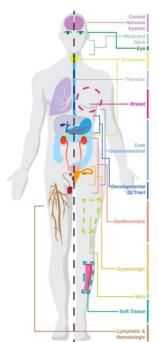

Immune Response in 10,000 Tumor Samples and Correlation with Somatic Alterations

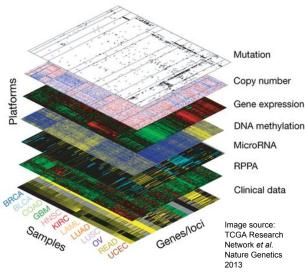
Vésteinn Þórsson Institute for Systems Biology, Seattle

Cancer Immune Responsiveness Workshop Session II: Somatic Genetics/Epigenetics of Immune Landscape May 14, 2018



Overview

- TCGA and PanCancer Atlas Overview
- Immune Subtypes Across Cancers
- Composition of the Microenvironment
- Somatic Correlates


The Cancer Genome Atlas

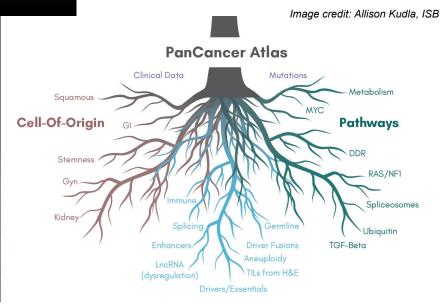
- 2009-2016
- ISB MDACC Genome Data Analysis Center (GDAC)
 - Pls: Ilya Shmulevich and Wei Zhang
- 33 tumor types
- 10,000+ primary tumor samples
- Multi-omics measurement and analysis
- Development of analysis methods
- 2.5 PB of data

TCGA

Omics characterizations

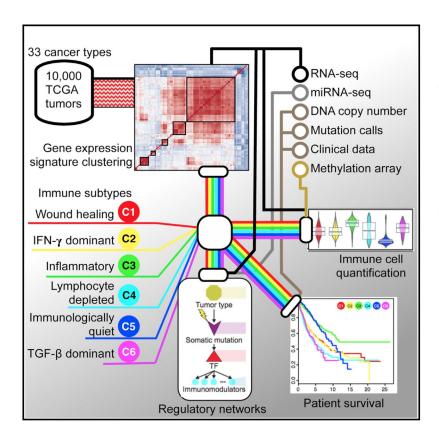
mutation calling copy number estimation integrative clustering purity estimation visualization web portals

Image source: Pathways Marker Paper, Cell, 2018


Welcome to the Pan-Cancer Atlas

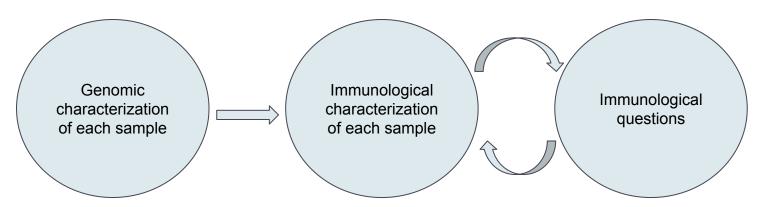
From The Cancer Genome Atlas (TCGA) consortium, a large-scale collaboration initiated and supported by the National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI).

> From the analysis of over 11,000 tumors from 33 of the most prevalent forms of cancer, the Pan-Cancer Atlas provides a uniquely comprehensive, in-depth, and interconnected understanding of how, where, and why tumors arise in humans. As a singular and unified point of reference, the Pan-Cancer Atlas is an essential resource for the development of new treatments in the pursuit of precision medicine.


