

IMMUNOTHERAPY™

Basic Principles of Cancer Immunotherapy

Ryan J. Sullivan, MD

Assistant Professor

Massachusetts General Hospital

Society for Immunotherapy of Cancer

- Consulting Fees:
 - Array Biopharma, Merck, Novartis, Replimune
- I will be discussing non-FDA approved indications during my presentation.

The Premise of Cancer Immunotherapy

- Normally, the immune system eliminates damaged cells, including precancerous and cancer cells
- To escape, tumors evolve mechanisms to locally disable the immune system.

The goal of immunotherapy is to restore the capacity of the immune system to recognize and eliminate cancer.

Two major mechanisms of tumor immune escape

- Render the immune response dysfunctional: cytotoxic (CD8+) T cells often become dysfunctional or exhausted during chronic stimulation (chronic viral responses or responses against tumors). To enhance T cell dysfunction, the tumor microenvironment upregulates a suite of suppressive molecules.
- Avoiding an immune response: A state in which the tumor remains invisible to the immune system. Many features of tumors can result in immune exclusion/avoidance including lack of antigens (T cells don't "see" anything on the tumor) or active immune repellents.

Immune evasion

Non-T cell-inflamed tumor microenvironment

Initiation of an anti-tumor immune response

Innate immune sensing (i.e. Sting activation)

Initiation of an anti-tumor immune response

Innate immune sensing (i.e. Sting activation)

Modified from Corrales et al. Cell Res. 2017 © 2019–2020 Society for Immunotherapy of Cancer

ADVANCES IN

IMMUNOTHERAPY

sitc

Initiation of an anti-tumor immune response

Innate immune sensing (i.e. Sting activation)

© 2019–2020 Society for Immunotherapy of Cancer

Immune evasion occurs over time

© 2019–2020 Society for Immunotherapy of Cancer

Spranger, AR Cancer 2018

unotherapy of Cance

T cell inflamed tumor microenvironment is immune suppressive

T cell-inflamed tumor microenvironment

T cell-inflamed tumors escape by suppressing T cell function

Spranger, Internat Immunol. 2016 © 2019–2020 Society for Immunotherapy of Cancer

T cell inflamed tumor microenvironment is immune suppressive

T cell-inflamed tumor microenvironment

T cell-inflamed tumors escape by suppressing T cell function

Non-T cell-inflamed tumors are a result of a malfunctioning cancer immune cycle

Spranger, Internat Immunol. 2016 © 2019–2020 Society for Immunotherapy of Cancer

Types of Immunotherapy

- Checkpoint blockade immunotherapy
- Cancer vaccines
- Adoptive cell transfer
- Effector antibodies
- Innate immune activation

The CTLA-4 Checkpoint

<u>**C**ytotoxic</u> <u>**T**</u>-<u>**L**ymphocyte</u> <u>**A**ssociated Protein</u> <u>**4**</u>

Up-regulated in response to T cell activation

Limits positive stimulation by competition

ACCC

The PD-1/PD-L1 Checkpoint

<u>P</u>rogrammed <u>D</u>eath <u>1</u>

Up-regulated in response to T cell activation

Ligands PD-L1 and PD-L2 are up-regulated following inflammation (IFNγ)

Checkpoint blockade therapy unleashes the "brakes" on T cells

Goal: to reduce immune inhibitory signals and/or enhance stimulatory signals to allow T cells to regain effector functions.

© 2019–2020 Society for Immunotherapy of Cancer

Checkpoint blockade therapy unleashes the "brakes" on T cells

Goal: to reduce immune inhibitory signals and/or enhance stimulatory signals to allow T cells to regain effector functions.

Checkpoint blockade therapy unleashes the "brakes" on T cells

Goal: to reduce immune inhibitory signals and/or enhance stimulatory signals to allow T cells to regain effector functions.

