

Immunotherapy for the Treatment of Genitourinary Cancers

Joseph Pizzolato, MD

Attending Physician

Mount Sinai Comprehensive Cancer Center

Disclosures

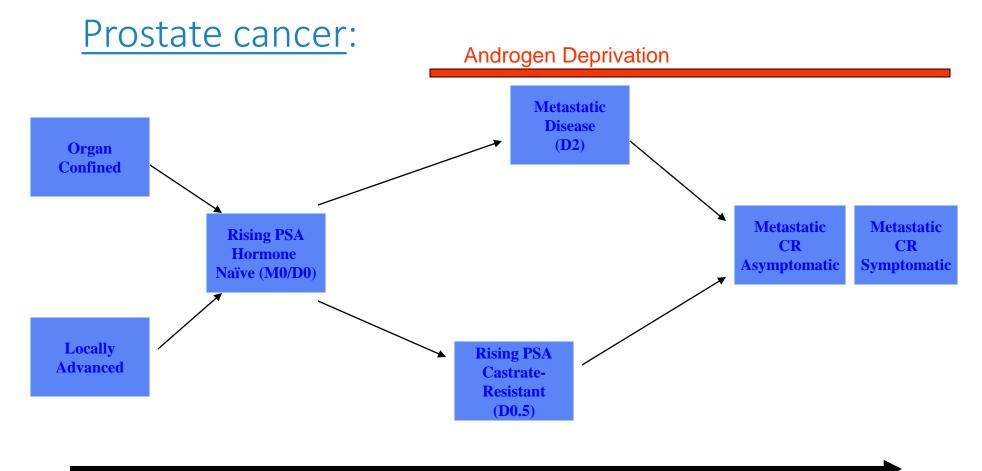
- I currently receive honoraria from Genentech, Astellas-Medivation
- I will be discussing approved and non-FDA approved indications during my presentation.

Key Takeaways:

- Describe the rationale for common approaches to cancer immunotherapy, particularly with respect to prostate cancer, bladder cancer and renal cancer.
- Familiarize the learner with clinical data on the efficacy of approved therapies
- Recognize patient selection criteria for approved therapies
- Select appropriate sequencing of approved therapies

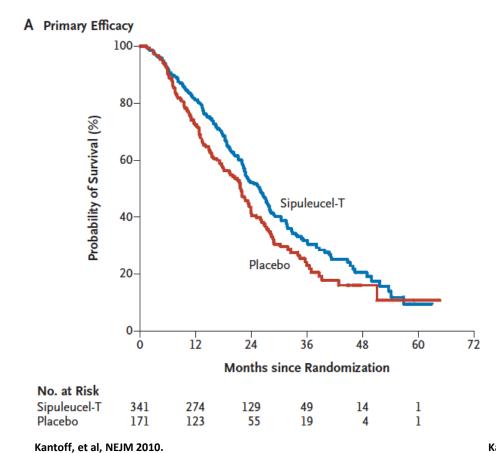
Prostate Cancer – Case #1:

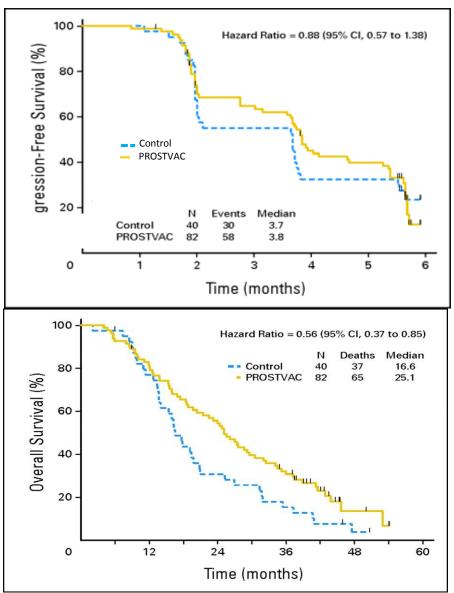
You are seeing a 68 y/o man who was diagnosed with a Gleason 5+4 prostate cancer 5 years ago. He had evidence of metastases to the bone and retroperitoneal lymph nodes, and was started on treatment with leuprolide and bicalutamide. His PSA initially declined, but then began rising two years ago, and the bicalutamide was discontinued. His PSA continued to rise, and is currently 5 ng/mL. Bone scan shows new metastases, but he remains asymptomatic. What are appropriate immunotherapy treatment options for him?