> The visualization below presents the Pan-Cancer Atlas as a series of shaded rings that join together to create a beautiful, singular spectrum. Like the research itself, the full impact of this visualization is found in its cohesion. As you scroll below you will see a collection of 27 papers divided into three main categories: cell-of-origin patterns, oncogenic processes, and signaling pathways. Each

Oncogenic Processes

Immunity


The Immune Landscape of Cancer

Highlights

- Six identified immune subtypes span cancer tissue types and molecular subtypes
- Immune subtypes differ by somatic aberrations, microenvironment, and survival
- Multiple control modalities of molecular networks affect tumor-immune interactions
- These analyses serve as a resource for exploring immunogenicity across cancer types

TCGA PanCancer Atlas Immune Response Working Group

- Consensus somatic variants
- Normalized gene expression
- Tumor subtypes
- **Pathways**

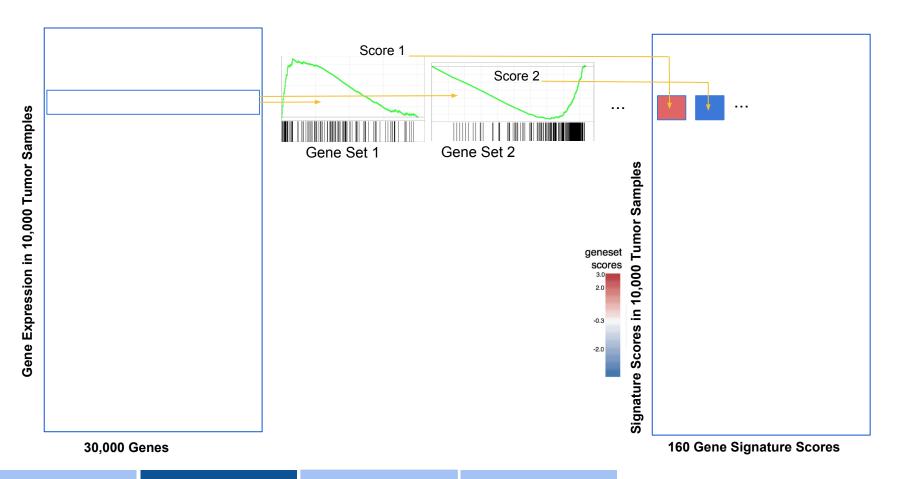
- Immune signatures
- TCR/BCR repertoire
- Neo-antigens
- Microenvironment composition

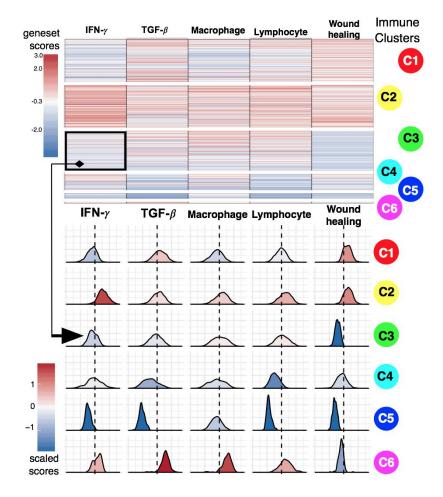
- Immunological subtyping
- Molecular correlates of immune response
- Survival analysis
- Therapeutic implications