T Cell Checkpoint Modulation

- First generation of checkpoint modulation: blocking inhibitory checkpoints
- Second generation of checkpoint modulation: activating stimulatory checkpoints

Therapeutic Cancer Vaccines

Goal: to increase the immunogenicity of tumor antigens in order to generate a high frequency of tumor-specific T cells.

Adoptive Cell Therapy

Goal: overwhelm the tumor with a higher frequency of tumorspecific immune cells and/or engineer immune cells to target cancer.

Effector Antibodies and Antibody-Drug Conjugates (ADCs)

Goal: specifically target and kill tumor cells using innate mechanisms which are difficult to evade or suppress and/or through delivery of cytotoxic agents

Innate immune activation

Goal: enhance innate immune sensing by providing stimulatory agents (frequently into the tumor itself)

Agents: Sting agonists TLR agonists Immunogenic RNA

Oncolytic Viruses

Goal: specifically target and kill tumor cells through viral replication AND release innate immune activators and tumor antigens

Multi-layered Immunosuppression

- Tumors insulate themselves with dense layers of immune-suppression
- Overcoming the many layers of interconnected and often functionally redundant immune suppressive mechanisms represents a daunting challenge for tumor-specific T cells
- Immunotherapy can "peel back" the layers of local immune suppression
- Combination therapy might be needed to overcome all layers

Combination Immunotherapies Dual CTLA-4 and PD-1 inhibition

Combination Immunotherapies

Sitc

ADVANCES IN

Society for Immunotherapy of Cancer

Immunotherapy Biomarkers

Assessment of response

Baseline Week 10 Week 18 a b с

Many possible imaging findings

Wang, RadioGraphics 2017. © 2019–2020 Society for Immunotherapy of Cancer

erapy of Canco

Many possible imaging findings

Assessment of response – unique considerations for immunotherapy

Comparison of disease progression by conventional and immune-related criteria

Treatment Response	RECIST 1.1	irRC
Progressive disease	≥20% increase in lesion sum* (absolute size increase ≥5 mm) or 1+ new lesions at any single observation	≥25% increase in tumor burden ⁺ versus nadir in two consecutive observations ≥4 weeks apart
New measurable lesions [#]	Always represent progressive disease	Incorporated into disease burden
New non-measurable lesions	Considered equivocal; followed at future examinations to clarify whether it is truly new disease	Does not define progression but precludes complete response

Wang, RadioGraphics 2017.

*Sum of lesion diameters: sum of the longest diameter in the plane of measurement for non-nodal target lesions and short-axis diameter for target nodal lesions.

⁺Based on the sum of the products of the two largest perpendicular diameters of all index lesions. [#]Measurable lesion for RECIST1.1 is ≥10mm at CT; irRC is ≥10x10mm at CT. Smaller lesions are

considered non-measurable.

When to stop immunotherapy: Checkmate 153

Exploratory endpoints^d: Safety/efficacy^e with continuous vs 1-year treatment, efficacy, other (eg, biomarkers, PK)

When to stop immunotherapy: Checkmate 153

ACCC

When to stop immunotherapy: KEYNOTE-006

- Pembrolizumab 10 mg/kg Q2W or Q3W or ipilimumab 3 mg/kg Q3W for 4 doses
- Could stay on pembrolizumab for up to 2 years
- Of patients who completed 2 y pembro treatment, **86%** did not progress after 20 months follow-up
- More responders with pembrolizumab, but duration of response was similar for pembrolizumab and ipilimumab

When to stop immunotherapy: KEYNOTE-001

- 16% of patients achieved complete response
- Disease-free survival at 24 months after complete response:
 - In all CR patients: 90.9%
 - In patients who discontinued cancer therapy: 89.9%

When to stop immunotherapy: clinical measures

- PET-based metabolic response
 - Metabolic response may precede anatomical changes on CT or MRI
- Achievement of CR

Further Resources

CANCER IMMUNOTHERAPY PRINCIPLES AND PRACTICE

SOCIETY FOR IMMUNOTHERAPY OF CANCER

