

Capturing heterogeneity and the HLA-presented landscape in melanoma

Yardena Samuels

Ph.D. Weizmann Institute of Science

Society for Immunotherapy of Cancer #SITC2020

I have no conflict to disclose

Tumor heterogeneity Vs. Mutational Load: current assumptions in immunotherapy

- Tumors with increased mutational are associated with checkpoint blockade sensitivity (*Rivzi et al, Science 2015 ; Van Ellen et al, Science 2015*)
- Low heterogeneity of the tumors is also associated with better response for checkpoint blockade (*McGranahan et al, Science 2016*)

However, mutational count cannot **predict** responsiveness (Hugo et al, 2015)

Tumor heterogeneity Vs. Mutational Load: Experimental system

Osnat Bartok

Yochai Wolf

Tumor heterogeneity Vs. Mutational Load: Experimental system

Cell lines are injected into immunocompetent/ immunocompromised mice

Wolf, Bartok, et al, Cell 179, 219-235, 2019

Tumor growth in UVB irradiated cell line

Despite higher mutational count UVB irradiated cells gave rise to highly aggressive tumors

Wolf, Bartok, et al, Cell 179, 219-235, 2019

Tumor heterogeneity Vs. Mutational Load: Experimental system

UVB irradiated single cell clones are non aggressive

UVB irradiated single cell clones are non aggressive

Wolf, Bartok, et al, Cell 179, 219-235, 2019

Clonal structure and heterogeneity of UVB tumors remains stable *in vivo* over time

The aggressive growth of the UVB tumor is not due to an escaper clone

Wolf, Bartok, et al, Cell 179, 219-235, 2019

The aggressive growth of the UVB tumor Is not due to an escaper clone

Reduced growth of low heterogeneous UVB clones is due to immune rejection

Wolf, Bartok, et al, Cell 179, 219-235, 2019

Reduced growth of low heterogeneous UVB clones is due to immune rejection

Wolf, Bartok, et al, Cell 179, 219-235, 2019

Efficient infiltration of T cells to tumor core in single cell derived tumors

Differential immune output in tumors with varying heterogeneity

Granzyme B+ CD107a-Granzyme B+ CD107a+

IFNγ-higher activation and cytotoxicity

Granzyme B-Cytotoxic mediator CD107a-degranulation marker

TILs with both markers significantly reduced in UVB clones

Wolf, Bartok, et al, Cell 179, 219-235, 2019

CD137-activation marker

Identification of neoantigens that mediate killing *in vivo*

Assessing the role of intra-tumor heterogeneity in tumor rejection-using phylogenetic tree reconstruction

Two fundamental components of tumor heterogeneity:

- The number of clones comprising the tumor
- The genetic **diversity** between them

Wolf, Bartok, et al & Samuels, Cell 179, 219-235, 2019

Mixture of 6 clones from the same terminal branch was swiftly rejected

Wolf, Bartok, et al & Samuels, Cell 179, 219-235, 2019

6 clone mixes containing approximately the same number of mutations but with higher diversity, were not rejected

Wolf, Bartok, et al & Samuels, Cell 179, 219-235, 2019

Mixture of 12 clones from the same terminal branch was swiftly rejected

Wolf, Bartok, et al & Samuels, Cell 179, 219-235, 2019

Mixes containing more clones and higher diversity were most aggressive

Wolf, Bartok, et al & Samuels, Cell 179, 219-235, 2019

Although yielding large tumors, the 12AB tumors were still not as aggressive as the UVB-irradiated tumors

Wolf, Bartok, et al & Samuels, Cell 179, 219-235, 2019

The number of clones and their genetic diversity play an important role in mediating tumor growth and rejection

Wolf, Bartok, et al & Samuels, Cell 179, 219-235, 2019

Shannon diversity index: metric to quantify both the number of clones and the diversity of the mutations across clones in one index

Wolf, Bartok, et al, Cell 179, 219-235, 2019

Tumor clone number and genetic diversity are significantly associated with response to immunotherapy

Wolf, Bartok, et al, Cell 179, 219-235, 2019

Hazard ratio value corresponding to the survival risk per unit increase (i.e.each+1increment) in SDI.