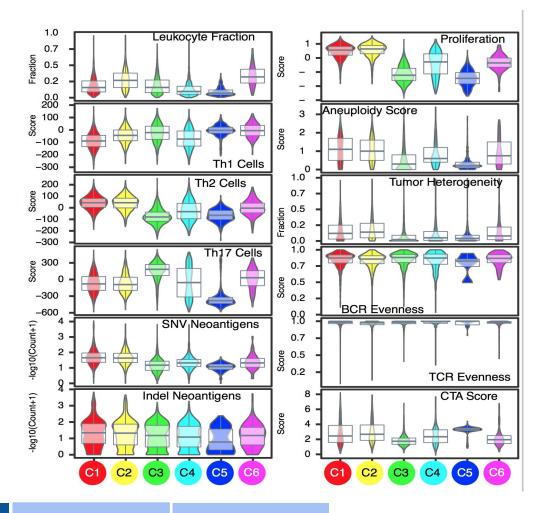
Michael Smith Genome Sciences Centre

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Mount Sinai Hospital

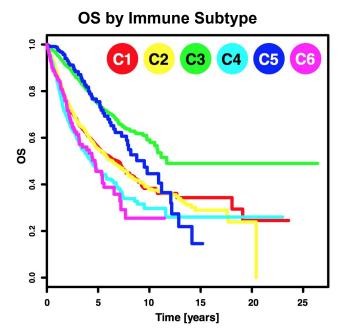



Score All Tumor Samples With Tumor Immune Gene Signature Sets

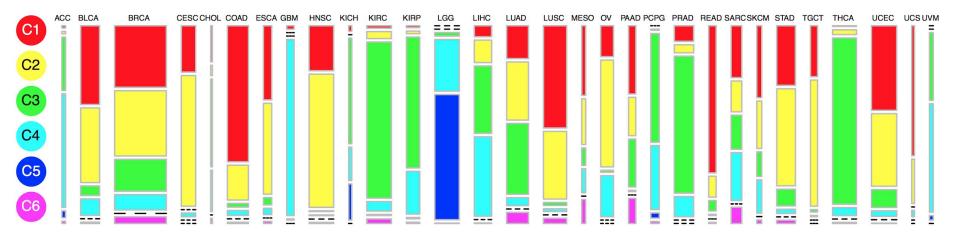

Clustering

&

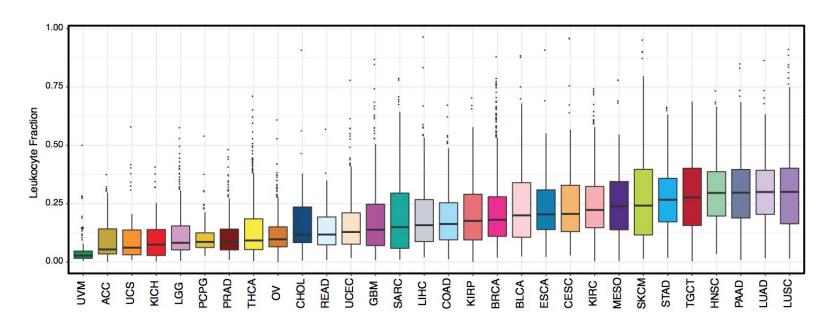
Distributions of scores

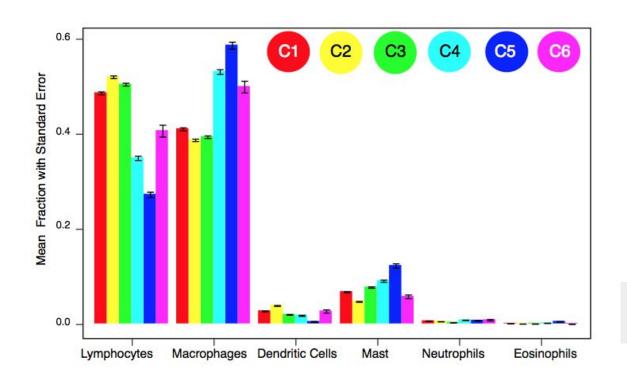


Characterize immune subtypes



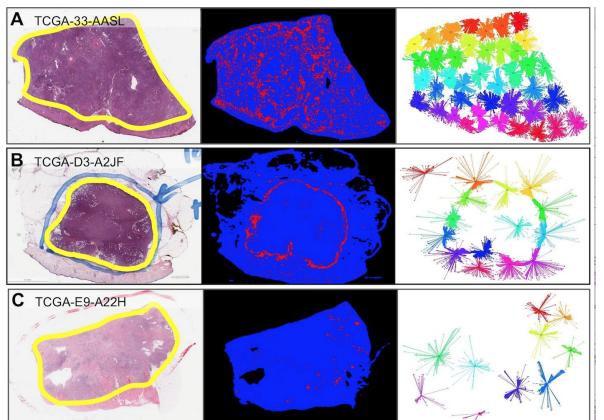
		Macrophage: lymphocyte	Th1:Th2	Proliferation	Intratumoral heterogeneity	Other	
C1	Wound Healing	Balanced	Low	High	High		
C2	IFN-g dominant	Lowest	Lowest	High	Highest	Highest M1 and highest CD8 T cells	
C3	Inflammatory	Balanced	High	Low	Lowest	Highest Th17	
C4	Lymphocyte Depleted	High	Minimal Th	Moderate	Moderate		
C5	Immunologically quiet	Highest	Minimal Th	Low	Low	Highest M2	
C6	TGF-b dominant	High	Balanced	Moderate	Moderate	Highest TGF-β signature	