- A) Nivolumab
- B) Sipuleucel-T
- C) Pembrolizumab
- D) B or C

<u>Lessons learned</u>: Prostate cancer immunotherapy trials

- Prostate not an "inflamed" solid tumor like melanoma, renal, lung, bladder
- Not significantly hyper-mutated
- For vaccines ↑ doses of vaccine ≠ augmentation of immunity
- Limited efficacy of checkpoint inhibitors, anti-CTLA-4, anti-PD1
- No evidence of disease pseudoprogression before response
- No abscopal effects





Vaccines in Prostate Cancer

Kantoff, el al, JCO 2010

Sipuleucel-T:

Approval indications:

Patients with asymptomatic to minimally symptomatic castration-resistant metastatic prostate cancer

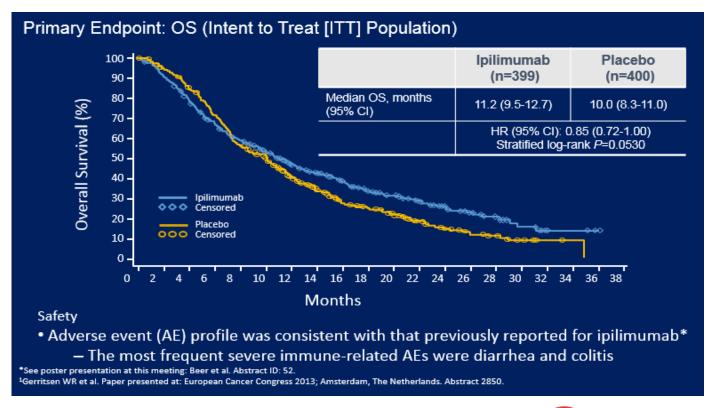
Dosing: Collection and infusion every 2 weeks x 3

Common adverse reactions:

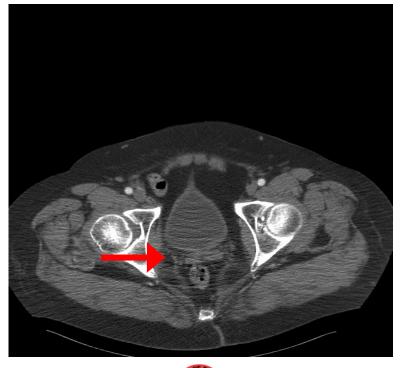
Chills, fatigue, fever, back pain, nausea, joint aches, headache

Warnings:

Infusion reactions, not tested for transmissible infectious diseases, syncope/hypotension, myocardial infarction, thromboembolic events



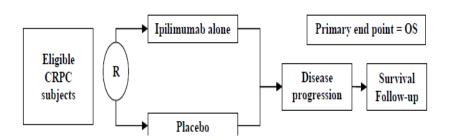
Phase 3 Study of Ipilimumab in Post-Docetaxel mCRPC (CA184-043)1

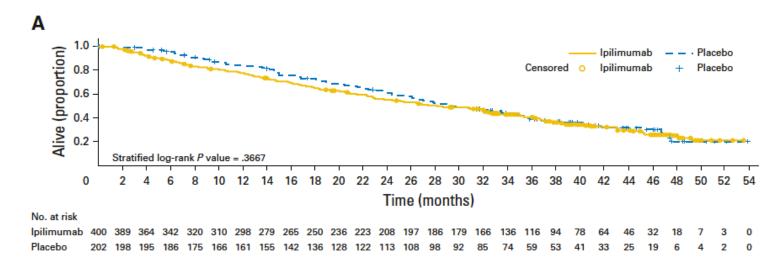


Resolution of Prostate Mass

Screening

14 months





Patients:

- Asymptomatic/minimally symptomatic, chemotherapy-naïve castration resistant prostate carcinoma (CRPC)
- No visceral metastases

mOS 28.7 vs. 29.7 mos (HR 1.11; 0.88 – 1.39)

PD-1/PD-L1 blockade in mCRPC

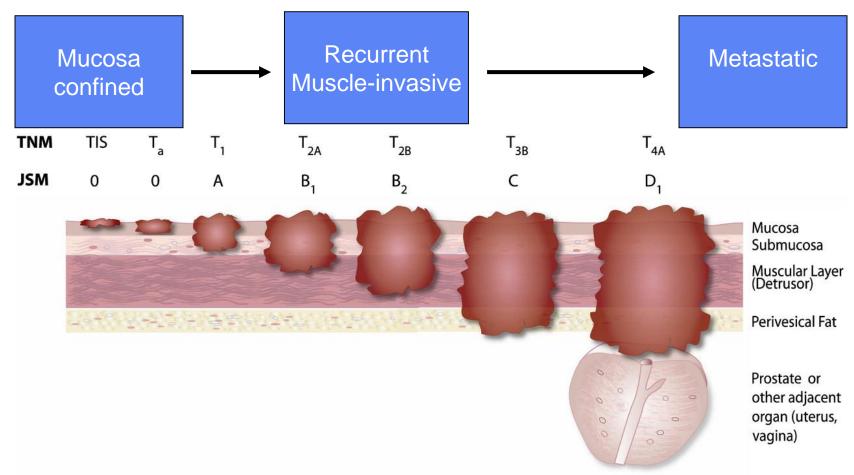
- Phase I trials with nivolumab
 - No evidence of single-agent activity in mCRPC
- Phase I trials with pembrolizumab
 - Small percentage response rate in patients with advanced mCRCP
 - Pembrolizumab now approved (May 2017) for MSI-high and mismatch repair deficient tumors – (small percentage of prostate cancers are MSI^{high})
- Multiple combinations are underway:
 - PD-pathway inhibitors +/- Ipilimumab & vaccines (including sipuleucel-T), in combination with chemotherapy, androgen deprivation, and radiation therapy.