Summary: our mouse, TCGA and ICT data are complimentary in suggesting that:

- Mutational load alone is not a sufficient predictor for immune response
- Intra-tumor heterogeneity has to be considered as an additional biomarker
- Intra-tumor heterogeneity is composed of both: clonal diversity
 number of clones
- Minimizing tumor heterogeneity exposes reactive neo-antigens to better immune detection

The combination of these factors will strongly dictate the extent of the overall immune response and have strong clinical implications

nature reviews immunology

Research Highlight Published: 04 October 2019

TUMOUR IMMUNOLOGY

Tumour heterogeneity determines immune response

nature reviews clinical oncology

Research Highlight Published: 27 September 2019

SKIN CANCER

CellPres

Alexandra F

A need to quantify intra-tumor heterogeneity to improve patient selection for checkpoint blockade therapy

Tumor Neoantigens: When Too Much of a Good Thing Is Bad

Anne Trinh^{1,2} and Kornelia Polyak^{1,2,*} ¹Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA 02215, USA ²Department of Medicine, Harvard Medical School, Boston, MA 02115, USA *Correspondence: kornelia_polyak@dfci.harvard.edu https://doi.org/10.1016/j.ccell.2019.10.009

Search

s a

For Authors Home About Articles Alerts News

Research Watch

Low-Heterogeneity Melanomas Are More Immunogenic and Less Aggressive

Costimulatory and coinhibitory interactions determine the amplitude of T-cell activation

How do T cells recognize and kill tumor cells?

Kalaora et al & Samuels, Oncotarget 2015

Scheme kindly provided by Paul Robbins and Cyrille Cohen

HLA Peptidomics to Identify Human Immunogenic Neo-antigens

Shelly Kalaora

Proof of Concept: Neoantigen characterization in melanoma line 12T

Sequence	Protein name	Mutation	HLA allele
DANSFLQSV	MED15	P677S	B*51
KLFEDRVGTIK	TPD52L2	S123L	A*03
GVYPMPGTQK	NCAPH2	S174Y	A*03

Kalaora et al, Cancer Discovery 8, 1366-1375, 2018

Identification of bacteria-derived HLA-presented peptides

Identification of intra-tumor bacteria

Researc	n=
---------	----

RESEARCH 2012

Genomic analysis identifies association of *Fusobacterium* with colorectal carcinoma

Aleksandar D. Kostic.^{1,2} Dirk Gevers.¹ Chandra Sekhar Pedamallu.^{1,3} Monia Michaud.⁴ Fujiko Du OPEN ACCESS Freely available online

2014

However

It has never been shown whether **tumor** HLA class I and HLA class II molecules can present microbial antigens

Noam Shental,[®] Deborah Nejman,⁴ 1 Zachary A. Cooper,^{7,8}; † Kevin Shee,² Jonathan Livny,² Roi Avraham,¹⁰ O Kelly Chatman,¹³ Stephen E. Johnst Garold Fuks,¹³ Candice Gurbatri,¹⁶ 1 Mark W. Hurd,¹⁷ Matthew Katz,⁶ 31 Matt Skalak,³ Jeffrey Bu,³ Monia M Talia Golam,^{31,23} Judit Sandbank,² Wendy S. Garrett,^{2,10,24} Sarah P. Th Curtis Huttenhower,^{2,27} Sangeeta N Jennifer A. Wargo,^{7,3} Todd R. Golu

CANCER

The human tumor microbiome is composed of tumor type-specific intracellular bacteria