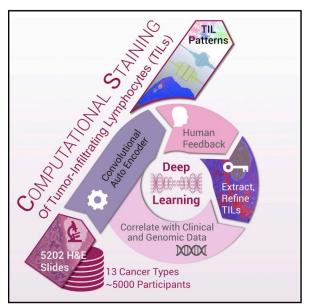

Immune Subtypes


Immune Subtypes and TCGA Tumor Types

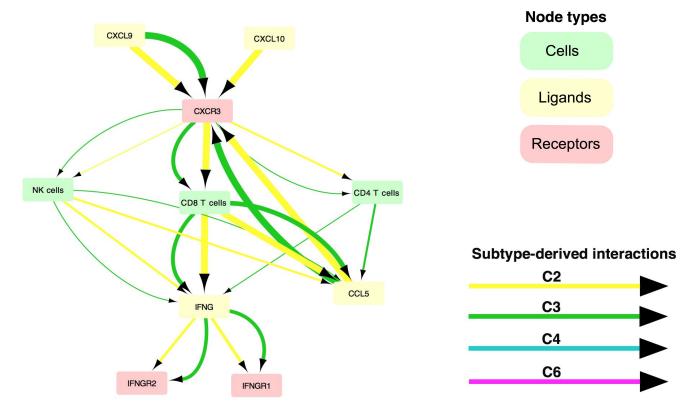
Leukocyte Fraction in 33 Tumor Types

Immune Cell Fractions


Andrew Gentles, Stanford


Lymphocyte Spatial Density and Organization

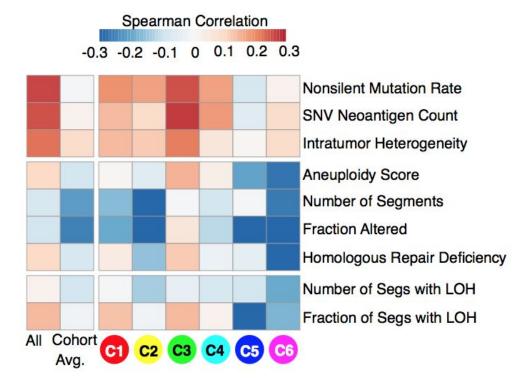
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images


Joel Saltz, 1.* Rajarsi Gupta, 1.4 Le Hou, 2 Tahsin Kurc, 1 Pankaj Singh, 3 Vu Nguyen, 2 Dimitris Samaras, 2 Kenneth R. Shroyer, 4 Tianhao Zhao, 4 Rebecca Batiste, 4 John Van Arnam, 5 The Cancer Genome Atlas Research Network, Ilya Shmulevich, 6 Arvind U.K. Rao, 3.* Alexander J. Lazar, 8 Ashish Sharma, 9 and Vésteinn Thorsson 1.0.*

Cell Reports 23, 181-193, April 3, 2018

Predicting the Immune Cellular Communication Network

David Gibbs, Vesteinn Thorsson, Ilya Shmulevich


Somatic Correlations with TME studied in this work

Correlations with

- Overall DNA alteration burden
- Amplified/deleted genomic regions / genes
- Driver mutations
- Pathway-level alterations

Causal connections to transcriptional control - intracellular networks

Correlations with DNA Alteration Show Differences by Type of Alteration

Cell Reports Resource

Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas

Theo A. Knijnenburg, 1,25 Linghua Wang, 2,10,25 Michael T. Zimmermann, 3,23,25 Nyasha Chambwe, 1,25 Galen F. Gao, 4 Andrew D. Cherniack, 4 Huihui Fan, 5 Hui Shen, 5 Gregory P. Way, 6 Casey S. Greene, 6 Yuexin Liu, 7 Rehan Akbani, 7 Bin Feng, Lawrence A. Donehower, Chase Miller, 10 Yang Shen, 11 Mostafa Karimi, 11 Haoran Chen, 11 Pora Kim, 12 Peilin Jia, 12 Eve Shinbrot, 10 Shaojun Zhang, 2 Jianfang Liu, 13 Hai Hu, 13 Matthew H. Bailey, 14,15 Christina Yau, 16,1 Denise Wolf, 16 Zhongming Zhao, 12 John N. Weinstein, 7 Lei Li, 18 Li Ding, 14,15,19,20 Gordon B. Mills, 21 Peter W. Laird, 5 David A. Wheeler, 10 Ilya Shmulevich, 1 The Cancer Genome Atlas Research Network, Raymond J. Monnat, Jr., 22.* Yonghong Xiao,8,* and Chen Wang23,24,26,*

