

Clinical efficacy of immune checkpoint inhibitors in patients with small cell lung cancer is associated with high tumor mutational burden and development of immune-related adverse events

<u>Biagio Ricciuti¹</u>, Sasha Kravets², Suzanne Dahlberg², Renato Umeton^{3,4}, Adem Albayrak³, Safiya J. Subegdjo¹, Bruce E. Johnson¹, Mizuki Nishino⁵, Lynette M. Sholl⁶, Mark M. Awad¹

¹Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, ²Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, ³Department of Informatics, Dana-Farber Cancer Institute, Boston, MA, ⁴Massachusetts Institute of Technology, Cambridge, MA, ⁵Department of Radiology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA. ⁶Department of Pathology, Brigham and Women's Hospital, Boston, Harvard Medical School, Boston, MA

Background

- Advanced small cell lung cancer is associated with a dismal prognosis (5yr overall survival = 2%)
- High mutational load

Alexandrov et al., Nature 2013

Background

Low:

High:

Medium:

mutations

0-142

>248

143-247

- Response rates to immunotherapy are low in SCLC (10-20%)
- High tumor mutational load, as determined by whole exome sequencing (WES), correlates with immunotherapy benefit

Nivolumab + Ipilimumab

Months

Hellmann et al., Cancer Cell 2017

Hypothesis

- Do clinically-available targeted next generation sequencing (NGS) panels identify patients with SCLC who benefit from immunotherapy?
- Are immune-related adverse events (irAEs) associated with benefit form immunotherapy?

Results

TMB distribution in the entire cohort of SCLCs

Baseline clinicopathologic characteristics of patients

		TMB high	TMB low		
		(> 9.68 mut/Mb)	(≤ 9.68 mut/Mb)	Ρ	
		N = 26 (%)	N = 26 (%)		
Age	Median	63.5	67.5	0.18	
	Range	47 - 84	43 - 83		
Sex	Male	10 (38.5)	15 (57.7)	0.27	
	Female	16 (61.5)	11 (42.3)		
Smoking Status	Current/Former	26 (100)	23 (88.5)	0.24	
	Never	0 (0.0)	3 (11.5)		
Stage at Diagnosis	Extensive	15 (57.7)	19 (73.1)	0.38	
	Limited	11 (42.3)	7 (26.9)	0.30	
ECOG PS	0	3 (11.5)	4 (15.4)	0.24	
	1	17 (65.4)	11 (42.3)		
	2	5 (19.2)	10 (38.5)		
	3	1 (3.8)	1 (3.8)		
	Sensitive	15 (57.7)	11 (42.3)		
Platinum sensitivity	Resistant	10 (38.5)	9 (34.6)	0.41	
	Refractory	1 (3.8)	6 (23.1)		
Treatment received	PD-1 inhibitor	17 (65.4)	14 (53.8)	0.57	
	PD-1 + CTLA-4	9 (34.6)	12 (46.2)	0.57	
Line of therapy	2	18 (69.2)	11 (42.3)	0.09	
	3	6 (23.1)	9 (34.6)		
	≥ 4	2 (7.7)	6 (23.1)		
Baseline brain metastasis	Yes	7 (26.9)	10 (38.5)	0.56	
	No	19 (73.1)	16 (61.5)	0.50	

Outcomes on <u>Immunotherapy</u> in TMB high vs TMB low groups

Progression-free survival

Outcomes on Chemotherapy in TMB high vs TMB low groups

Outcomes according to TMB tertiles

Progression-free survival

Overall survival

Association between irAEs and clinical outcome

Cotogony	Any grade	Grade 1-2	Grade 3-4
Category	N = 25	N = 17	N= 8
Rash	3 (7.8)	3 (10.7)	-
Endocrine:			
Thyroid disorders	5 (13.1)	5 (17.8)	-
 Hypopituitarism 	1 (2.6)	1 (3.5)	-
Colitis	5 (13.1)	2 (7.1)	3 (30.0)
Hepatitis	3 (7.8)	3 (10.7)	-
Pneumonitis	5 (13.1)	2 (7.1)	3 (30.0)
Arthralgias	2 (5.2)	2 (7.1)	-
Hematological:			
Anemia	2 (5.2)	2 (7.1)	-
Leukopenia	2 (5.2)	1 (3.5)	1 (10.0)
CNS			
Encenhalitis	1 (2.6)	_	1 (10 0)
 Peripheral neuropathy 	1 (2.6)	1 (3 5)	-
renprioral neuropatry	1 (2.0)	1 (0.0)	
Othory			
• Macantaria pappiculitic	1 (2 6)		1 (10 0)
	1 (2.0)	-	1 (10.0)
	1(2.0)	1 (3.5)	- 1 (10 0)
• Atrophic gostritic	2(2.0)	1(3.3)	1 (10.0)
	1 (2.0)	1 (3.5)	-

Association between irAEs and clinical outcome

Progression-free survival

Overall survival

12-week landmark analysis

Progression-free survival

Overall survival

Conclusion

- Our data provide the first evidence for the use of targeted NGS to assess TMB status for the prediction of efficacy of immunotherapy in SCLC
- Compared to WES, TMB estimation using targeted NGS may provide a cost-effective and clinically available tool to optimize SCLC patient selection for ICIs
- irAEs might be associated with improved immunotherapy efficacy. Larger cohort studies with longer follow-up are required to further investigate this association

Acknowledgments

DFCI/BWH

Mark M. Awad Sasha Kravets Suzanne Dahlberg Safiya J. Subegdjo Bruce E. Johnson Renato Umeton Adem Albayrak Mizuki Nishino Lynette M. Sholl

BRIGHAM HEALTH

