

IMMUNOTHERAPY™

Basic Principles of Cancer Immunotherapy

Lewis L. Lanier, Ph.D.

Professor and Chair

UCSF, Department of Microbiology and Immunology

Society for Immunotherapy of Cancer

- SAB Alector, Ascend Biopharmaceuticals, SBI Biotech, Avipep, Avidbiotics, Five Prime Therapeutics, Atreca, Nkarta, Virtuoso, Valitor, Dragonfly, Obsidian
- Ad hoc consulting Nohla, Novartis, Merck, Pulse
- Ownership Interest <u>less</u> than 5%: Vivance, Valitor, Dragonfly, Avidbiotics, Nkarta, Five Prime, AviPep, Ascend, Pulse. And some stock in Alector, Five Prime, Atreca, and Merck
- I will not be discussing non-FDA approved indications during my presentation.

- Normally, the immune system can eliminate damaged cells, including pre-cancerous and cancer cells
- To escape, tumors evolve mechanisms to locally disable the immune system

The goal of immunotherapy is to generate or restore the capacity of the immune system to recognize and eliminate cancer

Two major mechanisms of tumor immune escape

- Cancer renders immune cells dysfunctional chronic stimulation by tumors or factors they secrete can "exhaust" or suppress immune cells
- Tumors hide from the immune system

tumors become resistant to the immune system by lacking or losing molecules that immune cells recognize to become activated

Initiation of an anti-tumor immune response

Innate immune cell interact with tumor

Modified from Corrales et al. Cell Res. 2017 © 2019–2020 Society for Immunotherapy of Cancer

resistance **Evasion in the** presence of T cells

liting

© 2019–2020 Society for Immunotherapy of Cancer

Evasion by

excluding T cells

Spranger, AR Cancer 2018

sitc

Tumor microenvironment is immune suppressive

T cell-inflamed tumor microenvironment

Tumors escape by suppressing T cell function or by losing molecules that immune cells recognize to become activated

Spranger, Internat Immunol. 2016 © 2019–2020 Society for Immunotherapy of Cancer

Types of Immunotherapy

- Checkpoint blockade immunotherapy
- Cancer vaccines
- Adoptive cell transfer
- Effector antibodies
- Innate immune activation

Image courtesy of NCI

T cells need 3 signals to respond – no response if these are absent

CTLA-4 checkpoint blocks the 2nd signal for T cells

TCR stimulation up-regulates the CTLA-4 inhibitory receptor – that blocks co-stimulation by the 2nd signal

PD-1 checkpoint blocks T cell function at the tumor site

TCR stimulation also upregulates the PD-1 inhibitory receptor on T cells

At the tumor site, PD-1 engages its ligands (PD-L1 or PD-L2) to suppress function of the T cells

Checkpoint antibody blockade therapy unleashes the "brakes" on T cells

Goal: to reduce immune inhibitory signals and/or enhance stimulatory signals to allow T cells to regain effector functions.

Checkpoint antibody blockade therapy unleashes the "brakes" on T cells

Goal: to reduce immune inhibitory signals and/or enhance stimulatory signals to allow T cells to regain effector functions

Combination Immunotherapies Dual CTLA-4 and PD-1 inhibition

Block the inhibitors or boosting the activators

- Blocking inhibitory receptors
- Boosting the activating receptors

Therapeutic Cancer Vaccines

Goal: induce or boost immune response against tumor-specific antigens

Adoptive Cell Therapy

Goal: Expand or engineer tumor-specific T cells and re-infuse for more efficient anti-tumor responses

Antibodies and Antibody-Drug Conjugate (ADCs) Therapy

Goal: treat with tumor-specific antibodies to allow innate immune cells to kill tumors or deliver chemotherapeutics directly to the tumor

Innate immune activation

Goal: enhance innate immune sensing by providing stimulatory agents (frequently into the tumor itself)

Agents: Sting agonists TLR agonists Cytokines Antibodies

Oncolytic Viruses

Goal: target and kill tumor cells through viral replication AND release innate immune activators and tumor antigens

Combination Immunotherapies

Sitc

ADVANCES IN

Society for Immunotherapy of Cancer

Immunotherapy Biomarkers

Many possible outcomes

Wang, RadioGraphics 2017. © 2019–2020 Society for Immunotherapy of Cancer

therapy of Cancil

Immune-related Adverse Events Associated with Checkpoint Inhibitor Combinations

Boutros et al., Nature Reviews Clinical Oncology, 2016

otherapy of Cano

Further Resources

CANCER IMMUNOTHERAPY PRINCIPLES AND PRACTICE

SOCIETY FOR IMMUNOTHERAPY OF CANCER