CTLA-4 blockade + Ipilimumab=SIPPI

- Poster ASCO GU 2018
- Small trial using ipilimumab 1mg/kg + SIP-T
- Only 9 docetaxel naïve men studied
- Median survival has surpassed 4 years
- 6/9 men remain alive with a mean PSA of 5.5
- One patient remains in durable remission.

A phase 2 study of olaparib and durvalumab in metastatic castrate-resistant prostate cancer (mCRPC) in an unselected population

- Durvalumab 1500 mg q28 days + Olaparib 300mg PO q24
- All patients received previous enzalutamide or abiraterone
- Of the first 17 patients:
 - 8/17 had PSA responses
 - 12 month PFS 51.5%



Bladder Cancer:

www.cancersymptoms.xyz

Bladder Cancer – Case #2:

You are seeing a 60 y/o man who was diagnosed with superficial bladder cancer 5 years ago. After several courses of resection and intravesical BCG therapy, he developed muscle-invasive disease 2 years ago and underwent radical cystoprostatectomy. He then did well until 4 months ago when he was found to have lung and liver metastases. He started treatment with gemcitabine and cisplatin chemotherapy, but unfortunately had progressive disease after 3 cycles of therapy. What is the best immunotherapy treatment option for him?

- A) IL-2
- B) Atezolizumab
- C) Pembrolizumab

The new bladder landscape: new drug approvals

- Second-line:
 - Durvalumab anti-PDL1
 - Atezolizumab anti-PDL1
 - Avelumab anti-PDL1
 - Nivolumab anti-PD1
 - Pembrolizumab anti-PD1 → Only one that has shown improved OS thus far.
- Front-line in "Cisplatin-ineligible":
 - Atezolizumab
 - Pembrolizumab

Atezolizumab – IMvigor 210 Study

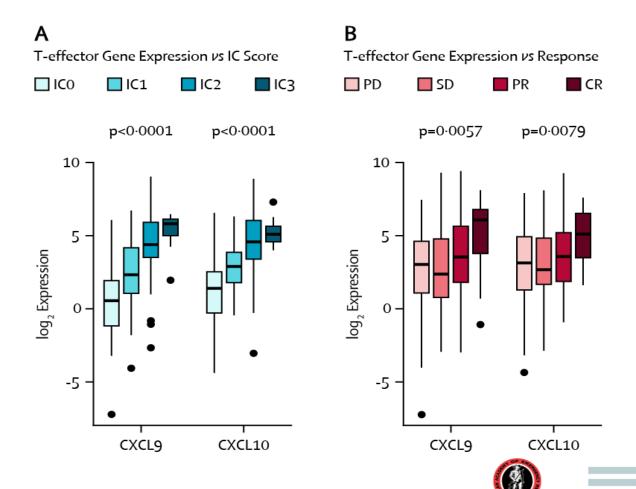
- Open-label, single arm, two cohort Phase II Study
 - Cohort 1: cisplatin-ineligible (N=119)
 - Cohort 2: progression after platinum-containing chemo (N=310)
 - Assessed PD-L1 expression on tumor infiltrating immune cells

	PD-L1 Expression	<u>ORR</u>
ORR all patients 15%	≥ 5%	26%
	1 – 5%	10%
Median OS 7.9 months	< 1%	8%

Atezolizumab:

Atezolizumab – IMvigor 210 Study

- May 2016: Accelerated approval for patients with locally advanced or metastatic urothelial carcinoma with disease progression following platinum-based chemotherapy (or whose disease has worsened within 12 months of receiving platinum-based neoadjuvant or adjuvant chemotherapy).
- Expanded approval as a **first-line treatment in cisplatin-ineligible** patients (IMvigor 210 Cohort 1).
 - ORR 23.5% (CR in 6.7%, PR in 16.8%)
- Approved regardless of PD-L1 status



High levels of immune response genes are associated with both PD-L1 staining and treatment response

Atezolizumab:

IMvigor 211 trial

- Open-label, multicenter, randomized Phase III study (atezolizumab vs. physician's choice (vinflunine, docetaxel or paclitaxel)
- 931 patients
- Primary endpoint: Overall survival
- Primary endpoint not met
- ORR 14.8%, 26% in patients with high PD-L1 expression
- mPFS 2.7 months
- OS 15.9 months