¹Institute for Systems Biology, Seattle, WA 98109, USA

²Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA ³Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI

⁴The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA

Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania

Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 8TESARO Inc., Waltham, MA 02451, USA

Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA

Genomic and Functional Approaches to Understanding Cancer Aneuploidy

Alison M. Taylor, 1,2,3 Juliann Shih, 2 Gavin Ha, 1,2,3 Galen F. Gao, 2 Xiaoyang Zhang, 1,2,3 Ashton C. Berger, 2 Steven E. Schumacher, 1,2 Chen Wang, 4,5 Hai Hu,6 Jianfang Liu,6 Alexander J. Lazar,7

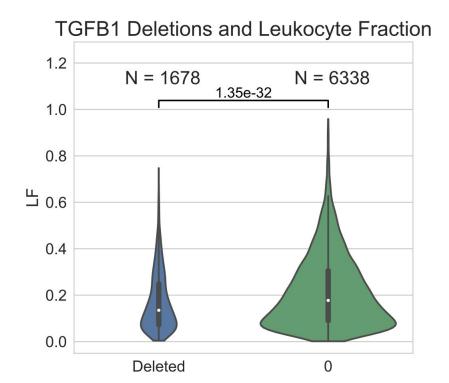
The Cancer Genome Atlas Research Network, Andrew D. Cherniack, 1,2,3 Rameen Beroukhim, 1,2,3 and Matthew Meyerson1,2,8,9,*

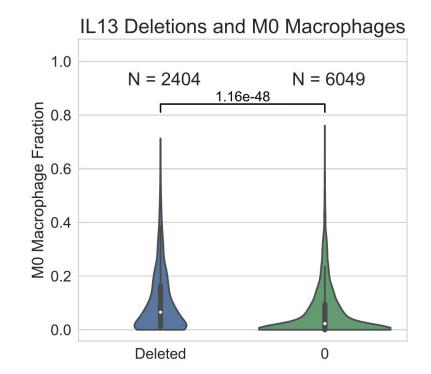
Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA ²Cancer Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA

3Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA

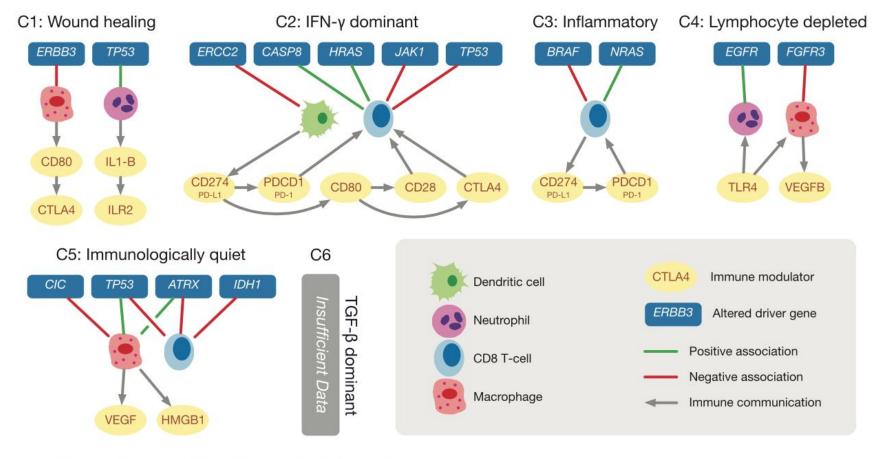
Department of Health Sciences Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA

⁵Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA 6Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA 15963, USA


Departments of Pathology, Genomic Medicine, and Translational Molecular Pathology. The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 85, Houston, TX, USA