 Wendy S. Garrett,^{2,109,34} Sarah P. Th Curtis Huttenhower,^{2,27} Sangeeta N Jennifer A. Wargo,^{7,8} Todd R. Golu
 Boborah Nejman¹*, Ilana Livyatan¹²*, Garold Fuks^{3*}, Nancy Gavert¹, Yaara Zwang¹, Leore T. Geller¹, Aviva Rotter-Maskowitz², Noi Weiser^{4,5}, Giuseppe Mallel¹, Elinor Gigi¹, Arnon Mettser¹, Gavin M. Douglas⁵, Iris Kamer¹, Yancheswaran Gopalakrishnan⁸t, Tali Dadosh⁹, Smadar Levin-Zaidman⁹, Sofia Avnet¹⁰, Tehila Atlan¹¹, Zachary A. Cooper¹², Reetakshi Arora⁸, Alexandria P. Cogdill¹¹, Md Abdul Wadud Khan⁹, Gabriel Ologun⁸, Yuval Bussi^{12,24}, Adina Weinberger¹², Maya Lotan-Pompan¹², Ofra Golari¹⁶, Gili Perry¹⁶, Merav Rokah¹⁷, Keren Bahar-Shany¹⁰, Elisa A. Rozeman¹⁹, Christian U. Blant¹³, And Ronai⁹, Ron Shaoul¹⁹, Armon Amit^{20,21}, Tatiana Dorfman^{22,22}, Ra Kreme^{22,4}, Xi R. Cohen^{5,25}, Sagi Harnof^{1,26}, Tali Siegal²⁷, Einav Yehuda-Shanidman⁷⁸, Einav Nili Gal-Mar²⁷, Neith Shapirz³⁸, Nicola Baldini^{10,30}, Morgan G. L. Langille^{5,31}, Alon Ber-Nun^{5,37}, Jeila Kaufman^{5,2}, Aviram Nissan³, Talia Golan^{5,2}, Maya Dadian¹⁶, Keren Levanon^{5,45}, Jair Ba^{5,2}, Shomit Yust-Katz^{5,27}, Iris Barshack^{5,33}, Daniel S. Peeper³⁴, Dan J. Raz⁵⁵, Eran Segal¹², Jennifer A. Wargo^{8,13}, Judith Sandbank²⁸, Noam Shental³⁶, Ravid Straussman¹ $|\xi|$

Science 2020

Pipeline for the identification of intra-tumor Bacterial antigens

Shelly Kalaora

Adi Nagler

Short talk to be given by <u>Adi Nagler</u> Concurrent Session 108: Diet and Microbiome 11/11/2020, 3:45 pm

Jennifer Wargo Ravid Straussman Deborah Rosenberg

Kalaora, Nagler et al & Samuels, Nature, In Revision

Phylogenetic tree of all bacteria that were identified in the tumors using 16s rDNA

	Class			Order				Genu	s								
Baci	lli		Bacill	lales bacillales	6	Staphylococcus Streptococcus											
Bact	eroidia		E Bacte	eroidales			Bacteroides Prevotella Porphyromonas										
Epsi	lonproteot	oacteria	Cam	oylobacte	rales		Campylobacter										
Clos	tridia		Clost	ridiales			Clostridium Veillonella Dialister										
Beta	proteobac	teria	Neiss	seriales			Eikenella Kingella										
E Fuso	bacteriia		Fuso	bacteriale	es		Fusobacterium Leptotrichia										
📕 Garr	imaproteo	bacteria	Vibric Enter Altero Pseu	onales obacteria omonada domonad	iles les lales		Photobacterium Klebsiella Shewanella Enterobacter Acinetobacter										
Actir	iobacteria		Actin Micro Bifido	omycetal coccales bacterial	es		Actinomyces Schaalia Corynebacterium Brachybacterium Gardnerella										
Alph	aproteoba	cteria	Rhod Sphir	obactera	les dales		Paracoccus Sphingomonas										
Neg	ativicutes		Veillo	nellales nomonada	ales		Dialis Seler	ster nomonas	5								
			Patients	s and me	tastases												
19 😐 19T	42 42RF 42RF 42RS	51 27 51AL 51BR	55 55A3 55A7 55B3	70 ● 70.1	86	92	92B3	112 • 112	152 ● 152A2								