Nivolumab – Checkmate 275 Study

- Phase II Study in locally advanced/metastatic disease following platinum chemotherapy (N=270)
 - Stratified by PD-L1 expression ≥ 5% or < 5%

ORR all patients 19.6%	PD-L1 Expression	<u>ORR</u>	
	≥ 5%	28.4%	
Median OS 8.7 months	< 5%	15.8%	

Checkmate 032 Study – Phase I/II

Nivolumab	
(n=78)	

19 (24.4%,

15.3-35.4)

PD-L1 PD-L1 <1% ≥1%

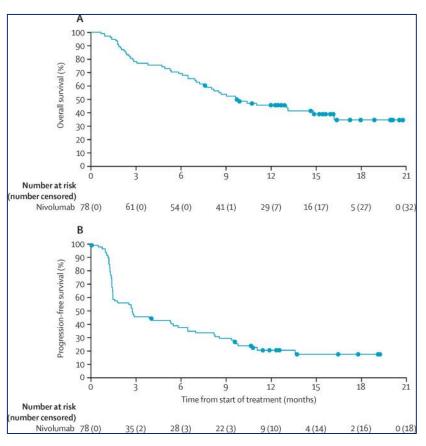
(n=42) (n=25)

11

(26·2%, 6 (24·0%, 13·9– 9·4–45·1)

42.0)

Best overall response


Unable to

establish

objective response

Confirmed

Complete response	5 (6%)	1 (2%)	4 (16%)
Partial response	14 (18%)	10 (24%)	2 (8%)
Stable disease	22 (28%)	11 (26%)	8 (32%)
Progressive disease	30 (38%)	18 (43%)	8 (32%)

Kaplan-Meier curves of overall survival (A) and progression-free survival (B); circles are censored patients.

7 (9%)

3 (12%)

2 (5%)

Checkmate 032 study-ASCO GU 2018 update

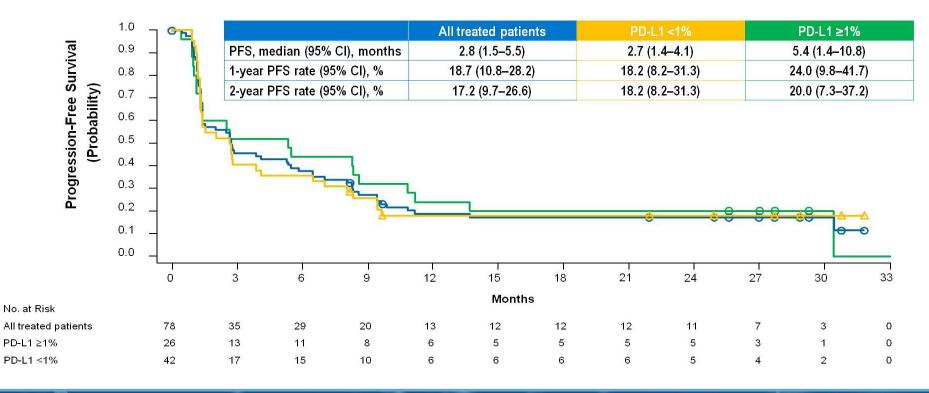
Investigator-Assessed Response

	All Patients (n = 78)	PD-L1 <1% (n = 42)	PD-L1 ≥1% (n = 26)
ORR, %	25.6	26.2	26.9
95% CI	16.4–36.8	13.9–42.0	11.6–47.8
Best overall response, %			
Complete response	7.7	4.8	15.4
Partial response	17.9	21.4	11.5
Stable disease	26.9	26.2	26.9
Progressive disease	38.5	42.9	34.6
Unable to determine	9.0	4.8	11.5

One additional complete response was reported since the 2016 primary study publication¹

PRESENTED AT: 2018 Genitourinary Cancers Symposium | #GU18 Presented by: Dr. Jonathan E. Rosenberg Slides are the property of the author. Permission required for reuse.

Presented By Padmanee Sharma at 2018 Genitourinary Cancers Symposium: Translating Evidence to Multidisciplinary Care



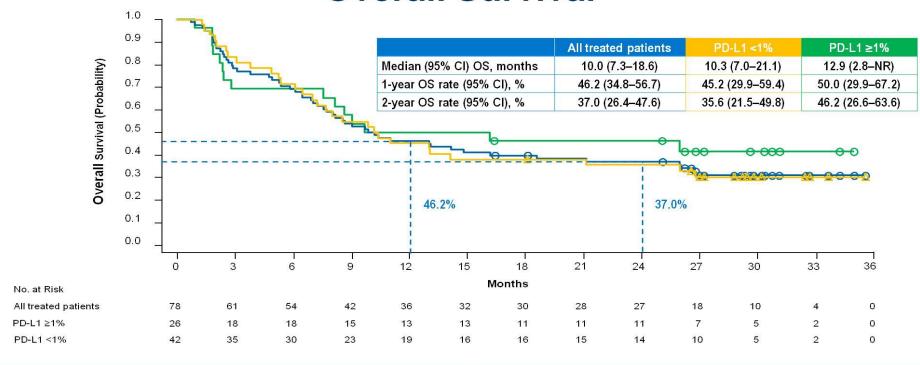
^{1.} Sharma P, et al. Lancet Oncol 2016;17:1590-8.