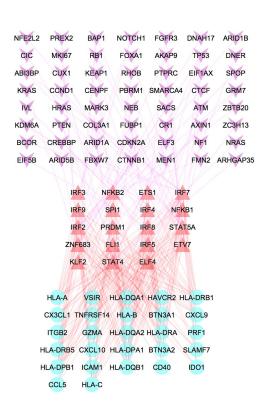

Department of Pathology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA

*Correspondence: matthew meverson@dfci.harvard.edu


https://doi.org/10.1016/i.ccell.2018.03.007

Gene Alteration Association Examples

Galen Gao, Andrew Cherniack, Broad Institute


Ding et al., 2018, Cell 173, 305-320

Eduard Porta-Pardo, David Gibbs, Vesteinn Thorsson

Including physical assocations/links

Master Regulator VTRNA1-1 Method CCDC163P PRDM1 PTAFR P2RY8 IRF4 REXANK EDNRA CIITA CD86 ICAM1 CASP8 IRF8 MAML1 IRF1 **MNDA** STK11 MAP2K1 STAT1 VAV1 BLNK SH3BP2 FLI1 RASGRF1 PPARGC1A TFEC

SYGNAL

Evan O Paull and Andrea Califano, Columbia

GRAP2

Chris Plaisier, ISB, Arizona State

STAT5A

PRTFDC1

TNFRSF4

ERBB4

GFI1

POU2AF1

iAtlas

interactive portal for immunoncology research

Analyze

iAtlas

interactive portal for immunoncology research

Sample Group Overview

This module provides short summaries of your selected groups, and allows you to see how they overlap with other groups.

Clinical Outcomes

Plot survival curves based on immune characteristics and identify variables associated with outcome.

Tumor Microenvironment

Explore the immune cell proportions in your sample groups.

Immunomodulators

Explore the expression of genes that code for immunomodulating proteins, including checkpoint proteins.

Immune Feature Trends

This module allows you to see how immune readouts vary across your groups, and how they relate to one another.

Thank you

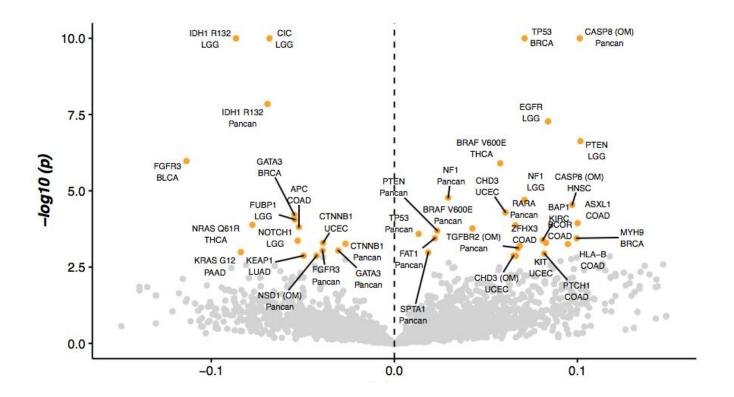
ISB Team David Gibbs, Sheila M. Reynolds, Ilya Shmulevich

TCGA Immune Response Working Group Benjamin Vincent (UNC), Ilya Shmulevich (ISB), David L. Gibbs* (ISB), Scott D. Brown (BCGSC), Denise Wolf (UCSF), Dane S. Bortone (UNC), Tai-Hsien Ou Yang (Columbia), Eduard Porta-Pardo (Barcelona SC), Galen F. Gao (Broad), Chrisopher Plaiser, James Eddy, Elad Ziv, ..., Davide Bedognetti, ..., Alexander J. Lazar (MD Anderson), Jonathan S. Serody (UNC), Elizabeth G. Demicco* (Mt. Sinai), Mary L. Disis* (U Washington)

TIL Map Collaboration: Joel Saltz Le Hou, Rajasri R. Gupta, Tahsin Kurc, Vu Nyugen, Dimitri Samaras, Rebecca Batiste, John Van Arnam (Stony Brook), Ashish Sharma, Lee Cooper (Emory), Arvind Rao, Pankaj J. Singh, Alexander Lazar (MDAnderson), Ilya Shmulevich (ISB)

CRI iAtlas Team Justin Guinney, James Eddy (Sage Bionetworks), David Gibbs, Ilya Shmulevich (ISB)