Bacterial peptides presented on HLA-I and HLA-II in each patient

Acidovorax temperans Acinetobacter cumulans Actinomyces odontolyticus Anaerococcus octavius Arcobacter cibarius Arcobacter ellisii Arcobacter suis Bacteroides dorei Bacteroides ovatus Bacteroides vulgatus Blautia sp. SC05B48 Brachybacterium sp. P6-10-X1 Campylobacter concisus Campylobacter lanienae Clostridium clostridioforme Clostridium ramosum Corvnebacterium afermentans Corynebacterium humireducens Corynebacterium pseudopelargi Corvnebacterium singulare Corynebacterium tuberculostearicum Dialister pneumosintes Eikenella corrodens Enterobacter cancerogenus Enterobacter hormaechei Enterococcus faecium Fusobacterium nucleatum Gardnerella vaginalis Klebsiella oxytoca Leptotrichia hongkongensis Paracoccus marcusii Photobacterium rosenbergii Porphyromonas bennonis Schaalia odontolytica Selenomonas sp. oral taxon 920 Shewanella decolorationis Sphingomonas dokdonensis Sphingomonas melonis Sphingomonas mucosissima Sphingomonas roseiflava Sphingomonas sp. AAP5 Sphingomonas sp. Cra20 Sphingomonas sp. NIC1 Sphingomonas sp. PAMC26645 Sphingomonas sp. XS-10 Staphylococcus aureus Staphylococcus capitis Staphylococcus caprae Staphylococcus epidermidis Staphylococcus lugdunensis Staphylococcus warneri Streptococcus gordonii Streptococcus salivarius Streptococcus sanguinis Veillonella dispar Veillonella parvula

Recurrent HLA class-I presented bacterial peptides

Patient	Metastases	Acinetobacter cumulans	Actinomyces odontolyticus	Bacteroides dorei	Bacteroides ovatus	Bacteroides vulgatus	Brachybacterium sp. P6-10-X1	Campylobacter concisus	Campylobacter lanienae	Clostridium clostridioforme	Clostridium ramosum	Corynebacterium afermentans	Corynebacterium humireducens	Corynebacterium pseudopelargi	Corynebacterium singulare	Corynebacterium tuberculostearicum	Eikenella corrodens	Enterobacter cancerogenus	Enterobacter hormaechei	Fusobacterium nucleatum	Gardnerella vaginalis	Klebsiella oxytoca	Paracoccus marcusii	pneumosintes	Schaalia odontolytica	Selenomonas sp. oral taxon	Shewanella decolorationis	Sphingomonas dokdonensis	Sphingomonas melonis	Sphingomonas mucosissima	Sphingomonas sp. AAP5	Sphingomonas sp. Cra20	Sphingomonas sp. PAMC26645	Sphingomonas sp. XS-10	Staphylococcus aureus	Staphylococcus capitis	Staphylococcus caprae	Staphylococcus epidermidis	Staphylococcus lugdunensis	Staphylococcus warneri	Streptococcus gordonii	Streptococcus salivarius	Streptococcus sanguinis SK36	Veillonella dispar	Veillonella parvula	·	
19	19T							10	-									-				_					_			_		_						-				2	\vdash	┢	┢	-	
42	42RF	-				-		10	2	-	-	-			-			1		-		9	1				8			_		_					_	3	_	-		13	-	┢	┢	-	1
	42K5	-	6															1		8					6				Л	_		_						6			<u> </u>	┢──	+	+	+	-	2
	27 51ΔI	-	0							+	-	5					2			0								_	4	_	_	_	_		Δ			U		-	-	┢─	+	+	+		4
51	51BR-1						4										4	-		2														-	8							-	+	1	-		5
	51BR-2						9										8			9															9								1	-	-	1	6
	55A3						-										2																			9		6			2	7	2		1	1	7
	55A7-1									3								4	2																									2	2		
55	55A7-2									1														2																						1	
	55B3																				7							7	8	12	9	5	4	7		10	2	7								1	
70	70.1																																			9		3			3						
	86B												10																									11	1	3		8					
86	86B2	4				8										2																				15		3									
	86C														2			L	1		2	1																1			L	L	\perp	\vdash	\vdash	1	
92	92B3								_									<u> </u>		7																					<u> </u>	\vdash	\vdash	⊢	╞	4	
	92C3							L_	-	1								<u> </u>	1	<u> </u>										_		_						16				⊢	\vdash	⊢	┢	1	
112	112								_	1	_	⊢		3	<u> </u>	2	<u> </u>	_	1	<u> </u>			<u> </u>												12			8		<u> </u>	<u> </u>	⊢	\vdash	⊢	⊢	-	
152	152A			8	8	11		4	1		2			1	1	1	4	1		10		1			1	4																1			2		