Checkmate 032 study-ASCO GU 2018 update

Progression-Free Survival

PRESENTED AT: 2018 Genitourinary Cancers Symposium | #GU18
Slides are the property of the author. Permission required for reuse.

Presented by: Dr. Jonathan E. Rosenberg



Checkmate 032 study-ASCO GU 2018 update

Overall Survival

PRESENTED AT: 2018 Genitourinary Cancers Symposium | #GU18
Slides are the property of the author. Permission required for reuse.

Presented by: Dr. Jonathan E. Rosenberg

Presented By Padmanee Sharma at 2018 Genitourinary Cancers Symposium: Translating Evidence to Multidisciplinary Care

Nivolumab

- February 2017: FDA approval for patients with locally advanced or metastatic urothelial carcinoma with disease progression following platinum-based chemotherapy (or whose disease has worsened within 12 months of receiving platinum-based neoadjuvant or adjuvant chemotherapy).
- Approved regardless of PD-L1 status
- Updated Survival Data ASCO GU 2018

Avelumab/Durvalumab

 Locally advanced or metastatic bladder cancer whose disease has progressed during or after platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant chemotherapy.

Avelumab:

Approval based on single-arm, open-label JAVELIN trial in which ORR was 13.3% among 226 patients. Median duration of response not reached (1.4+ to 17.4+ months)

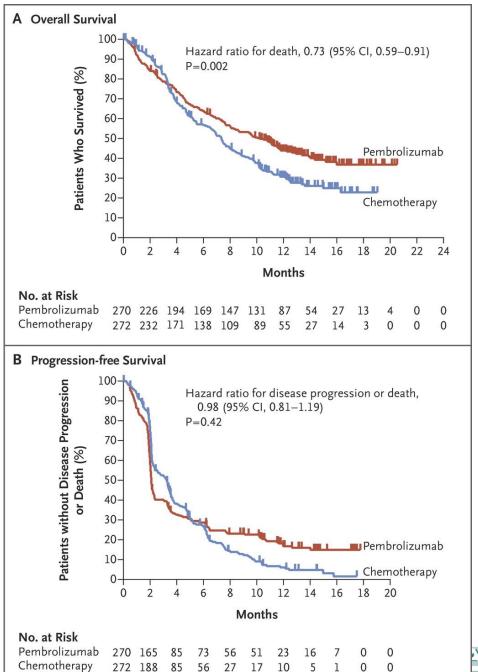
Durvalumab:

Phase I/II trial evaluated the safety and efficacy of durvalumab in patients with locally advanced or metastatic urothelial carcinoma of the bladder (2nd line). N=191; ORR was 17.8%; with 27.6% and 5.1% in PD-L1 high and low group, respectively.

Pembrolizumab

- Locally advanced/metastatic urothelial carcinoma with progression on or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing therapy.
- Accelerated approval for patients with locally advanced or metastatic urothelial carcinoma who are "cisplatin-ineligible".
- Only IO agent showing improved OS in bladder cancer thus far.
- Based on Trial KEYNOTE-045 (2nd line):
 - Multicenter, randomized, phase III trial.
 - Patients with locally advanced or metastatic urothelial carcinoma with disease progression on or after platinum-containing chemotherapy.
 - Significantly Improved OS compared to taxane-based chemotherapy.
 - GU ASCO 2018 Update: 27.7 month follow up: 10.3 vs 7.3 months.
- Accelerated approval for the 1st line indication based on data from KEYNOTE-052:
 - Single-arm, phase II trial
 - 370 patients with locally advanced or metastatic urothelial carcinoma who were "cisplatinineligible"
 - Received pembrolizumab 200 mg every 3 weeks
 - Median follow-up time of 7.8 months
 - ORR was 28.6% (95% CI 24, 34)
 - Median response duration not reached (1.4+ 17.8+ m).