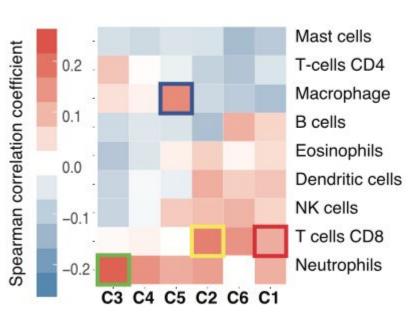
TCGA Research Network, TCGA Patients and Families

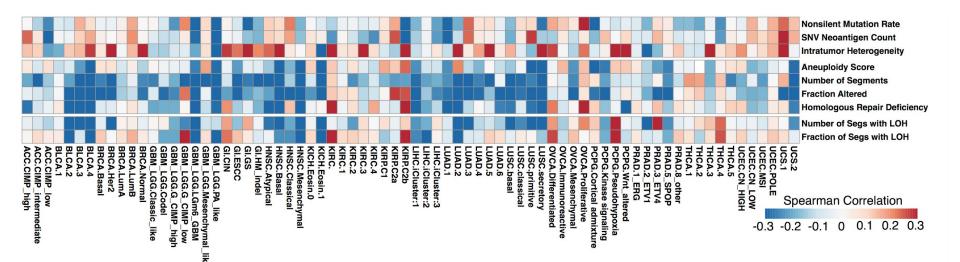

Funding from Cancer Research Institute; National Cancer Institute U24CA143835

Extra Slides

See Manuscript for Further Discussions

- Prognostic Associations of Tumor Immune Response Measures
- Immune Response Correlates of Demographic and Germline Variation
- Survey of Immunogenicity
- The Adaptive Immune Receptor Repertoire in Cancer
- Regulation of Immumodulatory Proteins


Driver mutations that associate with Leukocyte Fraction


TCGA Immune Subtypes TME Composition Somatic Correlates Immumodulators Cancer Immune Sys

В


Correlation of immune cell proportion with neoantigen load

.. and by tumor (molecular) subtype

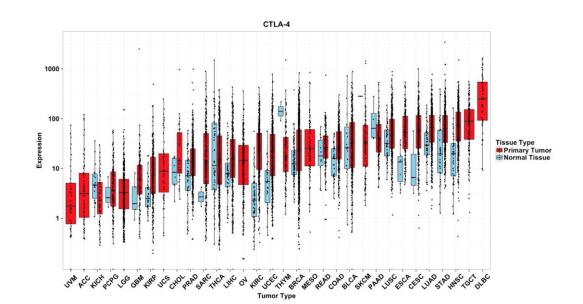
Data Management and Integration

CANCER RESEARCH INSTITUTE

ATLAS

Harnessing bioinformatics to speed discovery in cancer immunotherapy.

Example Query: CTLA-4 Gene Expression


select * from [isb-cgc-01-0008:Filtered.EBpp_AdjustPANCAN_RNASeqV2_filtered] where Symbol="CTLA4"

Row	ParticipantBarcode	SampleBarcode	AliquotBarcode	SampleTypeLetterCode	SampleType	Study	Symbol	Entrez	normalized_count
1	TCGA-OR-A5JB	TCGA-OR-A5JB-01A	TCGA-OR-A5JB-01A-11R-A29S-07	TP	Primary solid Tumor	ACC	CTLA4	1493	60.1537
2	TCGA-OR-A5LG	TCGA-OR-A5LG-01A	TCGA-OR-A5LG-01A-11R-A29S-07	TP	Primary solid Tumor	ACC	CTLA4	1493	1.365
3	TCGA-4Z-AA7N	TCGA-4Z-AA7N-01A	TCGA-4Z-AA7N-01A-11R-A39I-07	TP	Primary solid Tumor	BLCA	CTLA4	1493	346.102
4	TCGA-DK-A6AV	TCGA-DK-A6AV-01A	TCGA-DK-A6AV-01A-12R-A30C-07	TP	Primary solid Tumor	BLCA	CTLA4	1493	55.1331
5	TCGA-FD-A5BR	TCGA-FD-A5BR-01A	TCGA-FD-A5BR-01A-11R-A26T-07	TP	Primary solid Tumor	BLCA	CTLA4	1493	105.179

Can query directly from R using the

biarquery

library, then do a plot