Kalaora, Nagler et al & Samuels, *Nature*, *In Revision-* please do not post

"Hot spot" HLA - presented bacterial peptides

Tr-type G domain-containing protein, Enterobacter hormaechei, HLA-II

Kalaora, Nagler et al & Samuels, Nature, In Revision- please do not post

Immunogenicity of bacterial peptides

Kalaora, Nagler et al & Samuels, Nature, In Revision- please do not post

Summary

- HLA peptidomics revealed bacterial antigens bound to HLA class I and class II in melanoma tumors
- The identified antigens are derived from bacteria that enter the melanoma cells, some are recurrent and some are immuno-reactive

Identification of IFNy-Induced ribosomal frame-shifting and HLA-presentation of aberrant peptides

The interferon gamma (IFN) response

We still don't completely understanding of the role of IDO1 and the consequences of Tryptophan degradation on cancer progression

Riboseq and mRNAseq from three melanoma cell lines exposed to IFNy

Brar GA and Weissman JS, Nat. Rev. Mol. Cell Biol., 2015.

Noam Stern-Ginossar

IDO1 induction results in Trp to Kyn conversion

Bartok et al & Samuels*, Agami* , Nature, In Revision- please do not post

Effects on mRNA translation (initiation)

Analysis of Ribosome Protected Fragments (RPF) by DIRICORE (DIfferential Ribosome COdon REading)

Metagene RPF distribution analysis of all expressed rate of an analysis of all expressed rate of the second second

Reuven Agami

Analysis of RPFs at position 15 demonstrates ribosome pausing on Tryptophan codons

Analysis of Ribosome Protected Fragments (RPF) by DIRICORE (DIfferential Ribosome COdon REading)

Bartok et al & Samuels*, Agami* , Nature, In Revision- please do not post

Effects on mRNA translation (elongation)

A strong accumulation of RPFs downstream of Trp- 'W Bumps'

Effects of IDO1 inhibition (IDOi)

Summary so far . . .

Why bumps at ~15 amino acids after Trp codons?

W-Bumps and protein disorderedness

Peptide sequences corresponding to the W-Bumps region form an α-helix structure more frequently than other regions in the proteome

Entire Protein

15000

1 0000

5000

0

a Helly sheet Random

Disorderedness created by frameshifting

lower frameshifting rate.

Pull-down: His

Frame-shifted polypeptides observed using deep proteomics

20 0 1 2 3 4 5 6 7 8 9 10 12

Frequency of occurence in the *in-frame* proteome

14 16

Endogenous production of *trans-frame* proteins and their presentation at on the cell surface

Gene	Sequence	Found in sample	V P L S W GUG CCC CUG UCU UGG CUG AGC AUG CGU UGG
KCNK6	VPLSLAEHAL	IFNγ	
DBNDD2	SPLSSLSTL	IFNγ	
DIP2B	QFLAEILQV	IFNγ	
AC129492.1	SPTLSQCSL	IFNγ	
HSP90AB1	MVSPLAGVPK	mTRP	Aberrant: VPLSLAEHAL Canonical: VPLSWLSMRW
ZNF513	VGQEGLVSL	mTRP	
STK25	SPALRTLTL	IFNy,mTRP	V L G R W
FCGBP	APSGVAAGL	IFNγ,mets	GUU CUU GGA CGU <mark>UGG GGC AAC UA</mark> C AGC UCU G
ESPNL	LFLSHLEEI	IFNγ,mets	
RPL7A	VAAAESHPL	IFNγ,mets	
TRAM1L1	TSLVNLSTL	mTRP,mets	
GEMIN5	SPRGPPSSL	IFNγ,mTRP,mets	Aberrant: VLGRGATTAL Canonical: VLGRWGNYSS