KEYNOTE-045

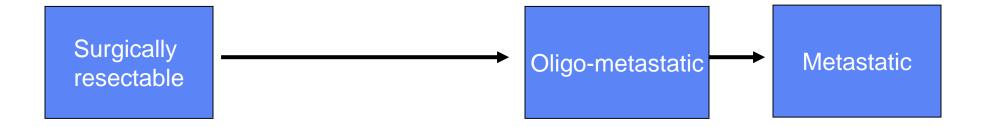

(Phase III) 2nd line

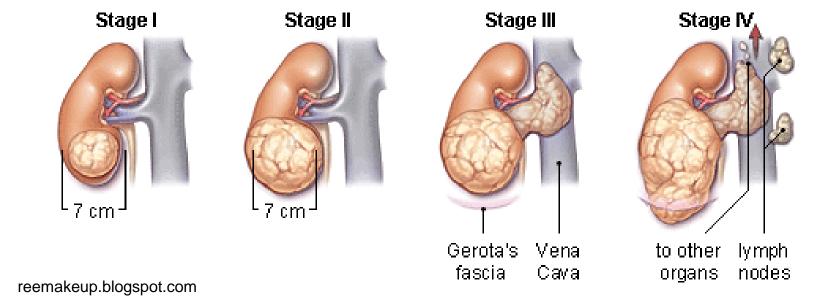
OS: Median 10.3 m vs 7.4 m compared to taxane-based chemotherapy.

PFS: Not significantly different

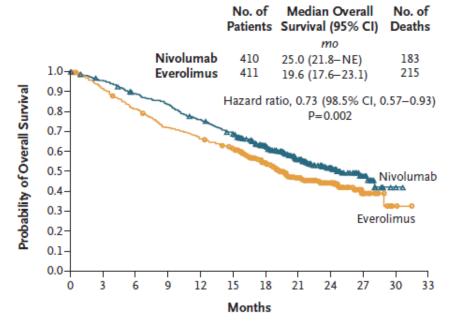
AE: Fewer TRAE of any grade in the pembrolizumab group (60.9% vs 90.2%)

Bellmunt, et al., NEJM, 376: 1015-1026, 2017





Kidney Cancer:



Nivolumab

- Phase III CheckMate 025 trial:
 - 821 patients
 - Previously treated mRCC (1-2 VEGF TKI)
 - Nivolumab 3 mg/kg q2 wks vs Everolimus 10 mg/day
- Median OS: 25m vs 19.6m
- ORR: 25% vs 5%
- Median PFS: 4.6m vs 4.4m
- Median duration: 23m vs 13.7m
- Grade 3/4 AE: 19% vs 37%
- Most common AE with nivolumab was fatigue (2%)

Approved by FDA in 2015

Nivolumab:

Approval indications:

Patients with metastatic renal cell cancer who have received prior anti-angiogenic therapy

Dosing: 240 mg IV every 2 weeks

Common adverse reactions:

Asthenia, cough, nausea, rash, dyspnea, diarrhea, constipation, decreased appetite, back pain, arthralgia

Warnings:

Immune-mediated pneumonitis, colitis, hepatitis, endocrinopathies, nephritis, rash, encephalitis, others

CheckMate 025

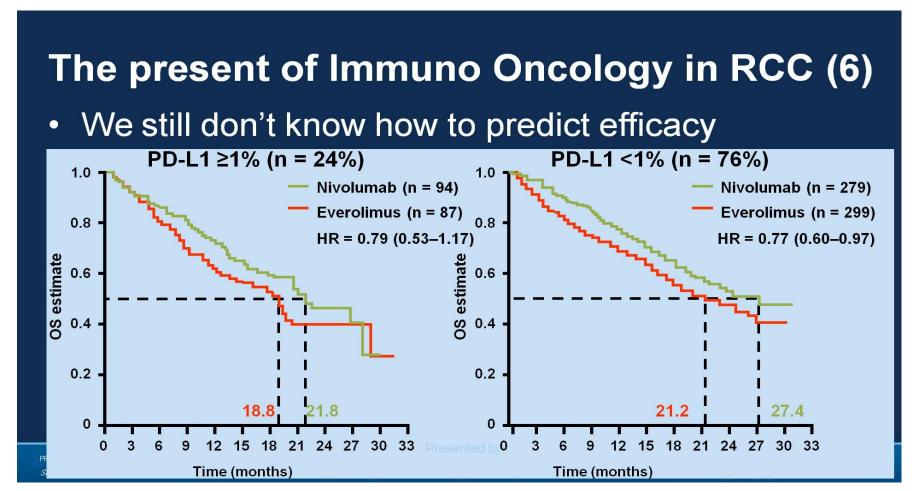
The present of Immuno Oncology in RCC (5)

