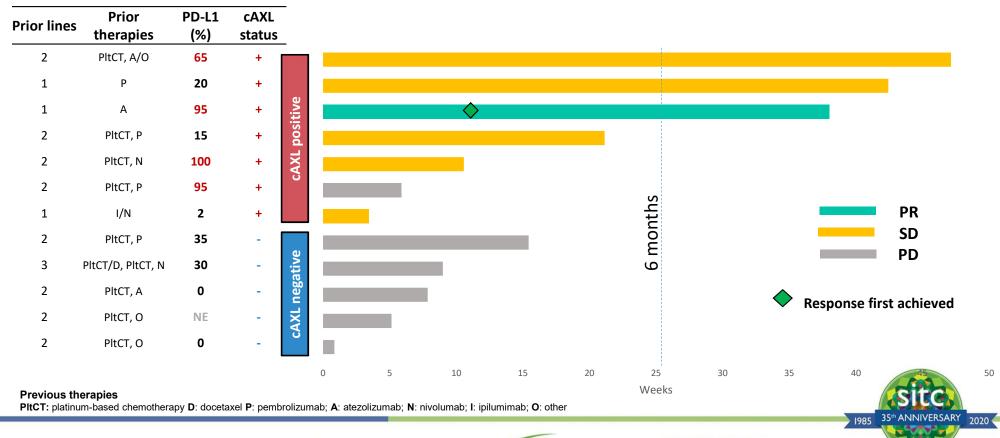


Patient disposition and demographics

Cohort B (stage 1)

Patient demographics		n=16
Age –	Median	64.5
	Range	40-76
ECOG at	0	6 (38%)
screen	1	10 (63%)
Sex —	Female	3 (19%)
	Male	13 (81%)
Smoking status –	Smoker	8 (50%)
	Ex-smoker	8 (50%)
	Never smoked	0

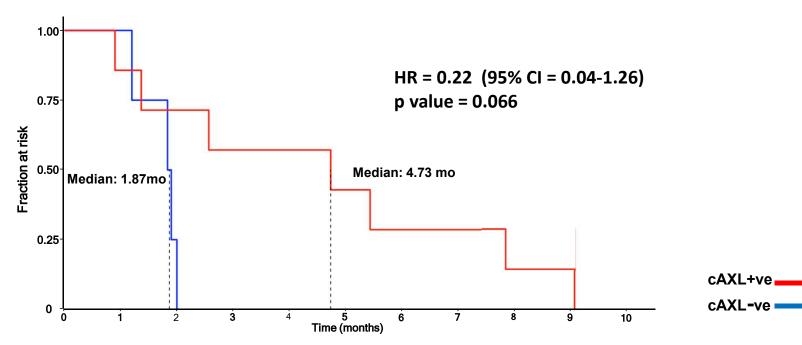
Biomarkers



^{*} Of 15 radiologically evaluable patients, 3 not evaluable for AXL or PDL1

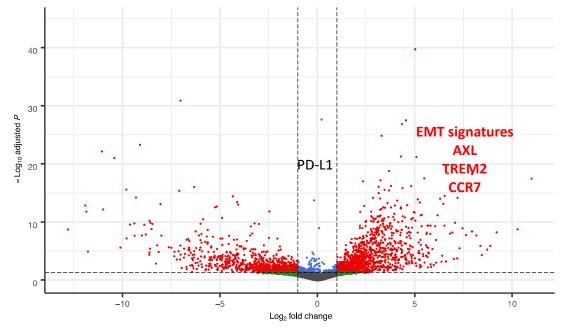
Patient outcomes

Activity and time on treatment Cohort B1 patients evaluable for cAXL



Patient outcomes

Progression-free survival in Cohort B1 patients evaluable for cAXL



Clinical translational findings

Whole tumor gene expression of Cohort B1 patients benefiting from bemcentinib-pembrolizumab

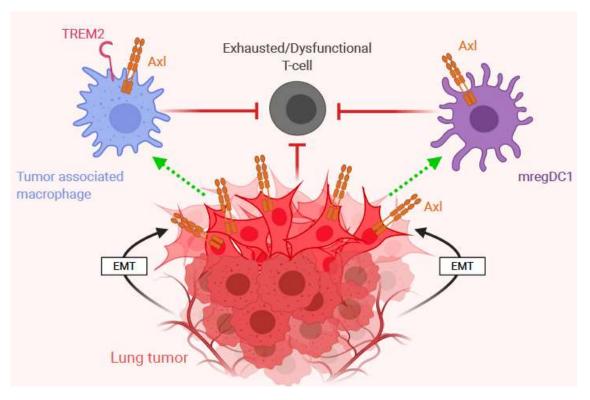
Volcano Plot: Differential gene expression analysis of patients showing benefit (n=5) vs patients with PD (n=3)

RNAseq analysis identifies gene signatures from benefiting patients:

- Increased AXL expression
- Genes associated with tumor cell EMT¹
- Presence of TREM2+ TAMs^{#,2}
- Presence of CCR7+ mregDC1^{##,3}

¹Liberzon, Cell Systems 2015; ²Katzenelenbogen *Cell* 2020, Molgora *Cell* 2020; ³Maier *Nature* 2020

#tumor-associated macrophages ##regulatory dendritic cells



Proposed mechanism

AXL+ suppressive myeloid cells drive T cell dysfunction

- AXL promotes tumor-cell EMT and recentlydescribed regulatory myeloid cells:
 - AXL+ TREM2+ TAM^{1,2}
 - AXL+ CCR7+ mregDC1³
- AXL expression in these cells promotes T cell dysfunction/exhaustion²
- Bemcentinib inhibition of AXL reverses this state of immune suppression in the microenvironment, and promotes checkpoint inhibitor re-engagement

1. Katzenelenbogen Cell 2020; 2. Molgora Cell 2020; 3. Maier. et al. Nature 2020

Conclusions

- Bemcentinib-pembrolizumab combination well tolerated and clinically active in CPI-refractory cAXL+ NSCLC
- Recruitment ongoing in CPI-refractory and chemo-CPI-refractory patient populations
- Bemcentinib may reverse acquired resistance to checkpoint inhibition by targeting AXL+ TREM2 macrophages and regulatory DCs
- Findings support further development of AXL inhibition with bemcentinib to extend efficacy of immunotherapy in biomarker-selected NSCLC

Acknowledgements

The patients and their families

All BGBC008 investigators

- Arriola, E. Hospital del Mar, Spain
- Carcereny, E.- Hospital Universitari Germans trias i Pujol-ICO, Spain
- Felip, E. Hospital Universitario Vall d'Hebron (VHIR), Spain
- Gómez, M. Hospital Universitario Fundación Jiménez Díaz, Spain
- Helland, A. Oslo University Hospital / The Norwegian Radium Hospital, Norway
- Krebs, M. The Christie NHS Foundation Trust, Manchester, UK
- Ortega, A. Hospital Universitario de Jaen, Spain
- Strauss, J. Mary Crowley Cancer Research, Dallas, USA
- Thompson, J. Medical College of Wisconsin, USA
- Trigo Perez, J. Hospital Universitario Virgen de la Victoria, Spain

BerGenBio ASA

Merck & Co., Inc.