-1

+1

Bartok et al & Samuels*, Agami* , Nature, In Revision- please do not post

Endogenous production of *trans-frame* proteins and their presentation at on the cell surface

Gene	Sequence	Found in sample	
KCNK6	VPLSLAEHAL	IFNγ	
DBNDD2	SPLSSLSTL	IFNγ	
DIP2B	QFLAEILQV	IFNγ	
AC129492.1	SPTLSQCSL	IFNγ	
HSP90AB1	MVSPLAGVPK	mTRP	Aberrant: VPLSLAEHAL Canonical: VPLSWLSMRW
ZNF513	VGQEGLVSL	mTRP	
STK25	SPALRTLTL	IFNγ,mTRP	V L G R W
FCGBP	APSGVAAGL	IFNγ,mets	GUU CUU GGA CGU <mark>UGG GGC AAC U</mark> AC AGC UCU G
ESPNL	LFLSHLEEI	IFNγ,mets	
RPL7A	VAAAESHPL	IFNγ,mets	
TRAM1L1	TSLVNLSTL	mTRP,mets	
GEMIN5	SPRGPPSSL	IFNγ,mTRP,mets	Aberrant: VLGRGATTAL Canonical: VLGRWGNYSS

-1 +1

Bartok et al & Samuels*, Agami* , Nature, In Revision- please do not post

Identification of reactive T cells to tryptophan-derived aberrant peptides

Tetramer screening of B07:02/C07:02 co-culture at Day 10 (D#18)

<u>KCNK6</u> peptide specific T cell population (0.05%) was detected in one well of D#18 T cells. This population was single cell sorted onto feeders for T cell cloning and further validation

Maarja Laos Johanna Olweus

Identification of reactive T cells to tryptophan-derived aberrant peptides

16 out of 180 single cell sorted T cells from KCNK6 tetramer positive population grew out on feeders.

All 13 tetramer positive KCNK6 T cell clones reacted positively with KCNK6 peptide loaded K562-B07:02 cells. Clone #4 that was tetramer negative did not react.

Maarja Laos Johanna Olweus

Summary

New layer of intra-tumor heterogeneity: on the HLA-presentation level

New layer of intra-tumor heterogeneity: on the HLA-presentation level

Cell proliferation

The Samuels Lab

Acknowledgments

Samuels Lab

NCI NIH

Osnat Bartok Yochai Wolf (alumnus) Sapir Cohen **Ronen Levy** Gitit Bar Eli (alumnus) Shelly Kalaora Adi Nagler **Michal Alon Polina Greenberg** Aviyah Peri Tal Alter **Fden Goldfarb** Nofar Amsalem Deborah Hayoun **Chaya Barbolin** Alexandra Gurman

erc

Eytan Ruppin Joo Sang Lee Sushant Patkar Glenn Merlino Chi-Ping Day Francis Crick Institute Charles Swanton Kevin Litchfield JHU David Sidransky

Hadassah

הלאו

SCIENCE FOUNDE

1727

201

Michal Lotem Eli Pikarsky, Ilan Stein Einat Cinnamon

SEVENTH FRAMEWORK

Weizmann Institute

Ravid Straussman Deborah Rosenberg Nir Friedman Dan Reshef Erez Greenstein Lea Eisenbach Noam Stern-Ginossar Orel Mizrahi Roni Oren Alexander Brandis Yishai Levin Technion Arie Admon Eilon Barnea Shai Shen Orr

Moross

Cancer Center (MICC)

stop cancer

Integrated

Research Alliance

NKI

Reuven Agami Abhijeet Pataskan Remco Nagel Daniel Peeper

MD Anderson

Jennifer Wargo

University of Oslo Johanna Olweus Maarja Laos

University of Zürich

Reinhard Dummer Mitch Levesque

FUNDACIÓN RAMÓN ARECES