But impressive responses only occurs in 25% of patients

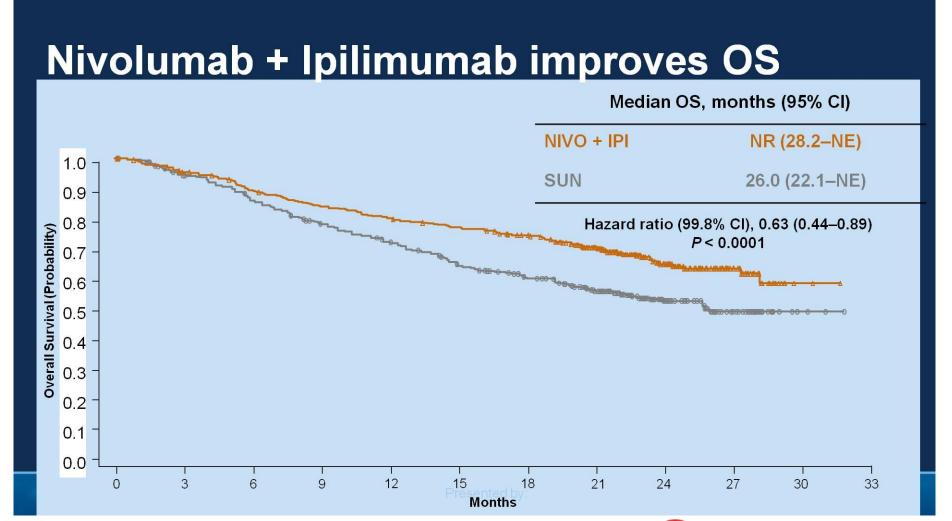
	Nivolumab (n=410)	Everolimus (n=411)
ORR, %	25	5
Best overall response, % CR PR SD	1 24 34	1 5 55

PRESENTED AT: 2018 Genitourinary Cancers Symposium | #GU18
Slides are the property of the author, Permission required for reuse.

Presented By Bernard Escudier at 2018 Genitourinary Cancers Symposium: Translating Evidence to Multidisciplinary Care



CheckMate 025



PD1 + CTLA4 BLOCKADE

Nivolumab + Ipilimumab induces high RR

	N = 847		
Outcome	NIVO + IPI N = 425	SUN N = 422	
Confirmed ORR, ^a % (95% CI)	42 (37–47) 27 (22–3		
	P < 0.0001		
Confirmed BOR, ^a % Complete response Partial response Stable disease Progressive disease Unable to determine/not reported	9 b 32 31 20 8	1 ^b 25 45 17 12	

PRESENTED AT: 2018 Genitourinary Cancers Symposium | #GU18
Slides are the property of the author. Permission required for reuse.

Nivolumab + Ipilimumab induces high CR

	N = 847		
Outcome	NIVO + IPI N = 425	SUN N = 422	
Confirmed ORR, ^a % (95% CI)	42 (37–47) 27 (22–31		
	<i>P</i> < 0.0001		
Confirmed BOR, ^a % Complete response Partial response Stable disease Progressive disease Unable to determine/not reported	9 ^b 32 31 20 8	1 b 25 45 17 12	

PRESENTED AT: 2018 Genitourinary Cancers Symposium | #GU18

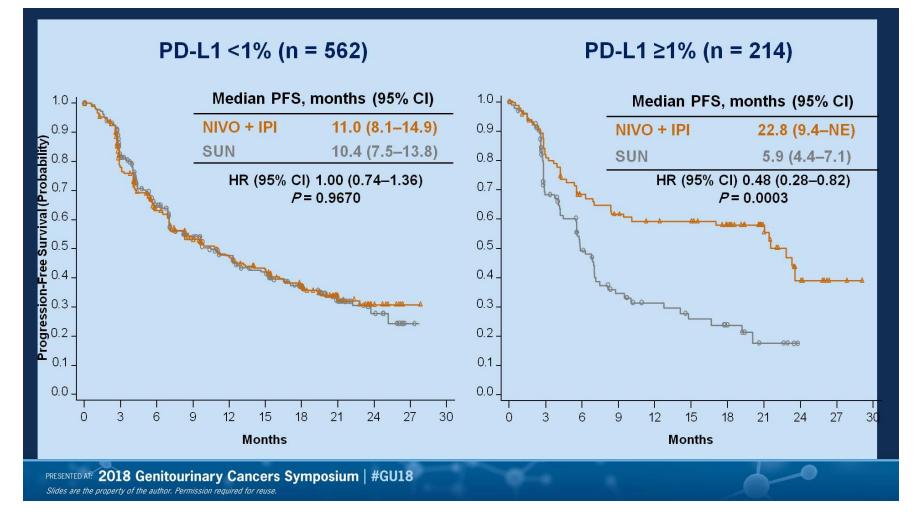
Slides are the property of the author. Permission required for reuse.

But efficacy is mostly seen in intermediate and poor risk patients, **not in good risk ones**

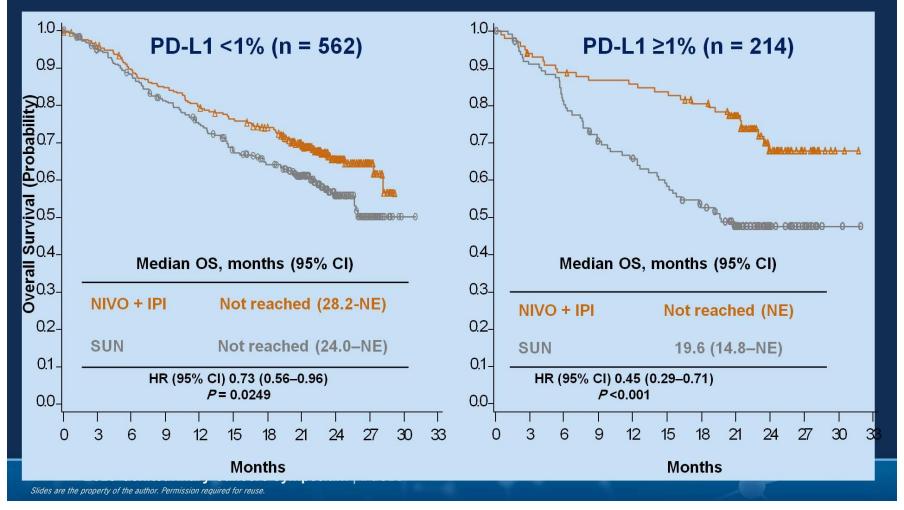
	N = 249 ^a		
Outcomo	NIVO + IPI	SUN	
Outcome	N = 125	N = 124	
Confirmed ORR, ^b % (95% CI)	29 (21–38)	52 (43–61)	
	P = 0.0002		
PFS, ^c median (95% CI), months	15.3 (9.7–20.3)	25.1 (20.9–NE)	
RESEN	HR (99.1% CI) 2.18 (1.29–3.68)		
lides	P < 0.0001		

And PDL 1 expression has some predictive value

	IMDC intermediate/poor risk			
	PD-L1	<1%	1% PD-L1 ≥1%	
Outcome	NIVO + IPI N = 284	SUN N = 278	NIVO + IPI N = 100	SUN N = 114
ORR, ^a % (95% CI)	37 (32–43)	28 (23–34)	58 (48–68)	22 (15–31)
	P = 0.0252		P < 0.	0001
BOR, ^a % Complete response Partial response	7 30	1 27	16 42	1 21


PRESENTED AT: 2018 Genitourinary Cancers Symposium | #GU18

Slides are the property of the author. Permission required for reuse.



Other PD-1/PD-L1 Inhibitors/COMBOS:

PD1/PDL1 + VEGF inhibition is promising

	Pembro + axitinib	Avelumab + axitinib	Pembro + lenvatinib	Atezo + bevacizumab	Nivo + Tivozanib
n	52	45	30	101	14
CR	5.8%	5.5%	0	7%	0
PR	65.4%	52.7%	63%	25%	64.3%
ORR	71.2% (73.1%)*	58.2%	63%	32%	64.3%

*ASCO GU 2018 update

SENTED AT: 2018 Genitourinary Cancers Symposium | #GU18

Slides are the property of the author. Permission required for reuse.

Resources

McNeel et al. Journal for ImmunoTherapy of Cancer (2016) 4:92 DOI 10.1186/s40425-016-0198-x

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma

Douglas G. McNeel¹, Neil H. Bander², Tomasz M. Beer³, Charles G. Drake⁴, Lawrence Fong⁵, Stacey Harrelson⁶, Philip W. Kantoff⁷, Ravi A. Madan⁸, William K. Oh⁹, David J. Peace¹⁰, Daniel P. Petrylak¹¹, Hank Porterfield¹², Oliver Sartor¹³, Neal D. Shore⁶, Susan F. Slovin⁷, Mark N. Stein¹⁴, Johannes Vieweg¹⁵ and James L. Gulley^{16*}

Rini et al. Journal for ImmunoTherapy of Cancer (2016) 4:81 DOI 10.1186/s40425-016-0180-7

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of renal cell carcinoma

Brian I. Rini¹, David F. McDermott², Hans Hammers³, William Bro⁴, Ronald M. Bukowski⁵, Bernard Faba⁶, Jo Faba⁶, Robert A. Figlin⁷, Thomas Hutson⁸, Eric Jonasch⁹, Richard W. Joseph¹⁰, Bradley C. Leibovich¹¹, Thomas Olencki¹², Allan J. Pantuck¹³, David I. Quinn¹⁴, Virginia Seery², Martin H. Voss¹⁵, Christopher G. Wood⁹, Laura S. Wood¹ and Michael B. Atkins^{16*}

Resources

Kamat et al. Journal for ImmunoTherapy of Cancer (2017) 5:68 DOI 10.1186/s40425-017-0271-0

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of bladder carcinoma

Ashish M. Kamat^{1*}, Joaquim Bellmunt², Matthew D. Galsky³, Badrinath R. Konety⁴, Donald L. Lamm⁵, David Langham⁶, Cheryl T. Lee⁷, Matthew I. Milowsky⁸, Michael A. O'Donnell⁹, Peter H. O'Donnell¹⁰, Daniel P. Petrylak¹¹, Padmanee Sharma¹², Eila C. Skinner¹³, Guru Sonpavde¹⁴, John A. Taylor III¹⁵, Prasanth Abraham¹⁶ and Jonathan E. Rosenberg¹⁷

